
1 3D Poiseuille Flow

Over the next two lectures we will be going over the stabilization of the 3-D
Poiseuille flow. For those of you who havent had fluids, that means we have a
channel of fluid that is infinite in the x and z directions. It is bounded at y = 0
by a wall and also at y = 1. In our scenario, this fluid is incompressible and has
a constant density. What I’m going to do is show you the steps to go from the
full uncontrolled flow governed by the Navier Stokes equations to a controlled
flow that looks like its governed by heat equations. The controllers we’re going
to use to do this are the following: (Note they are in Fourier Space)

(Ṽc)t =
1

Re

(
Ṽyy(1)− Ṽyy(0)− α2Ṽc

)

−β

∫ 1

0

Ṽ (t, η)(2η − 1) cosh(α(1− η))dη , (1)

=
1

Re

(
2πi
(
kx

(
ũy(t, 0)− ũy(t, 1)

)
+ kz

(
W̃y(t, 0)− W̃y(t, 1)

))
− α2Ṽc

)

−β

∫ 1

0

Ṽ (t, η)(2η − 1) cosh(α(1− η))dη , (2)

Ũc =
4π2

α2

(
kxỸ (t, 1) + kzω̃(t, 1)

)
(3)

=
∫ 1

0

4π2

α2

(
kxK(1, η) + kzΓ(1, η)

)(
kxũ(t, η) + kzW̃ (t, η)

)
dη (4)

W̃c =
4π2

α2

(
kzỸ (y, 1)− kxω̃(t, 1)

)
(5)

=
∫ 1

0

4π2

α2

(
kzK(1, η)− kxΓ(1, η)

)(
kxũ(t, η) + kzW̃ (t, η)

)
dη. (6)

and now for the steps to derive these controllers.

2 Notation

We’re going to start with notation just to make sure everyone is on the same
page. index notation, vector calculus (grad, div, laplacian), material derivative,
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2-D Fourier Transform and diff property.

∇ = [∂x ∂z ∂y] =
∂

∂xi
(7)

(8)

∇2 = 4 = ∂xx + ∂zz + ∂yy =
∂2

∂xj∂xj
(9)

(10)
D

Dt
= ∂t + u.∇ =

∂

∂t
+ ui

∂

∂xi
(11)

Here are some useful examples:

∇p =
∂p

∂xi

= [px pz py] (12)

∇.u =
ui

∂xi

= ux + wz + vy (13)

∇2u =
∂2ui

∂xj∂xj

=

 uxx + uzz + uyy

wxx + wzz + wyy

vxx + vzz + vyy

 (14)

u.∇u = uj
∂ui

∂xj

=

 uux + wuz + vuy

uwx + wwz + vwy

uvx + wvz + vvy

 (15)

We will be using the 2-D Fourier Transform, the forward transform looks like
this:

F̃ (t, kx, kz, y) =
∫ ∞
−∞

∫ i

−∞
nftyF (t, x, z, y)e−2πi(kxx+kzz)dxdz (16)

Recall the useful property of the FT under differentiation

Fx = 2πikxF̃ (17)
Fz = 2πikzF̃ (18)

Remember this only works for differentiation in the x and z directions as there
are the directions in which we are taking the FT.
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3 Navier Stokes and our equilibrium

So we start with the Navier Stokes equations

Du
Dt

=
1

Re
∇2u−∇p (19)

ut =
1

Re
∇2u− u.∇u−∇p (20)

∇.u = 0 (21)
u(y = 0) = 0 (22)
u(y = 1) = 1 (23)

Remember (19) is the same as (20), only we have written out the material
derivative operator. Note that these equations are already non dimensionalized.
We assumed density is constant, and that gravity and other forces are neglected.
We are including viscosity and then we have a pressure gradient to force the flow.
The Reynolds number (Re) is a ratio of the inertial forces to the viscous forces.
It is the characteristic velocity times the characteristic length divided by the
kinematic viscosity. Re = UL

ν The second equation you see is the incompressible
condition. This means the density of a parcel of fluid is constant. It does not
mean the density of the flow is constant. We need the additional assumption
that density is constant to drop it altogether.

Our boundary conditions mean two things. One is that the flow cannot
penetrate the walls at the top and bottom, so the normal velocity (V ) must be
zero. The other is that there is no slip at the walls, ie there is viscosity, so the
tangential velocities (U and W ) must be zero at the boundaries.

We can use (21) to derive an equation for the pressure. We take the diver-
gence of the velocity equations ∇.ut, plug in (21), and we arrive at the following
equation for the pressure. We get the boundary conditions by looking at the Vt

equation and plugging in 0 and 1.

∇.(ut) =
1

Re
∇.(∇2u)−∇.(u.∇u)−∇.(∇p) (24)

∇.(u)t =
1

Re
∇2(∇.u)− ∂

∂xi
(uj

∂ui

∂xj
)−∇2p (25)

0 = 0− (
∂uj

∂xi

∂ui

∂xj
+ uj

∂2ui

∂xi∂xj
)−4p (26)

∂2p

∂xj∂xj
= −∂uj

∂xi

∂ui

∂xj
(27)

4p = −(U2
x + W 2

z + V 2
y + 2UzWx + 2UyVy + 2WyVz) (28)

py(0) =
1

Re
Vyy(0) (29)

py(1) =
1

Re
Vyy(1) (30)
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We said we were looking at the Poiseuille flow. What is that? well, it means we
have a flow which is parallel to the walls and is an equilibrium soln to the NS
eqns. In our case, this flow looks like this

Ue = 4y(1− y) (31)
V = W = 0 (32)

P e = P0 −
8

Re
x (33)

When the system remains at this equilibrium, the flow is smooth - laminar.
However, when the Reynolds number is high, the flow is unstable and we do
not remain at this equilibrium. First we see delaminarization into a transition
regime, and for higher Re the flow goes fully turbulent. We want to stabilize
the system around the Poiseuille flow so that turbulence is reduced.

4 linearization around the equilibrium

Now we shift the system so that we are looking at just the perturbations and
then we linearize this resulting system;
Our perturbation variables are the following

u = U − Ue , p = P − P e , (34)
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And now we plug them in. First we shift the system.

(u + Ue)t =
1

Re
((u + Ue)xx + (u + Ue)zz + (u + Ue)yy)

−(u + Ue)(u + Ue)x − V (u + Ue)y −W (u + Ue)z

−(p + P e)x , (35)

ut =
1

Re
(uxx + uzz + uyy − Ue

yy)

−(u + Ue)ux − V (uy + Ue
y )−Wuz

−(px − P 3
x ) , (36)

ut =
1

Re
(uxx + uzz + uyy)

−(u + Ue)ux − V (uy + Ue
y )−Wuz

−px , (37)

Wt =
1

Re
(Wxx + Wzz + Wyy)

−(u + Ue)Wx − V Wy −WWz − (p + P e)z , (38)

Vt =
1

Re
(Vxx + Vzz + Vyy)

−(u + Ue)Vx − V Vy −WVz − (p + P e)y , (39)
(u + Ue)x + Wz + Vy = 0 (40)

ux + Wz + Vy = 0 (41)

(p + P e)xx + (p + P e)zz + (p + P e)yy =
−2V 2

y − 2(u + Ue)xWz − 2(u + Ue)yVx − 2(u + Ue)zWx − 2VzWy ,(42)
pxx + pzz + pyy =

−2V 2
y − 2uxWz − 2(uy + Ue

y )Vx − 2uzWx − 2VzWy , (43)

And now we linearize it

ut =
1

Re
(uxx + uzz + uyy)− Ueux − Ue

yV − px , (44)

Wt =
1

Re
(Wxx + Wzz + Wyy)− UeWx − pz , (45)

Vt =
1

Re
(Vxx + Vzz + Vyy)− UeVx − py , (46)

pxx + pzz + pyy = −2Ue
yVx (47)

ux + Wz + Vy = 0 (48)

5 stability of linear system

Now this linearized system is still unstable. To see this, we look at two coupled
equations. To find the first equation, we take the Laplacian of the Vt equation
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(46) and use the pressure equation (47) to make it autonomous. The second
equation consists of the vorticity in the y direction (uz −Wx). The resulting
equations look like this:

∇2Vt =
1

Re
∇4V − U∇2Vx + UyyVx (49)

ωt =
1

Re
∇2ω − Ueωx − Ue

yVz (50)

These are the equations from which the Orr-Sommerfeld (1907,1908) and Squire(1933)
equations are derived. For those of you who have studied flow stability - take
the normal modes of the form

V = ṽ(y)ei(αx+βz−σt) (51)
ω = ω̃(y)ei(αx+βz−σt) (52)

and you arrive at the OS and Squire equations.h
(−iσ + iαU)(D2 − (α2 + β2))− iαU ′′ − 1

Re

`
D2 − (α2 + β2)

´2
i
ṽ = 0 (53)h

(−iσiαU)− 1

Re

`
D2 − (α2 + β2)

´i
ω̃ = −iβU ′ṽ (54)

Notice that the Squire equation (50→54) is forced by the OS equation (49→53).
Without that forcing, the Squire equation is stable. This leads to the theorum,
that for any unstable 3-D flow, there exists a 2-D flow at a *lower* Reynolds
number which is also unstable.

Now we are going to use (50) to find our controllers, but instead of using
(49) we are going to do something similar to what we did in the beam example,
as we dont like those higher order derivatives. What we shall do instead, is use
Vy and p similar to how we used α and u in the beam example.

6 Fourier Transform

We are also not going to take normal modes to find out controllers, but we are
going to do something similar. Instead of making assumptions in both space
and time, we will only make assumptions in space. We shall take the fourier
transform of the system in the x and z directions, as our system is infinite in
these directions. This gives us wavenumbers in these directions, kx and kz. Why
do we do this? Well, we started with 1 system defined by 4 3-D nonlinear pdes.
Now, with linearization and the FT, we have an infinite number of systems,
each paramaterized by the wave numbers kx and kz, and defined by 4 1-D lin-
ear pdes. Yeah! - we only have to look at 1-D linear systems. This approach is
not just used for flow control, we can use it in other applications, for example,
if one had an infinite or periodic beam - one could use the Fourier Transform.
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After taking the Fourier Transform of the previous linear system (44)–(48), the
resulting equations are

α2 = 4π2(k2
x + k2

z) , β = 16πkxi , (55)

ut =
1

Re
(−α2u + uyy) +

β

2
y(y − 1)u + 4(2y − 1)V − 2πikxp , (56)

Wt =
1

Re
(−α2W + Wyy) +

β

2
y(y − 1)W − 2πikzp , (57)

Vt =
1

Re
(−α2V + Vyy) +

β

2
y(y − 1)V − py , (58)

u(y = 0) = V (y = 0) = W (y = 0) = 0 (59)
u(y = 1) = Uc (60)

W (y = 1) = Wc (61)
V (y = 1) = Vc (62)

−α2p + pyy = β(2y − 1)V , (63)

py(0) =
1

Re
Vyy(0) (64)

py(1) =
1

Re
(−α2Vc + Vyy(1))− (Vc)t (65)

kxu + kzW = − Vy

2πi
(66)

7 Solution to p and Vc

So we want to find our 2 equations one for Vy and p and then other, (50).
However, first, lets solve the p equation. The p equation, is nondynamic -
similar to the α equation in the beam exercise. We will now solve this equation
and substitute it back into the other 3 equations. Looking at our equation for
p we see

−α2p + pyy = β(2y − 1)V , (67)

py(0) =
1

Re
Vyy(0) (68)

py(1) =
1

Re
(−α2Vc + Vyy(1))− (Vc)t (69)
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We have an ODE in p forced by V . The solution to this ODE and p is

p =
{

β

∫ y

0

V (t, η)(2η − 1) sinh(α(y − η))dη

−β
cosh(αy)
sinh(α)

∫ 1

0

V (t, η)(2η − 1) cosh(α(1− η))dη

−cosh(α(1− y))
sinh(α)

py(t, x, z, 0)

+
cosh(αy)
sinh(α)

py(t, x, z, 1)
}

, (70)

p = β

∫ y

0

V (t, η)(2η − 1) sinh(α(y − η))dη

+
cosh(αy)
sinh(α)

{
− β

∫ 1

0

V (t, η)(2η − 1) cosh(α(1− η))dη

+
1

Re
(−α2Vc + Vyy(1))− (Vc)t

}

−cosh(α(1− y))
sinh(α)

py(t, x, z, 0) (71)

This next step is again similar to the beam case, we design one controller to put
the system into a strict feedback form so that we can use backstepping, ie we
dont like the

∫ 1

0
V (2η − 1) cosh(α(1 − η))dη term, so lets get rid of it. How do

we do this? Notice the Vc and (Vc)t terms in the equation. We will use these to
get rid of our unwanted term by setting Vc in the following way.

(Vc)t =
1

Re

(
Vyy(1)− Vyy(0)− α2Vc

)

−β

∫ 1

0

V (t, η)(2η − 1) cosh(α(1− η))dη , (72)

Notice we added a Vyy(0) term which we have to account for in our resulting p
equation.

p = β

∫ y

0

V (t, η)(2η − 1) sinh(α(y − η))dη

+
cosh(αy)
sinh(α)

1
Re

Vyy(0)

−cosh(α(1− y))
sinh(α)

1
Re

Vyy(0) (73)

8 Y and ω and backstepping
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