AMES 207 Prof. M. Krstic

NONLINEAR SYSTEMS
Solutions, HW 3
® 2.42
zy = tan'"l(azl) — ZiZo
z9 = bzf —czo

Let A = [a,b,¢]7. The nominal values are ap = 1, bo = 0, and ¢o = 1. The Jacobian matrices [df/0z] and
[6f/8A), are given by
’ _a—x - ’

0 z{ -z

o [Tﬁf—n —zl} 2 [ﬁ%;? 0 0 J

2bz, —c

Let
_ -(9_3 _ [ x3 s T7 J
- 2 nominal B Z4 ZTe Zs
Then
. 8 Is]
§= 9 s+ 9 . S(0)=0
61: nominal 6’\ nominal
The augmented equation (2.11) is given by
z; = tan-l(zl) — Z1Z2
£y = -T2
r3 = (———1—— T )z 124+ 21
57 \1+42? L e L z?
2::4 = —ZI4
5 = ! o)z T2
5 = 1+ 22 2] s 1Z6
I.G = bt 7 + .‘Bf
. 1
r7 = <1+z¥—rg)z7—z1zg
:i:g = —Zg — T2

with the initial conditions

21(0) = z10, 2(0) = 230, 23(0) = z4(0) = z5(0) = z6(0) = z7(0) = z5(0) = 0



e 2.46
z(t,a,n) =17 +/ f(s,z(s,a,n)) ds

! )
r) = Lattan) = ~flan)+ [ Gloesam)geean ds

é ) o]
z,(t) = -a—-r;z(t,a,r)) I+/a -é-i:(s,x(s,a,n))-a—,;z(s,a,n) ds

Therefore
z4(t) + zo(t)f(a,n) = / {%‘5—(3, z(s, a,n))[za(s) + zn(s)f(a, r))]} ds

Differentiating with respect to ¢, we see that za(t) + zq(t) f(a, n) satisfies the differential equation

0 faa(t) + 20 () (@] = L (t,2(t, & 1) {El®) + 20 ()1 (3 )]

il -

with initial condition
z4(a) + zq(a)f(a,n) = —f(a,n) + f(a,n) =0

Thus
Ia(t) + Iﬂ(t)f(al 77) =0, Vte [a1t1]



Lemma B.6 Let v, Iy, and [y be real-valued functions defined on R.., and let
¢ be a positive constant. Ifl, and l; are nonnegative and in L and satisfy the

differential inequality
v v+ Lt +0(t),  v(0)20 (B.17)

thenv € L. NL; and

v(t) < (v(0)e ™ + fliafl) el (B.18)
1 .
lvfli < E(”(Q)‘*‘”b“ﬁe”’uiy (B.19)
Proof. U'sing the fact that fact that w(t) < v(t), w = —cw + L{t)w +

l2(t), w(0) = v(0) (the comparison principle; see, for example, [108. 132]). and

applying the variation of constants formula, the differential inequality (B.17)

is rewritten as

v(o)ej;[—c+ll(s)]ds 4 /“ ef:[_c+ll(s)]d512(7_)d7_
o]

u(t) <
< ‘U(O)e"defox‘x(S)ds+/te—c(t—r)lg(r)dre_[;*lx(s)ds
0
¢ .
< [v(O)e'°‘+ / e—c(t"')lz(f)dr} el (B.20)
0

By taking a supremum of e~<(*=") over [0, oc], we obtain (B.18). Integrating

(B.20) over [0, 00, we get

t rt T
[ otndr < (—l-v(O) + [ Ji e-c<f-’>12(s)ds} dT) el (B21)
0 c o Lo
Applying Theorem B.4 to the double integral, we arrive at (B.19).

Remark B.7 An alternative proof that v € L. N L, in Lemma B.6 is using
the Gronwall lemma (Lemma B.11). However, with the Gronwall lemma, the

estimates of the bounds (B.18) and (B.19) are more conservative:

(2(0)e™ + lllally) (1 + lAaflretet) (B.22)

2 (0(0) + lialh) (1 + flaflieth), (B.23)

IA

v(t)
flvlly

because e < (1 + ze®), Vz > 0. Note that the ratio between the bounds
(B.22) and (B.18), and thé ratio between the bounds (B.23) and (B.19), are

of order |||}, when ||l;]j; — oc.

IA
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