
AMES 207 Prof. M. Krstic

Nonlinear Systems Winter 1998

FINAL EXAM

Take home. Open books and notes.

Total points: 35

Due Saturday, March 14, 1998, at 12:00 noon in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.

1. (8 pts) Consider the system

ẋi = xi+1 − cixi − kisi(x)xi + wi(x)d,

i = 1, . . . , n, xn+1 = 0, where ci, ki > 0 and |wi(x)| ≤ si(x). Show that the system is ISS
w.r.t. d. What is the type of the gain function (linear, quadratic, exponential, . . .)?

2. (9 pts) Using the center manifold theorem, determine whether the origin of the following
system is asymptotically stable:

ẋ1 = −x2 + x1x3

ẋ2 = x1 + x2x3

ẋ3 = −x3 − (x2
1 + x2

2) + x2
3

3. (9 pts) Consider the system

ẋ1 = x2

ẋ2 = −x2 − sin ωt
(

(x1 + sin ωt)2 + x3

)

ẋ3 = −xn

3 − (x1 + sin ωt)2 +
1

2
.

a) For n = 1, show that for sufficiently large ω there exists an exponentially stable periodic

orbit in an O
(

1

ω

)

− neighborhood of the origin.

b) What can you claim for n = 3?



4. (9 pts) Show that, for sufficiently small ε, the origin of the system

ẋ = x2 + z + cos (εy) − 1

εẏ = −y + x2 − x

ε2ż = −z + sin y + εx3

is exponentially stable. (Hint: treat µ = ε2 as a separate small parameter.) Since the
system has three (rather than two) time scales, it has three levels of invariant manifolds –
slow, medium, and fast. Without going into high accuracy, give the approximate expressions
for these manifolds and discuss the trajectories of the system.


