
MAE 282 Prof. M. Krstic

Adaptive Control Fall 2006

FINAL EXAM

• Take home.

• No collaboration.

• Do one problem from the list.

• Besides writing a “report” with your results, I want every student to prepare 2-3 slides in
Power Point which you will present to me and rest of the class.

• The oral presentation of your slides is scheduled at 7pm on Monday, December 4th (this is
the official scheduled time for our final exam). Location: my lab, room 2101 EBU1.

• If anyone absolutely cannot make the oral presentation on December 4th, the make up
opportunity will be at 5pm on Thursday, December 7th, same location.

• You bring your computers, I provide a projector.

Problem 1. Consider the plant

G(s) = g
s− b

(s2 + p)2 + q
,

where the parameters are all positive and unknown.

1. Design an identifier based on a gradient update law.

2. Design a pole placement controller for tracking a sinusoid of frequency 1 rad/sec.

3. Simulate the plant with the adaptive controller for

g = p = q = 1, b = 2 .

Make sure to choose the initial conditions for the parameter estimator that give destabilizing
initial control gains. (Set the adaptation gain to zero and try a few initial conditions for the
parameter estimates until you find some for which the plant output is growing unbounded.
Then turn on the adaptation for the subsequent simulations.) Are you achieving stabilization
and tracking? Are your parameter estimates converging?



4. Add some measurement noise at the plant output. This will make your parameter estimator
prone to drifting. Apply a deadzone in the update law. Tune its threshold to prevent the
drifting.

(The deadzone is explained in Section 8.4.3 of Ioannou and Sun’s book. Use the continuous
deadzone in Figure 8.5(b). If you are more comfortable with equations than with pictures,
you can use equation (8.4.33). However, you don’t really need this equation because you
can use a deadzone as a block in Simulink. Note also that the deadzone should be applied
only to the estimation error part of the update law. Everything else remains unchanged,
namely, the regressor, the normalization, and the adaptation gain. Unlike what is shown
in Section 8.4.3, you should use the normalization. Some tips on the use of deadzone: If
the deadzone threshold g0 is too high, your performance in the absence of noise will suffer,
perhaps even the close loop stability will suffer; if the threshold g0 is too low, you will have
parameter drift; the best thing is to start with a low g0 and keep increasing it until the drift
is eliminated but before the stability starts to suffer; obviously, if the noise is very large, you
will never be able to even achieve stability because you will need a huge g0.)

Problem 2. Starting with the notes distributed in class on PID tuning using extremum seeking
and using the Matlab code downloadable from

http://flyingv.ucsd.edu/krstic/teaching/282/zemler.zip

conduct a case study of stabilizability and performance tuning with PID control for various classes
of single-input-single-output plants. Go beyond the examples G1(s), G2(s), G3(s), G4(s) and con-
sider plants that contain other “difficulties,” like one unstable pole, resonant pairs of poles, in
addition to the difficulties dealt with in the notes like pure delay and unstable zeros. You can
consider also the presence of noise and/or saturation if you like, but the focus should be on
stabilization and performance of linear plants.

Problem 3. (“The Carlos Cox problem”) This problem deals with true real-time control
parameter tuning via extremum seeking. However, to simplify things, we don’t consider the class of
PID controllers but a class of particularly simple “on-off” (or “bang-bang,” if you wish) controllers
which are often used in practice. In some applications in industry one encounters problems where
the actuation authority is low, so one wants to use the full ‘control power.’ For example, in control
of combustion instabilities, one may have to use “on-off” valves to control the process. With such
an actuator, one has control only of the timing of the control inputs and not of their size. So it
is reasonable to use control laws of the form u(t) = sgn(y(t− θ)), where θ is a delay time, or, in

the frequency domain, with some abuse of notation, u(s) = sgn
(
e−sθy(s)

)
. You can also define

the control law with the opposite sign, namely, u(t) = −sgn(y(t− θ)). In some applications this
sign difference will be important, whereas in other applications it won’t be so important. For
example, in applications where the plant response is oscillatory, namely, where y(t) tends to be
sinusoidal, the sign difference between the two variants of the control law can be accounted for
using an additional delay of π in theta.

So, for applications discussed above, it is reasonable to consider using ES to tune θ to some
optimal value. The figure on the last page shows an extremum seeking scheme that should be
able to do that. In the lower branch of the feedback loop, on the left, you will find the standard
ingredients of ES—the probing signal, the integrator, the demodulation, and a washout filter—
whereas on the right of the lower branch you will see one way to calculate a reasonable cost



functional. This cost functional is given as an integral of the square of the output over a moving
window of length T , namely, J(t) =

∫ t
t−T y(σ)2dσ. The block diagram shows a particularly simple

way to calculate such a functional in real time using basic Simulink blocks for an integrator, a
delay, and a square function.

Note that the objective in this application is not to optimize step responses but to continuously
monitor the regulation ability of the controller and adjust θ to minimize J . To make the problem
realistic (this is how it is in the case of combustion instabilities), I have added a disturbance w(t)
in the block diagram. The presence of a disturbance, particularly if it is stochastic white noise,
will make it impossible for the control to ever settle. However, in reality this will not be an issue.
The actuator will have its own inertial (its time constant τ) and it will not respond to “chattering”
waveforms of the actuator input (usually some voltage). If the actuator is a valve, it will only
partly open when driven by a “chattering” voltage waveform. To model all of this, I have inserted
the “actuator dynamics” block 1

τs+1
in the regulation loop, right after the “controller.”

Note that the controller u(t) = sgn(y(t− θ)) is a very “low-tech” controller and that it will
not work great for many plants. But this is something that is often used in industry under the
motivation of exploiting the “full actuator range,” so it is worth learning one way how to tune
such a controller in real time.

Like Problem 2, this is an open-ended problem. You have many choices left up to you, including
the choice of the plant G(s), the actuator time constant τ , all of the parameters of the extremum
seeking scheme, and even the choice whether you will use positive gain, u(t) = sgn(y(t− θ)), or
negative gain, u(t) = −sgn(y(t− θ)), noting of course that this last choice may not be important
because with this class of controllers we achieve things with timing, not with the size of the control
input.

Explore the capabilities of this scheme for several plant choices. This kind of controllers have
been used in combustion instabilities where G(s) contains a lightly damped pair of stable poles
and possibly some delay.




