MAE 281A Prof. M. Krstic

Nonlinear Systems

Due: Thursday, 1/17/02
Homework 1 ue: Thurscay

1. Khalil, Exercise 1.13, Parts 1, 2, 5, and 7.
Use Matlab to compute eigenvalues.

. : ; D «‘1
2. Khalil, Exercise 1.15. - Lot Lo o

3. Khalil, Exercise 1.22.

MAE 281A Prof. M. Krstic

Nonlinear Systems

: 29, 2002
Homework 2 Due: August 29, 2

1. Khalil, Exercise 2.5.
This is a special case of the mean value theorem. We will use it in several control designs.

2. Khalil, Exercise 2.7.
This exercise shows how to apply the Gronwal lemma to the case:

YO <S4+ o] poyer.
3. Khalil, Exercise 2.27.

4. Khalil, Exercise 2.34. .
Hint: Apply Gronwall lemma. ( (:J) meams Xz ‘f&,‘Z)



MAE 281A

Nonlinear Systems

Homework 3

Prof. M. Krstic

Due: February 5, 2002

1. Khalil, Exercise 2.42.

2. Khalil, Exercise 2.46.

3. Using the comparison principle, show that if ¥> hand & are functions that satisfy

VS v+ (v +1, (), w(0)= 0

and if ¢>0, then
v(@) < (O +, | FY,

L norm defined as

171 = [ ok

where "‘“1 denotes the

Using Gronwall’s lemma show that

v(@) = (W) + b, | N1+ e )

Which of the two bounds is less conservative?

MAE 281A

Nonlinear Systems

Homework 4

Prof. M. Krstic

Due: February 19, 2002

1. Khalil, Exercise 3.3, Parts (1) and (2).

2. Khalil, Exercise 3.12.
—_1.6 1 4
Hint: Use Chetaev’s theorem with VR =—gx+35 .

3. Khalil, Exercise 3.17, Parts (a) and (b).
Hint: In Part (b), use LaSalle’s theorem.



MAE 281A

. Prof. M. Krstic
Nonlinear Systems

Due: March 12, 2002
Homework 5

1. Khalil, Exercise 3.41.

Hint: In part (b), study (local) u.a.s. of the solution *{&) = [{}

2. Khalil, Exercise 5.5.

Hint: Use completion of squares in v,

3. Khalil, Exercise 5.18, Parts (a)-(c).
Hint: In Part (c), show that stability is not global by showing that there exist multiple equilibria.

4. Khalil, Exercise 5.21, Parts (2) and (3).

5. Khalil, Exercise 5.22, Parts (1) and (4).
Hints:

® Part (1): use Lemma C.4 in [KKK].

. . . ) <ly? 1,2 <l 3%
® Part (4): use Young’s inequality which gives *1*1 =27 + 3y gng M S %t ; then apply

Theorem C.3 in [KKK].

MAE 281A Prof. M. Krstic

Nonlinear Systems

Due: March 18, 2002
Homework 6

1. Khalil, Exercise 4.6, Parts (1) and (2).

2. Khalil, Exercise 4.7, Part (4).

Hint: take z1 =% +%3,2; =X, = X3

3. Khalil, Exercise 4.8, Parts (1), (2), (3), (4).
4. Khalil, Exercise 8.5, Parts (a), (b), (¢).

5. Khalil, Exercise 8.8, Parts (a), (b), (c).



MAE 281A Prof. M. Krstic

Nonlinear Systems

Due: April 16, 2002
Homework 7 ue: Apri

1. Khalil, Exercise 8.16, Parts (a) and (b).
2. Khalil, Exercise 8.17.
3. Khalil, Exercise 9.7, Part (a).

4. Khalil, Exercise 9.11.
Hint: try substituting the quasi-steady state into the (exact) manifold condition.

5. Khalil, Exercise 9.12.

6. Khalil, Exercisc 9.29. (g, Qb tw Ln edition weams Tha (1.2 iw 30l e:lh‘rog

MAE 281A

i Prof. M. Krsti
Nonlinear Systems stic

. 99
Homework 8 Due: ??

1. Khalil, Exercise 10.33, Parts (1), (2), (3).
2. Khalil, Exercise 10.35. (Fa’ej- 10.F i 2ud ed. = Flg. .1 jm 3rd ea()

3. Khalil, Exercise 10.37.
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third equation is a torque equation for the shaft, with J as the rotor inertia and ¢y
as damping coefficient. The term ¢1iyw is the back e.m.f. induced in the armature
circuit, and Calfiq is the torque produced by the interaction of the armature cur-
rent with the fleld circuit flux. The voltage v, is held constant, and the voltage vy
is the control input. Choose appropriate state variables and write down the state

equation.

Exercise 1.13 For each of the following systems, find all equilibrium points and
determine the type of each isolated equilibrium.

(1) T = x4
. 23
Zz = -z + 5 T2
(2) T = -z +zy
i.‘z = 0.11:1 -—2172—1:?—0.11??
. 2z
3 = (1-— —_——
(3) z (I - z1)z Th o
. - _ gy
g = (2 1 2 ) g
(4) T = z,
22 = -z +z3(1~ 322 - 222)
(5) 21 = —z1+a(l+2)
Zy = - —.’El(l + 1:1)
(6) i1 = (21-2) (e 42l 1)
Ty = (21 +1‘2) (l’f"‘ﬁlf%—- 1)
(7) &1 = —zi+z,
itz = I — :Eg

Exercise 1.14 Find all equilibrium points of the system

.’&1 = ar; —r1zy

g2 = bz?- cq,

for all positive real values of a, b, and ¢, and determine the type of each equilibrium.
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Exercise 1.15 The system

. L2
ry = -z -
In /2% + z2
. z
o = !

—ZI9 + ———
In /3 + 3
has an equilibrium point at the origin.

(a) Linearize the system about the origin and find the type of the origin as an
equilibrium point of the linear system.

(b) Find the phase portrait of the nonlinear system near the origin, and show that
the portrait resembles a stable focus.
Hint: Transform the equations into polar coordinates.

(c) Explain the discrepancy between the results of parts (a) and (b).

Exercise 1.16 For each of the following systems, construct the phase portrait using
the isocline method and discuss the qualitative behavior of the system. You can
use information about the equilibrium points or the vector field, but do not use a
computer program to generate the phase portrait.

(1) £y = T2c08Z1
i‘g = sin z

2) p = (31— 72) (23 +25-1)
:i)g = (121 + 172) (1:? + (E% - 1)

(3) i1 (1 - 31—)
T2
o T2

(4) @ = T2

i, = —T1— 1z} -
(5) Ty = —z% + 22

Ty = —z3 — 4z

(6) 3‘31 = I2




Sy
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b) Take A = 5. Construct the phase portrait, preferably using a computer pro-
g
gram, and discuss the qualitative behavior of the system.

Exercise 1.22 The phase portraits of the following four systems are shown in
Figures 1.37: parts (a), (b), (c), and (d), respectively. Mark the arrowheads and
discuss the qualitative behavior of each system.

(1) 1.71 = —I2

Fq = T1— T2 (1 — zf + 0.1:8‘%)
(2) .’i?l = I3

Ty = (L‘1+(L‘z—3ta.n_1(:l:1+l'2)
(3) :f:l = I2

Iy = —(0.51!1 + x?)
(4) i:l = I3

gy = —z2—P(z1 —T2)

where ¥{y) = y® + 0.5y if ly] <1 and Y(y) =2y— 0.5 if jyl > 1.
Exercise 1.23 An equivalent circuit of the Wien-Bridge oscillator is shown in Fig-
ure 1.38 [34], where g(v) is a nonlinear voltage-controlled voltage source.

(a) With z; = veu and 29 = Vg2 = ¥ 88 the state variables, show that the state
equation is

. 1
= FR [~z + 22— g(z2)]

1 1
~ Gk [—z1+x2— g(ﬂvz)] - mzz

iy =

(b) Let C; = Cy = Ry = Rp=1and g(v) = 3.234v— 9.195v 4 0.666v°. Construct
the phase portrait, preferably using a computer program, and discuss the
qualitative behavior of the system.

Exercise 1.24 Consider the mass-spring system with dry friction

j4+ky+cy+ny,9) =0

\v:el‘e 7 is defined in Section 1.1.3. Use piecewise linear analysis to construct the
i ase portrait qualitatively (without numerical data), and discuss the qualitative
ehavior of the system.
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Figure 1.37: Exercise 1.22.

Rl Cl
Ak it
"wr + |
VCI
+
s ()
+ p—
T6 Ry

Tk

Figure 1.38: Exercise 1.23.
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2.6  Exercises

Exercise 2.1 Show that, for any z e R™ we have
lzllz < llzlly < V7 [z,

l2lloo < llzllz < v/ [l2)fo
lelloo < Hlzfly < 7 flzfes

B, we have

14lle < /AT AT
-j—ﬁ 14lleo < 141> < v/ |14, '

% 141 < 141l < V& (1),
1ABIl, < 141, i),

Exercise 2.3 Consider the set S={zeR?| -1« z:<1,i=1,2}.Is § open?
Is it closed? Find the closure, interior, and boundary of S.

Exercise 2.4 Let ur(t) be the unit step function, defined by ur(t) =0fort < T
and ur(t) =1fort > T

(a) Show that ur(t) is piecewise continuous.

(b) Show that ft) = 9(t)ur(t), for any continuous function 9(t), is piecewise
continuous.

Exercise 2.5 Let f(z) bea continuously differentiable function that maps a convex
domain D C R" into gn. Suppose D contains the origin z = 0 and f(0) = 0. Show
that

1 3f
() _/0 5(02)doz, Vzep
Hint: Set (o) = f(oz)for0 < & < 1 and use the fact that 9(1)—g(0) = fol g'(0) do.

Exercise 2.6 Let f(z) be continuously differentiable. Show that an equilibrium
point z* of 7 = f(z) is isolated if the Jacobian matrix [0f/z](z*) is nonsingular.
Hint: Use the implicit function theorem.

[
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Exercise 2.7 Let y(t) be a nonnegative scalar function that satisfies the inequality

1
o(t) < kremCD + / o= kgy() + k3] A7
1

o

where k1, ka2, ks are nonnegative constants and « 1s 2 positive constant that satisfies
o > ko. Using the Gronwall-Bellman inequality, show that

- o — ko

Hint: Take z(t) = y(t)e"(t"") and find the inequality satisfied by z.

Exercise 2.8 Let Lo be the set of all piecewise continuous functions u : [0, 00) —
R* with the property that each component is square integrable on [0, 00); that is,

f(;” \u,-(t)l'l dt < oco. Define ulle, = Mf:o uT (t)u(t) dt. Show that |jullc, 18 3

well-defined norm.
Hint: Use the Cauchy-Schwartz inequality

/: W2(t) dt /ab w2(t) dt

for all nonnegative scalar functions u(t) and v(t).

/b v(t)yu(t) dt <

Exercise 2.9 Let Iz be the set of all sequences of scalars {n1,72;-- )} for which

2?21 \Th‘\z < oo and define
0o 1/2
llelle = L‘j \m\ﬂ
i=1

) Show that lzll: is & well-defined norm.
b)':Show that I, with the norm |jzlli is a Banach space.

xercise 2.10 Let S be the set of all half-wave symmetric periodic signals of fun-
; ntal frequency w, which have finite energy on any finite interval. A signal
€S can be represented by its Fourier series

y(t) = Z ag exp(jkwt), Z \ak12 < o0

k odd k odd

w o jw 1/2
llylls = {; /0 y2(t) dt}
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94 CHAPTER 2. FUNDAMENTAL PROPRpy,

(a) Show that Vit,z) < scallz)|? for all z €D.
Hint: Use the fepresentation V (¢, z) = fol g—‘z/(t, oz) do z.

(b) Show that the constants ¢; and ¢y must satisfy 2¢; < ¢,.

(c) Show that Wit z) = VV(t, z) satisfies the Lipschitz condition

Cq

2\/51—“1"2_"x1”: VtZOs Vl‘],l‘gED

W (t 22) = Wit ) <

Exercise 2.32 Let f(t, z) be Plecewise continuoys in ¢ and locally Lipschity in 2
on [to,t1] x D, for some domain D ¢ R*. Let W be a compact subset of . Let
z(t) be the solution of 2 = f(t, z) starting at z(t) = 2o € W. Suppose 2(t) iy
defined and z(t) W for all t ¢ [to, T), T < ¢,. :

(a) Show that z(t) is uniformly continuous on [to, T).

(b) Show that z(T) is defined and belongs to W, and z(t) is a solution on [ty, Tj

Exercise 2.33 Let f(¢, z) be piecewise continuous in ¢ and locally Lipschit i zon
[to, 1] x D, for some domain D ¢ gr et () be a solution of (2.1) on a maxima]
open interval [t,T) ¢ [to,t1] with T < co. Let W be any tompact subset of p
Show that there is some t € [to, T) with y(t) ¢ w.
Hint: Use the Previous exercise,

Exercise 2.34 Let F(t, z) be Plecewise continuous in t, locally Lipschitz in z, and
(2, )] < &y + kallzll, ¥ (¢, 2) € [t,, 00) x R™

(a) Show that the solution of (2.1) satisfies
k
PO < Heallexplta(c — o) + 2 fexptage - - 1
for all ¢ 2> to for which the solution exists,

(b) Can the solution have g finite escape time?

Exercise 2.35 Let 9:R* - Rn be continuously differentiable for allz € 7 ang
define f(z) by

1
= (2
"=
Show that z — f(z), 2(0) = %o, has a unique solution defined for a]] ¢ >0.
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Exercise 2.36 Show that the state equation

. 2z
ry = —2,‘1+i—1":2;-g, 2)1(0):(1
5 21‘1
Zy = —Iz+ Tzf" z2(0) = b

has a unique solution defined for all ¢ > 0.

Exercise 2.37 Suppose the second-order system ¢ = f(z), with a locally Lipschitz
f(z), has a limit cycle. Show that any solution that starts in the region enclosed

by the limit cycle cannot have a finite escape time.
Exercise 2.38 ({36]) Let z; : R — R™ and z5 : R — R" be differentiable func-
" tions such that
lz1(a) — z2(a)ll <7, H2a(t) = F((&, ()] < s, for i =1,2
for a <t < b. If f satisfies the Lipschitz condition (2.2), show that

L(t—a) _ 1
llz1(2) = z2(®)]] < 750~ + (11 + o) [e———L———] , fora<t<b

Exercise 2.39 Derive the sensitivity equations for the tunnel diode circuit of Ex-
ample 1.2 as L and C vary from their nominal values.

Exercise 2.40 Derive the sensitivity equations for the Van der Pol oscillator of
Example 1.7 as € varies from its nominal value. Use the state equation in the

coordinates.

Exercise 2.41 Repeat the previous exercise using the state equation in the z-
coordinates.

):tercise 2.42 Derive the sensitivity equations for the system

;1 = tan"!(az)—2z129

Ty = bzf —cTo

’v the parameters a, b, ¢ vary from their nominal values ag = 1, by = 0, and ¢g = 1.

rcise 2.43 Let f(z) be continuously differentiable, f(0) =0, and

“%j:(z) - %{‘i(o) < Lillzll2, for 1<i<n

2

i
T

“f(z) - %(O)x

< L||z||2, where L =
2
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Exercise 2.44 Show, under the assumptions of Theorem 2.6, that the solution of
(2.1) depends continuously on the initia) time to.

Exercise 2.45 et f(t, ) and its partial derivative with respect to z be continuoyg
In (t, z) for all (¢, z) € [to, t1] x R™. Let z(¢,7) be the solution of (2.1) that startg at
z(to) = 5 and suppose z(t,n) is defined on [to,t1]. Show that z(t,n) is continuouygy
differentiable with respect to i and find the variational equation satisfied by [(93/377]'
Hint: Put y = 2 — n to transform (2.1) into

v=1ty+n), yto) =0
with 7 as a parameter.

Exercise 2.46 Let f(t,z) and its partial derivative with respect to z be continuoyg
In (t,z) for all (t,z) € Rx R, Let z(t,a,n) be the solution of (2.1) that startg
at z(a) = 7 and suppose that z(¢,a,n) is defined on [a,t1]. Show that z(t,a,n) is
continuously differentjable with respect to ¢ and n and let z,(1) and z,(t) denote
[0z/8a] and [0z /n), respectively. Show that z,4(t) and Ty (t) satisfy the identity

Za() + 2(t)f(a,n) =0, Vee [a, 8]
Exercise 2.47 ([36]) Let f: Rx R — R be a continuous function. Suppose f(t, z)
is locally Lipschitz and nondecreasing in z for each fixed value of ¢, Let z(t) be a

solution of 7 = f(t,z) on an interval [a, 8). If the continuous function y(t) satisfies
the integral Inequality

Y(t) < 2(a) + / £(s,5(s)) ds

for a <t < b, show that y(t) < z(t) throughout this interval.
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a class KL function and ro be a positive constant such that f(ro,0) < ». [,

Do ={z € R™ | ||z|| < ro}. Assume that the trajectory of the system satisfies
@)l < Bllz(to)ll,t — to), V 2(to) € Do, V¢t 210 20

Then, there is a continuously differentiable function V : [0,00) x Dy — R the
satisfies the inequalilies

e (lle])) < V(E,2) < eall=]])

av  ov
e + %f(t, z) < ~as(|=]])
UZ—V < a(llz]])

where a1(-), a2(-), as(-), and ay4(-) are class K functions defined on [0,ro]. If the *
system 1s autonomous, V can be chosen independent of t. o

Proof: Appendix A.6.

3.7 Exercises

Exercise 3.1 Consider a second-order autonomous system & = f(z). For each of
the following types of equilibrium points, classify whether the equilibrium point is
stable, unstable, or asymptotically stable. Justify your answer using phase portraits.
(1) stable node (2) unstable node (3) stable focus
(4) unstable focus  (5) center (6) saddle

Exercise 3.2 Consider the scalar system £ = az? + g(z), where p is a positive
integer and g(z) satisfies [g(z)| < k]z|P*! in some neighborhood of the origin z = 0.
Show that the origin is asymptotically stable if p is odd and a < 0. Show that it is
unstable if p is odd and @ > 0 or p is even and a # 0.

Exercise 3.3 For each of the following systems, use a quadratic Lyapunov func-
tion candidate to show that the origin is asymptotically stable. Then, investigate
whether the origin is globally asymptotically stable.

&) = -2y 423 &1 = (z1-23)(z}+23-1)
(1) 7 2 2y .2
9 = —I 2 = (z1+ z2)(21 + x3 — 1)
3y = —z14 12%.‘[12 ] = —z1— Ty
3 . .
(3) Ty = —z5+4+ 2 (4) I = I1-— :Cg
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(b) Show that all trajectories starting in the first quadrant to the right of the Curve

z129 = ¢ (with sufficiently large ¢ > 0) cannot reach the origin.
(c¢) Show that the origin is not globally asymptotically stable.

Hint: In part (b), consider V(z) = x1z2; calculate V(z) and show that on the curve
V(z) = c the derivative V(z) > 0 when ¢ is large enough.

Exercise 3.9 (Krasovskii’s Method) Consider the system z = f(z) with 7(0) =
0. Assume that f(z) is continuously differentiable and its Jacobian [f/dz] satisfies

of 3 T . .
Pl—=—(z)|+ |==(z)] P<—-I, Vze€R" where P=PT' >0
Oz oz

(a) Using the representation f(z) = 01 2 (oz)z do, show that

T Pf(z) + fT(z)Pz < —zTe, Vze€R"

(b) Show that V(z) = fT(z)Pf(z) is positive definite for all z € R™.
(c) Show that V(z) is radially unbounded.

(d) Using V(z) as a Lyapunov function candidate, show that the origin is globally
asymptotically stable.

Exercise 3.10 Using Theorem 3.3, prove Lyapunov’s first instability theorem:
For the system (3.1), if a continuous function Vi(z) with continuous first partial
derivatives can be found in a neighborhood of the origin such that V;(0) = 0,
and V; along the trajectories of the system is positive definite, but V; itself is not
negative definite or negative semidefinite arbitrarily near the origin, then the origin
is unstable.

Exercise 3.11 Using Theorem 3.3, prove Lyapunov’s second instability theorem:

For the system (3.1), if in a neighborhood D of the origin, a continuously differ-
entiable function V;(z) exists such that V1(0) = 0 and V; along the trajectories of
the system is of the form Vi = AV, + W (z) where A > 0 and W(z) > 0 in D, and
if V1(z) is not negative definite or negative semidefinite arbitrarily near the origin,
then the origin is unstable.

Exercise 3.12 Show that the origin of the following system is unstable.

: 6
z, = -—r;+z,

. 3 6
T3 = zh+z
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Exercise 3.17 Consider the system

& = -—=z1+9(z3)
:i:g = —g(:ng)
3 = —azy +bza-— cg(z3)

where a, b, and ¢ are positive constants and g(-) satisfies
g(0) =0 and yg(y) >0, Vo<lyl<k, k>0
(a) Show that the origin is an isolated equilibrium point.

(b) With V(z) = jazi + 1623 + [ ¢(y) dy as a Lyapunov function candidate,
show that the origin is asymptotically stable.

(c) Suppose yg(y) >0V ye R — {0}. Is the origin globally asymptotically stable?
Exercise 3.18 ([67]) Consider Liénard’s equation &
i+ h(y)y+9(w) =0

where g and h are continuously differentiable.

(a) Using z1 = ¥ and zo = g, write the state equation and find conditions on g

and h to ensure that the origin is an isolated equilibrium point.

(b) Using V(z) = [t a(y) dy + 122 as a Lyapunov function candidate, find con-
ditions on g and h to ensure that the origin is asymptotically stable.

(c) Repeat (b) using V(z) = % [:c2 + f:‘ h(y) dy]2 + f:l g(y) dy.

Exercise 3.19 Consider the system

iil = T2
o = —asinz —kzy— dry — cz3
t3 = —z3+ 2

where all coefficients are positive and k > a. Using
Ty
V(z) = Qa/ siny dy + kz? + 23+ pz3
0

with some p > 0, show that the origin is globally asymptotically stable.
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(a) Show that V(t,z) is positive definite and decrescent.

(b) Show that V < —(a—a)z;—a(2- 7)(1 - cosz1) + O(||z|%), where o(li=|lP) is
a term bounded by k||z||® in some neighborhood of the origin.

(c) Show that the origin is uniformly asymptotically stable.

Exercise 3.40 (Floquet theory) 2° Consider the linear system z = A(t)z, where
Alt) = A(t+T). Let (- -} be the state transition matrix. Define a constant matrix
B via the equation exp(BT) = ®(T,0), and let P(t) = exp(Bt)®(0,t). Show that

(a) Pt +T) = PO
(b) &(t,7) = P-1(t) exp[(t — 7)B)P(T).

(c) the origin of z = A(t)z is exponentially stable if and only if B is Hurwitz.

Exercise 3.41 Consider the system

il = T2
921z, + 3t +2— 321 — 20t + 1)z2

1

T2
(a) Verify that z1(t) =1, z4(t) = 1 is a solution.

(b) Show that if 2(0) is sufficiently close to { (; ] then z(t) approaches [ i ] as
t — oo.

ercise 3.42 Consider the system

2, = —2z1+9g(t)z2
iy = g(t)zy — 222

,,'e g(t) is continuously differentiable and lg(t)] < 1 for all £ 2 0. Show that the
RIgIn is uniformly asymptotically stable.

3

rcise 3.43 Consider the system

i?l = 2
i, = -z —(+ bcost)zry

> 0 such that the origin is exponentially stable for all |b] < 8.

149] fo .
l ] for a comprehensive treatment of Floquet theory.
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Exercise 5.5 Consider the perturbed system z = Ax+B[u+g(t, z)], where g(t, 2)
is continuously differentiable and satisfies [[g(t, z)||; < Fllzll2, V>0, V2 e B, fo;
some r > 0. Let P = PT > 0 be the solution of the Riccati equation

PA+ATP + Q- PBBTP + 2apP = 0

where @ > k2] and o > 0. Show that u = ~BT Pz stabilizes the origin of e
perturbed system.

Exercise 5.6 ([92]) Consider the perturbed system # = Az + By + Dyg(t,y), y=
Cz, where g(¢,y) is continuously differentiable and satisfies llg(t, v)ll2 < Flyll,,
V>0,V lylla < r for some r > 0. Suppose the equation

1
PA+ATP+Q-Lppprp +Lppprp +-CTCc =0
€ Y Y

where @ = QT > 0, ¢ > 0, and 0 < Y < 1/k has a positive definite solutiop
P = PT > 0. Show that u = ~(1/2¢) BT Pz stabilizes the origin of the perturbed

system.
Exercise 5.7 Consider the system

B = —ow ~wey + (fr) — yay)(c? + z3)
Ty = wz - azy + (yzy + ,3-’52)(13% + :L'f;)

where o > 0, 3, 7, and w > 0 are constants.

(a) By viewing this system as a perturbation of the linear system

zy = —QaT] — wry

zy = wz) — oy

show that the origin of the perturbed system is exponentially stable with
{llzll < r} included in the region of attraction, provided Bl and [y| are
sufficiently small. Find upper bounds on |4| and |v] in terms of r.

(b) Using V(z) = 2+ 22 asa Lyapunov function candidate for the perturbed
system, show that the origin is globally exponentially stable when £ < 0 and
exponentially stable with {llz]]2 < V'a/f} included in the region of attraction
when 2 > 0.

(c) Compare the results of (a) and (b) and comment on the conservative nature of
the result of (a).
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(c) Discuss the results of parts (a) and (b) in view of the robustness results of
Section 5.1, and show that when b = 0 the origin is not globally exponentially
stable.

Exercise 5.18 ([6]) Consider the system

z1 = —z1+(z1+a)zy, a#0
3 = —zi(z1+a)+ bz,

(a) Let b = 0. Show that the origin is globally asymptotically stable. Is it expo-
nentially stable?

(b) Let &> 0. Show that the origin is exponentially stable for & < min{1, a?}.
(c) Show that the origin is not globally asymptotically stable for any b > 0.

(d) Discuss the results of parts (a)-(c) in view of the robustness results of Sec-
! tion 5.1, and show that when & = 0 the origin is not globally exponentially
stable.

‘Hint: In part (d), note that the Jacobian matrix of the nominal system is not
“globally bounded.

‘Exercise 5.19 Consider the scalar system = —z/(1 + z?%) and V(z) = z*.
a) Show that inequalities (5.20)~(5.22) are satisfied globally with

4 4rt

ai(r) = ax(r) = r%; as(r) s ag(r) = 4r®

1 + r2’
) Verify that these functions belong to class K.

) Show that the right-hand side of (5.23) approaches zero as r — oo.

) Consider the perturbed system & = —z/(1 + z?) + 6, where § is a positive
+ constant. Show that whenever § > —;—, the solution z(t) escapes to co for any
Initial state z(0).

rcise 5.20 Consider the scalar system & = —z® 4+ e™*. Show that z(t) — 0 as
‘00,

rczsz f’-21 For each of the following scalar systems, investigate the input-to-
€ stability.

(1) a'r:—(l+u):c3 (2) f:—(1+u)13—x5

() = —z+ 2% (4) 2=z—23+u
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Exercise 5.22 For each of the following systems, investigate the input_to_state
stability.

B = —zp 4 2 &1 = (z1—z2+u)(z}+ad -
(1) (2) . 24 .2
Iy = —zo+4u zy; = (z1+x2+u)(:c1+a:2—1)
£y = -1 +:C%2:2 1 = —z1—-z2tw
(3) Ty = —zo+zi+u (4) Ty = 11 —~1:§+uz

Exercise 5.23 Consider the system

7? = fO(n:g)
£ = Af+ Bu

where n € R"™", £ € R™ for some 1 < r < n, (A, B) is controllable, and the system
1 = fo(n, &), with { viewed as the input, is locally input-to-state stable. Find q
state feedback control u = y(n,€) that stabilizes the origin of the full system. If
1= fo(n,€) is input-to-state stable, design the feedback control such that the origin
of the closed-loop system is globally asymptotically stable.

Exercise 5.24 Using Lemma 5.6, show that the origin of the system

: 3

ry = —z]+

. _ 3 .
Z2 - —.’L'Z ] e 4'/ /

J o By

is asymptotically stable.

Exercise 5.25 Prove another version of Theorem 5.2, where all the assumptions
are the same except that inequality (5.29) is replaced by

ov oV
5+ 5, [tz ) < —as(llzll) + (v

where a3(-) is a class Ko function and %(u) is a continuous function of u with

$(0) = 0.
Exercise 5.26 Consider the system
. . wZg\?2
Ty = i [(sm —2—-> - 1]
Ty = —zo4u
(a) With u = 0, show that the origin is globally asymptotically stable.

(b) Show that for any bounded input u(t), the state z(t) is bounded.
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Exercise 4.5 ([80]) Consider the system

z, = fa(l‘a)mb)
Avzy + fo(za, 28)

&y

where dim(z,) = n1, dim(z;) = na, As is a Hurwitz matrix, f, and f; are contin-
wously differentiable, [8fy/0](0,0) = 0, and f3(24,0) = 0 in a neighborhood of

zqa = 0.

(a) Show that if the origin z, = 0 is an exponentially stable equilibrium point
of #5 = fa(za,0), then the origin (24,z3) = (0,0) is an exponentially stable
equilibrium point of the full system.

(b) Using the center manifold theorem, show that if the origin 2, = 0 is an asymp-
totically (but not exponentially) stable equilibrium point of 2, = fa(z4,0),

then the origin (z4,zs) = (0,0) is an asymptotically stable equilibrium point
of the full system.

Exercise 4.6 ([59]) For each of the following systems, investigate the stability of
the origin using the center manifold theorem.

ar?—z3, a#0
—zo+ i+ 220

it

. 9 .
£y = —T3 T
) 2 —Zy r% + zz9 (2) 9

i
f

z; = -—zp+T123
(8) &2 = =z +aars
by = e (4D ol

E).cercise 4.7 For each of the following systems, investigate the stability of the
origin using the center manifold theorem.

-’%1 = z23 (2) i = -z 43z +z2—1)
Ty = —zy—z?+ 22} ¢y = z3(z1+z2—1)
?1 = s & = -2z —3zo+z3+ 23
Ty = —zg+azi/(1+2) (4) 2 = zi+2i+a

a #— 0 i‘g = (L‘%

Xercise 4.8 ([28]) Consider the system

r; = rTix2+ ax? + bwlmg

: 2
&y = —izo+eczi+driz

est| : .. . .
t 1gat§ the stability of the origin using the center manifold theorem for each of
ollowing cages.
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(1) a+c>0 (2) a+c<0
(3) a+c=0and ed+bc2 <0 (4) a+c=0and cd+bc? >0
(5) a+c=cd+bc?=0

Exercise 4.9 ([28]) Consider the system
r, = a:z:? + :cfzz
Ty = —x2+x§+xlr2—:c?

Investigate the stability of the origin using the center manifold theorem for a|
possible values of the real parameter a.

Exercise 4.10 ([80]) Consider the system
ry = azirg-— x‘?
£y = —zg+4brize+ cx?

Investigate the stability of the origin using the center manifold theorem for all
possible values of the real constants a, b, c.

Exercise 4.11 (Zubov’s Theorem) Consider the system (3.1) and let G C R"
be a domain containing the origin. Suppose there exist two functions V : ¢ — R
and A : R® — R with the following properties:

e V is continuously differentiable and positive definite in (G and satisfies the
inequality
0<V(z)<1l, YzelG-{0}

e As z approaches the boundary of G, or in case of unbounded G as {|z|| — oo,
limV(z) = 1.

e /1 is continuous and positive definite on R".
o For z € GG, V(&) satisfies the partial differential equation
v
2 f(e) = k(@)1 - V(2) (4.15)
Show that z = 0 is asymptotically stable and G is the region of attraction.
Exercise 4.12 ([62]) Consider the second-order system

T

——h(:l:l) + gg(:ltz)

2 -91(-’131)

n
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Recalling the first case of Example 8.12, we see that A(f) has an average with
convergence function o(T) = 1/(T'+1). Hence, the class £ function of Theorem 8.4
is a(n) = kn. Let z(t,¢) and zay(t, €) denote solutions of the original and averaged
systems which start from the same initial state. By Theorem 8.4,

[|lz(t,€) — zav(t, €)]] = O(e), YE>0

8.6 [Exercises
Exercise 8.1 Using Theorem 2.5, verify inequality (8.4).
Exercise 8.2 If §(¢) = O(¢), is it O(e/?)? Is it O(e3/2)?

Exercise 8.3 If §(¢) = ¢!/™, where n > 1 is a positive integer, is there a positive
integer N such that §(¢) = O(eM)?

Exercise 8.4 Consider the initial value problem

f

& —(0.2+6):c1+£— ~tan"lz; +etanTl 2y, 2,(0) = m

—(0.2+ €)za2 + g —tan"tzy +etantzy, z,(0) =y

T2

(2) Find an O(e) approximation.
(b) Find an O(¢?) approximation.
(C) Investigate the validity of the approximation on the infinite interval.

(d) Ce}lculate, using a computer program, the exact solution, the O(¢) approxima-
tion, and the O(c?) approximation for ¢ = 0.1, 7; = 0.5, and 5 = 1.5 on the
time interval [0, 3]. Comment on the accuracy of the approximation.

Int: In parts (a) and (b), it is sufficient to give the equations deﬁnmg the
PrOX1mat10n You are not required to find an analytic closed-form expression for
approximation.

ercise 8.5 Repeat Exercise 8.4 for the system

i‘l = Z9

Iy = —I]—2I9 +61‘?

8t (d), let € = 0.1, 71 = 1.0, n2 = 0.0, and the time interval be [0, 5].
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Exercise 8.6 Repeat Exercise 8.4 for the system

1 = —zi+z
Ly = €x; —z9— %zg
In part (d), let e = 0.2, 5, = 1.0, 72 = 0.0, and the time interval be (0,4].
Exercise 8.7 ([150]) Repeat Exercise 8.4 for the system
z; = x —1:%+ezlz2
zy = 24— :z:% — €T1T9

In part (d), let € = 0.2, 5, = 0.5, 72 = 1.0, and the time interval be [0,4].
Exercise 8.8 Repeat Exercise 8.4 for the system

2, = —-I +:l?2(1 +1?1)+6(1+2:1)2

.’I':g = —1‘1(.’81 + 1)
In part (d), let € = —0.1, 7, = —1, and 2 = 2. Repeat the calculation for e = —( 05
and € = —0.2 and comment on the accuracy of the approximation.

Exercise 8.9 Consider the initia] value problem
1 = —zy+ ez, z1(0) =19
Z3 = —zy—exy, z4(0) = n

Find an O(e) approximation. Calculate the exact and approximate solutions at
€ = 0.1 for two different sets of initial conditions: (1) 9 =1, (2) » = 10. Comment
on the approximation accuracy. Explain any discrepancy with Theorem 8.1.

Exercise 8.10 ([59]) Study, using the averaging method, each of the following
scalar systems.

(1) 2= e(z - 2?)sin’¢ (2) z =¢(zcos?t —~ 12?%)

(3) & =¢(—z+cos?t) (4) & = —excost

Exercise 8.11 For each of the following systems, show that for sufficiently small
€ > 0, the origin is exponentially stable.

(1) 1 = €xzq
T3 = —¢(1+ 2sint)zy — (1 + cost)sin z;

(2) 21 = €[(~14 1.5cos?t)z; + (1 — 1.5sint cos t)zs]
€3 = €[(~1 - 1.5sint cost)z; + (=14 1.5sin?¢)zy]

(3) ¢=c(~zsin’t+z%sint +ae?), ¢>0
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Exercise 8.12 Consider the system y = Ay + eg(t,y,¢), € > 0, where the n x n
matrix A has only simple eigenvalues on the imaginary axis.

(a) Show that exp(At) and exp(—At) are bounded for all ¢ > 0.

(b) Show that the change of variables y = exp(At)z transforms the system into the
form £ = ef(t,z,¢) and give an expression for f in terms of g and exp(At).

Exercise 8.13 ({150]) Study Mathieu’s equation § + (1 + 2ecos2t)y =0, ¢ > 0,
using the averaging method.
Hint: Use Exercise 8.12.

Exercise 8.14 ([150]) Study the equation §j+y = 8¢(y)? cost using the averaging
method.
Hint: Use Exercise 8.12.

Exercise 8.15 Apply the averaging method to study the existence of limit cycles
for each of the following second-order systems. If there is a limit cycle, estimate its
location in the state plane and the period of oscillation, and determine whether it
is stable or unstable.

(1) §+y=—ey(l~y?) (2) i+y=ey(l—y?) - e
(3) y+y=—-c(1-3L)y (4) +y=—c(1—2l)y
(5) ¥+y=—c(y-y°) (6) y+y=ey(l —y?>—79?)

Exercise 8.16 Consider Rayleigh’s equation

d*u du\?| du

Where m, k, A, and « are positive constants.

a) Using the dimensionless variables y = ufu*, v = t/t*, and € = A/A*, where
(v )2ak = m/3, t* = \/m/k, and A\* = Vkm, show that the equation can be
normalized to

j+y=e(y—39°)
Where y denotes the derivative of y with respect to 7.

) Apply the averaging method to show that the normalized Rayleigh equation

l(laS.a stable limit cycle. Estimate the location of the limit cycle in the plane
¥, 9).
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(c) Using a numerical algorithm, obtain the phase portrait of the normaljzeq
Rayleigh equation in the plane (y,y) for

(i)e=1, (ii)e=0.1, and (iii) e=0.01,
Compare with the results of part (b).
Exercise 8.17 Consider Duffing’s equation
my + cy + ky + ka’y® = Acoswt
where A, a, ¢, k, m and w are positive constants.

(a) Taking z; = y, 22 = ¥, 7 = wt, and ¢ = 1/w, show that the equation can be
dz

represented as 3% = ¢f(7,z,¢€).

(b) Show that the system has an exponentially stable periodic solution for suffi-
ciently large w. Estimate the frequency of oscillation and the location of the
periodic orbit in the phase plane.

Exercise 8.18 Verify (8.37).
Hint: Start from (8.36). In majorizing o(t), use the fact that o(t) is bounded for

t < 1/./7, while for t > 1/,/7 use the inequality o(t) < o(1//7).
Exercise 8.19 Study, using general averaging, the scalar system
T =€ (sin2 t+sin 1.5t 4+ e—’) z

Exercise 8.20 ([151]) The output of an nth-order linear time-invariant single-
input-single-output system can be represented by y(t) = 6T w(t), where 0 is a
(2n + 1)-dimensional vector of constant parameters and w(t) is an auxiliary signal
which can be synthesized from the system’s input and cutput, without knowing 0.
Suppose that the vector 4 is unknown and denote its value by 6*. In identification
experiments, the parameter 6(t) is updated using an adaptation law of the form
9 = —ce(t)w(t), where e(t) = [8(t) — 6*]Tw(t) is the error between the actual
system’s output and the estimated output using 6(t). Let ¢(t) = 6(¢) — 6* denote
the parameter error.

(a) Show that ¢ = eA(t)$, where A(t) = —w(t)wT (¢).

(b) Using (general) averaging, derive a condition on w(t) which ensures that, for
sufficiently small ¢, (t) — 6~ as t — oo.
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Figure 9.14: Exercise 9.4.

Exercise 9.2 Consider the RC circuit of Figure 9.13 and suppose that the resistor
R, is small relative to Ry, while C; = C; = C. Represent the system in the
standard singularly perturbed form.

Exercise 9.3 Consider the tunnel diode circuit of Section 1.1.2 and suppose that
the inductance L is relatively small so that the time constant L/R is much smaller
than the time constant CR. Represent the systemn as a standard singularly per-
turbed model with ¢ = L/CR?.

Exercise 9.4 ([95]) The feedback system of Figure 9.14 has a high-gain amplifier

K and a nonlinear element N(-). Represent the system as a standard singularly
perturbed model with ¢ = 1/K.

Exercise 9.5 Show that if the Jacobian [0g/8y] satisfies the eigenvalue condition
(9.16), then there exist constants k, v, and pg for which inequality (9.15) is satisfied.

Exercise 9.6 Show that if there is a Lyapunov function satisfying (9.17)-(9.18),
then inequality (9.15) is satisfied with the estimates (9.19).

Exercise 9.7 Consider the singular perturbation problem

& o= z%+z, z(0) =¢
2 = z2—z41, 2(0)=n

(8) Find an O(¢) approximation of z and z on the time interval [0, 1].
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c) Let v(w,y,u) = V(w,u) + 14Ty Verify that there exist ¢* > 0 and .
2 ” : a>
such that for all 0 < e < ¢* and 0 < p < p~, the mequality
U< ~av+ BV |||

is satisfied in a neighborhood of (w,y) = (0,0) for some a > 0 and 8>0.

(d) Show that there exist positive constants P1, P2, P3, pa such that if 0 < ¢ « -
£ < p2, [12(0) = A(u(0))I| < p3, and [|2(0) ~ g(z(0), u(0))|| < pa, then z(t) -
and z(t) are uniformly bounded for all ¢ > 0, and z(¢) — A(u(t)) is uniform]y
ultimately bounded by ku for some k > 0. :

(e) Show that if (in addition to the previous assumptions) u(t) - ueo and u(t) — g
as t — 0o, then z(t) — A(us) as t — co.

Hint: In part (b), use Lemma 5.12 and in parts (d) and (e), apply the comparison ,
lemma -

Exercise 9.29 Apply Theorem 9.4 to study the asymptotic behavior of the system

z = —z+4+z-—sint

€2 = —z+sint

as t — oo.
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