Solutions, HW 5

• 3.41 (a)

$$z_2 = 1 = \dot{z}_1$$

$$2x_1x_2 + 3t + 2 - 3x_1 - 2(t+1)x_2 = 2t + 3t + 2 - 3t - 2(t+1) = 0 = \dot{x}_2$$

Thus, $x(t) = \begin{bmatrix} t \\ 1 \end{bmatrix}$ is a solution.

(b) Recall from the discussion at the beginning of Section 3.4 that to show asymptotic stability of a solution we shift it to the origin and then show asymptotic stability of the origin. Let $z_1 = x_1 - t$ and $z_2 = x_2 - 1$. Then

$$\begin{array}{rcl} \dot{z}_1 & = & z_2 \\ \dot{z}_2 & = & 2z_1z_2 - z_1 - 2z_2 \end{array}$$

We need to show that the origin z = 0 is uniformly asymptotically stable.

$$\frac{\partial f}{\partial z} = \begin{bmatrix} 0 & 1 \\ -1 + 2z_2 & -2 + 2z_1 \end{bmatrix}, \quad A = \frac{\partial f}{\partial z} \Big|_{z=0} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$$

The matrix A is Hurwitz; hence, the origin is uniformly asymptotically stable.

• 5.5 The closed-loop system is given by

$$\dot{z} = (A - BB^T P)x + Bg(t, x)$$

Rewrite the Riccati equation as

$$P(A - BB^{T}P) + (A - BB^{T}P)^{T}P + Q + PBB^{T}P + 2\alpha P = 0$$

Consider $V(x) = x^T P x$ as a Lyapunov function candidate.

$$\dot{V}(t,x) = x^{T}[P(A - BB^{T}P) + (A - BB^{T}P)^{T}P]x + 2x^{T}PBg(t,x)
= -x^{T}[Q + PBB^{T}P + 2\alpha P]x + 2x^{T}PBg(t,x)
\leq -k^{2}||x||_{2}^{2} - ||w||_{2}^{2} - 2\alpha\lambda_{min}(P)||x||_{2}^{2} + 2k||w||_{2}||x||_{2}, \text{ where } w = B^{T}Px
= -[k||x||_{2} - ||w||_{2}]^{2} - 2\alpha\lambda_{min}(P)||x||_{2}^{2} \leq -2\alpha\lambda_{min}(P)||x||_{2}^{2}$$

Hence, the origin is globally exponentially stable.

(a) Let b = 0. Try $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$.

$$\dot{V}(x) = -x_1^2 + x_1 x_2 (x_1 + a) - x_1 x_2 (x_1 + a) = -x_1^2$$

$$\dot{V}(x) = 0 \Rightarrow x_1(t) \equiv 0 \Rightarrow ax_2(t) \equiv 0 \Rightarrow x_2(t) \equiv 0$$

Thus, the origin is globally asymptotically stable. To investigate exponential stability, linearize at x = 0.

$$A = \frac{\partial f}{\partial x}\bigg|_{x=0} = \begin{bmatrix} -1 + z_2 & z_1 + a \\ -2z_1 - a & 0 \end{bmatrix}_{x=0} = \begin{bmatrix} -1 & a \\ -a & 0 \end{bmatrix}$$

The characteristic equation of A is $\lambda^2 + \lambda + a^2 = 0$. Hence, A is Hurwitz and the origin is exponentially stable

(b) Let b > 0. The linearization at the origin is given by

$$A = \left. \frac{\partial f}{\partial z} \right|_{z=0} = \left[\begin{array}{cc} -1 & a \\ -a & b \end{array} \right]$$

The characteristic equation of A is $\lambda^2 + (1-b)\lambda + a^2 - b = 0$. Hence, A is Hurwitz if $b < \min\{1, a^2\}$.

(c) For b > 0, the equilibrium points are

$$(0,0), \quad \left(-a+\sqrt{b}, \frac{-a+\sqrt{b}}{\sqrt{b}}\right), \quad \left(-a-\sqrt{b}, \frac{a+\sqrt{b}}{\sqrt{b}}\right)$$

Since the system has multiple equilibria, the origin is not globally asymptotically stable.

• 5.21 (1) Let $V(x) = \frac{1}{2}x^2$.

$$\dot{V} = -x^4 + x^4 u$$

For $|u| \le r_u < 1$, we have

$$\dot{V} \leq -(1-r_u)x^4, \quad \forall \ z$$

By Theorem 5.2, the system is locally input-to-state stable. It is not input-to-state stable since with $u(t) \equiv c > 1$ and x(0) > 0, $x(t) \to \infty$ as $t \to \infty$.

(2) Let $V(x) = \frac{1}{2}x^2$.

$$\dot{V} = -x^4 + ux^4 - x^6 \le -x^4, \ \forall \ |x| \ge \sqrt{u}$$

By Theorem 5.2, the system is input-to-state stable.

(3) Let $V(x) = \frac{1}{2}x^2$. For $|u| < r_u$ and |x| < r < 1, we have

$$\dot{V} = -x^2 + x^3 u \le -(1-\theta)x^2 - \theta x^2 + r^2 |x| |u| \le -(1-\theta)x^2, \quad \forall |x| \ge \frac{r^2 |u|}{\theta}$$

The preceding inequality is valid provided $rr_u < \theta \le 1$. By Theorem 5.2, the system is locally input-to-state stable. It is not input-to-state stable since with $u(t) \equiv 1$ and x(0) > 0, $x(t) \to \infty$ as $t \to \infty$.

5.22

(1) The oc,-system is ISS wirit. oc, and the 22-System is ISS w.r.t. U. Then by [KKK, Lemma C.4], the (x_1,x_2) -system is ISS. To see that the x_1 -system is ISS, note that

$$\frac{x_1^2}{2} \le -\frac{1}{2}x_1^2 + \frac{1}{2}x_2^4,$$

which implies that

$$|x_1(t)| \leq |x(0)| e^{-t/2} + \left(\sup_{[0,t]} |x_2(t)|\right)^2$$

(4) Take $V = \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2$. Then

$$\dot{V} = -\alpha_1^2 - \alpha_2^4 + \alpha_1 u_1 + \alpha_2 u_2$$

$$\leq -\alpha_1^2 + \alpha_2^4 + \frac{1}{2}\alpha_1^2 + \frac{1}{2}u_1^2 + \frac{1}{4}\alpha_2^4 + \frac{3}{4}u_2^{4/3} \quad (Young)$$

$$= -\frac{1}{2} \left(\alpha_1^2 + \frac{3}{2}\alpha_2^4 \right) + \frac{1}{2} \left(u_1^2 + \frac{3}{2}u_2^{4/3} \right)$$

$$= -\frac{1}{2} \left(|\alpha_1|^2 + \frac{3}{2}|\alpha_2|^4 \right) + \frac{1}{2} \left(|u_1|^2 + \frac{3}{2} \left(\frac{3}{1}|u_2|^4 \right) \right)$$

$$\stackrel{\triangle}{=} - \mathbf{Q} \left(|\alpha_1|, |\alpha_2| \right) + \mathbf{Q} \left(|u_1|, |\sqrt[3]{1}|u_2| \right)$$

Note that Q(y, y2) is pdf, smooth on IR, and radially unbdd. Then there exist class Ko functions 9, and 9 s.t.

$$\mathcal{Q}_{1}(131) \leq \mathcal{Q}(g_{1},g_{2}) \leq \mathcal{Q}_{2}(131)$$

 $\sqrt{\leq} - 2 (|x|) + 2 (\sqrt{u_1^2 + u_2^2/3})$ $\leq -2_2(|x|) + 2_3(|u|)$

where 23 € Koo. Then by [KKK, Thm C.3], the system is ISS w.r.t. U.