1. Consider the ‘unicycle’ model of a slipping automobile wheel depicted in Figure 1. The tire dynamics are described by the following two equations

\[
m \dot{u} = -N \mu(\lambda) \tag{1}
\]

\[
I \dot{\Omega} = -B \Omega + N R \mu(\lambda) - \tau_B, \tag{2}
\]

where \(u \) is the linear velocity and \(\Omega \) is the angular velocity of the wheel, \(m \) is the mass and \(N = mg \) is the weight of the vehicle, \(R \) is the radius of the wheel, \(I \) is the moment of inertia of the wheel, \(B \Omega \) is the bearing friction torque, \(\tau_B \) is the breaking torque, \(\mu(\lambda) \) is the friction force coefficient, and the wheel slip is defined as

\[
\lambda(u, \Omega) = \frac{u - R \dot{\Omega}}{u} \tag{3}
\]

for the case of braking when \(R \dot{\Omega} \leq u \). The friction force coefficient \(\mu(\lambda) \) is shown in Figure 2, from which it is seen that there exists an optimum \(\mu^* \) at \(\lambda^* \). Since \(\dot{u} \) is measurable via an accelerometer (they are already in use for airbags), the following simple controller

\[
\tau_B = -\frac{c I u}{R} (\lambda - \lambda_0) - B \Omega - \frac{I \Omega}{u} \dot{u} - m R \dot{u}, \quad c > 0 \tag{4}
\]

is implementable, and it is easy to see that it yields

\[
\frac{1}{c} \dot{\lambda} = -\lambda + \lambda_0. \tag{5}
\]
Figure 2: The friction force coefficient $\mu(\lambda)$.

Treating $y = -\dot{u}$ as the output, design an extremum seeking scheme that estimates λ_0 to maximize $\mu(\lambda)$ in steady state and present simulation results. Use

$$\mu(\lambda) = 2\mu^* \frac{\lambda^*\lambda}{\lambda^*^2 + \lambda^2}. \quad (6)$$

with $\lambda^* = 0.25$ and $\mu^* = 0.6$. Choose the vehicle/wheel parameters as $m = 400kg$, $B = 0.01$, $R = 0.3m$. Let the initial conditions be: $u(0) = 120km/hr = 33.33m/sec$ for linear velocity, and $\Omega(0) = 111.1rad/sec$ for angular velocity, which makes $\lambda(0) = 0$. How much time does it take for your “vehicle” to stop? How about the distance?