AMES 207 Prof. M. Krstic

NONLINEAR SYSTEMS February 12, 1998

MIDTERM EXAM

Take home. Open books and notes.
Total points: 30
Due February 13, 1998, at 5:00 p.m. in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.

Problem 1.

Consider the system:

& = —cx+y*wcos’y

Using either Gronwall’s inequality or the comparison principle, show that
a) (5 pts) z(t) is bounded for all ¢ > 0 whenever ¢ = 0 and m > 1.

b) (5 pts) x(t) — 0 as t — oo whenever ¢ > 0 and m = 1.

Problem 2.

Consider the system:

T = —x+yr+zcosx
Z = —ICOST

a) (2 pts) Determine all the equilibria of the system.
b) (2 pts) Show that the equilibrium = =y = z = 0 is globally stable.
¢) (2 pts) Show that z(t) — 0 as t — 0.

d) (2 pts) Show that z(t) — 0 as t — oc.



Problem 3.

With Chetaev’s theorem, show that the equilibrium at the origin of the following two systems
is unstable:

a)(4pts)
T = 2+ :cy3
= —y+2’
b)(4pts)
§ = n+&+ 37
)= =&+ +3ng?
Problem 4.

(4 pts) Calculate exactly (in closed form) the sensitivity function at A\g = 0 for the system
i = —x +tan ' (\x).

How accurate is the approximation x(t, \) = z(t, A\g) + S(t)(A — \g) for large A, say A > 17



AMES 207 Prof. M. Krstic

NONLINEAR SYSTEMS Winter 1998

FINAL EXAM

Take home. Open books and notes.
Total points: 35
Due Saturday, March 14, 1998, at 12:00 noon in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.

1. (8 pts) Consider the system

jﬁ'i = Tjy1 — CGT; — k,s,(x)x, + w,(x)d,
i=1,....,n,2,41 = 0, where ¢;,k; > 0 and |w;(x)| < s;(z). Show that the system is ISS

w.r.t. d. What is the type of the gain function (linear, quadratic, exponential, . . .)?

2. (9 pts) Using the center manifold theorem, determine whether the origin of the following
system is asymptotically stable:

I"l = —X9+21T3

I"Q = X1+ XaZ3

3 2 2 2
3 = —xg— (] +x5) + 23

3. (9 pts) Consider the system

1 = T2
Ty = —Ty— sSinwt ((:)31 + sin wt)2 + xg)
iy = —ab — (2 +sinwt)’ + <.

2

a) For n = 1, show that for sufficiently large w there exists an exponentially stable periodic
orbit in an O ( ) — neighborhood of the origin.

1
w

b) What can you claim for n = 37



4. (9 pts) Show that, for sufficiently small €, the origin of the system

i = 2®+2+cos(ey) —1
ey = —y+at-zx

€2 = —z+4siny +ex®

is exponentially stable. (Hint: treat yu = &2 as a separate small parameter.) Since the
system has three (rather than two) time scales, it has three levels of invariant manifolds —
slow, medium, and fast. Without going into high accuracy, give the approximate expressions
for these manifolds and discuss the trajectories of the system.



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS February 15, 2000

MIDTERM EXAM

Take home. Open books and notes.
Total points: 25
Due February 16, 2000, at 5:00 p.m. in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.

Problem 1.
(6 pts) Let g, h, and y be three positive functions on (0, c0) such that

/Oog(t)dt <c
0
/Ooe‘”h(t)dt <

0
/ - ly(t)dt < Cs,
0

where 9§, C1, Cy, C3 are positive constants. Assuming that
y<g(t)y+h(t), vt >0
using Gronwall’s lemma show that

y(t) < [Co + 6Cs + y(0)]e” 2.

Problem 2.
(6 pts) Consider the system:

t = A(z,y)r+ B(z)y
= —GB(z)'x,

where x(t),y(t) are vectors of arbitrary dimensions, A(x,y) is a matrix valued function that
satisfies

and G is a positive definite symmetric matrix. Show that the equilibrium x = 0,y = 0 is
globally stable, that z(t) converges to zero, and that y(t) converges to the null space of B(0).
If you can’t solve the problem for general GG, solve it for G = I to receive partial credit.



Problem 3.
(6 pts) With Chetaev’s theorem, show that the equilibrium at the origin of the following

system is unstable:
&= |zl +ayy/lyl

gy o= —y+lz)y/]yl.

Don’t worry about uniqueness of solutions.

Problem 4.
(7 pts) Calculate exactly (in closed form) the sensitivity function at A\g = 1 for the system

T = —\x°.

What is the approximation x(t, A) = z(t, \g) + S(t)(A — A\g) for A = 7/27



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS Winter 2001

FINAL EXAM

Take home. Open books and notes.
Total points: 50
Due Thursday, March 22, 2001, at 1:00 pm in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.

1. (9 pts) Using the Lyapunov function candidate V = %(:E2 +y? + 22), study stability of the origin of
the system

i = —x+12z

z

i o= —y—z—a3.

2. (9 pts) Show that the following system is ISS

i = —x+4 a3y +p?
R
p = —ptu.

3. (8 pts) Using the center manifold theorem, determine whether the origin of the following system is
asymptotically stable:

yz + 2y°
z = —z— 2y2 —4y4 — 2y2z.

4. (8 pts) Using averaging theory, analyze the following system:

i = e[—x+1—2(y+sint)?

= €2

. 1 2
Z = €4q—z—sint §az+(y—|—smt) .

5. (8 pts) Using singular perturbation theory, study local exponential stability of the origin of the system
r =y
) —2

ez = —z-+sinx+y.

Is the origin globally exponentially stable?

6. (8 pts) Consider the feedback system with a linear block (like in class) and a non-

s(s+1)(s+2)
linearity sgn(y) + |yly (note that it is an odd nonlinearity, so the describing functions method applies,
and note that the first term was already studied in class). First, find the describing function for the

nonlinearity. Then, determine if the feedback system is likely to have any periodic solutions.



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS Winter 2002

FINAL EXAM

Take home. Open books and notes.
Total points: 65
Due Friday, March 22, 2002, at 4:00 pm in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.
Each problem is worth 13 points

Problem 1. Consider the system

r = —z+yxsinx
= —y-+zysiny
z = —=z.

Using Gronwall’s lemma (twice), show that

l(t)] < |awoleole ™ et vt > 0.

Problem 2. Analyze uniform stability of the origin of the linear time-varying system

T =y
) = —y—(2+sint)z

using the Lyapunov function
2

Yy
V=aot+ - —.
+ 2 +sint
Does your analysis guarantee that y(¢) — 0 as t — oc.
Problem 3. Using the Lyapunov function candidate
4 2 4
oy z
V=—r+="+—
4 + 2 * 4’
study stability of the origin of the system
T =y
;o= —ad BB

z = —z+vy.



Problem 4. Using the Chetaev function

V=xz
prove that the origin of the system
T = yz+az
= —xz
z = zy+ax,

where a > 0 is a constant, is unstable. (This problem is related to instability of rigid body spinning
motion around the “intermediate” axis.)

Problem 5. Show that the ISS gain function of the system

1
Tt = (3+cos(u))sgn(z)log —— +
( ())g()glﬂx‘ y
2 z?
N T
Y (+x)\y!y+1+x2u
from v to z is
y(r):e\/’_"—l.

Hint: Use Lyapunov functions of the form Vi(z) = |z| and Va(y) = |y|.



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS Winter 2003

FINAL EXAM

Take home. Open books and notes.
Total points: 65

Due Friday, March 14, 2003, at 4:00 pm in Professor Krstic’s office. (4pm is a hard deadline, I am leaving
the office at 4pm.)

Late submissions will not be accepted. Collaboration not allowed.

Problem 1. Consider the system

p = —peysing (r2 sin®t — q)
= uey (r2 sin?t — q)
¢ = pe
;o= prcos’t (1 + (p+sing)? —rzsinzt) ,

where 7(0) > 0 (note that this implies that r(¢) > 0 for all time because r = 0 sets 77 = 0). Denote
p 0

3
r 24/1 + sin(uet)?

Show that, for sufficiently small u, €, and ~, the solution x(t, i, €,) locally exponentially converges to
xr(t) + O(p + € + ), at least on a finite time interval.

Hint. This is a complicated problem that involves four time scales. (I hope it will not take you as much
time to solve it as it took me to construct it and double check its solvability.) The four time scales are
(going from fastest to slowest):

e sint
o
o sin(pet)
[ ] p7 q
Your analysis should apply the following steps:
e One step of averaging for the complete system, treating p as small.

e One step of singular perturbation, treating r as fast and € as small, and introducing the new time
T = et to put the system (after averaging) into the standard singular perturbation form. To derive
the boundary layer model, you will need to introduce “another” time variable = 7 /e = t.



e A second step of averaging on the (p,q) system with ¢ = pur = pet as time, treating v as small
(again).

Note that the hardest part of the problem is not to mechanically perform the approximations but to
connect them all, through appropriate theorems, to draw the final conclusion. Make sure you do quote
the theorems as you go from the last step of simplification backwards towards the original system. I will
be quite unimpressed to see that you only know how to calculte an average system or how to find a quasi
steady state. Note that, in order to draw the final conclusion, exponential stability needs to be satisfied
every step of the way.

Problem 2. Consider the system

T = —c+zz+y(l-—vy)
= —z(l-y)
3 = —z°.

Give the most precise statement you can on stability and convergence (global and local) of solutions of
this system. Note that this is an open ended problem. Since the system has two entire lines of equilibria,
analyzing all of them might take many days of work, leading you to use not only the Lyapunov, LaSalle
invariance, and linearization theorems, but even the center manifold and Chetaev theorems. Go as far as
you can with your ideas and these tools.

Hints. If you try to study individual equilibria, the first thing to note is that, since they all belong to
continuous sets of equilibria, none of them can be asymptotically stable. So, the equilibria fall into one
of the two categories: stable or unstable. By taking linearizations around equilibria, you will note that
all of them have at least one eigenvalue at zero in their Jacobians. So, unless you find them unstable
by linearization, you may need the center manifold theorem. Note that, since none of the equilibria are
asymptotically stable, the center manifold theorem should work only for the equilibria that happen to be
unstable. Don’t immediately look for complicated center manifolds—trivial ones (h(-) = 0) will carry you
a long way. For those equilibria that happen to be stable you can use Lyapunov functions parametrized
by the equilibria. For one of the equilibria, (0,1,1), even center manifold is not enough and the stability
question needs to be resolved by direct Lyapunov or Chetaev. I personally have not figured out this one
as of this writing.



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS Winter 2004

FINAL EXAM

Take home. Open books and notes.
Total points: 65
Due Wednesday, March 17, 2004, at 1:00 pm in Professor Krstic’s office.

Late submissions will not be accepted. Collaboration not allowed.

1. (13 pts) Using the Lyapunov function candidate V = %(332 +y? 4 2?), study stability of the origin of
the system

i = —x+12z

z

3 = —y—z—a>.

2. (13 pts) Show that the following system is ISS

i@ = —x+aPy+p?
C Ly
p = —ptu.

3. (13 pts) Using averaging theory, analyze the following system:

& = e~z +1—2(y+sint)?]

= ez
1
Z = ¢ {—z —sint [2:17 +(y+ sint)ﬂ } :
4. (13 pts) Using singular perturbation theory, study local exponential stability of the origin of the
system

T =y
] —z

€ = —z+sinz+y.

Is the origin globally exponentially stable?

5. (13 pts) Consider the feedback system with a linear block (like in class) and a

s(s+1)(s+2)
nonlinearity sgn(y) + |y|ly (note that it is an odd nonlinearity, so the describing functions method applies,
and note that the first term was already studied in class). First, find the describing function for the

nonlinearity. Then, determine if the feedback system is likely to have any periodic solutions.



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS Winter 2006

FINAL EXAM

Take home. Open books and notes.
Total points: 65
Due Tuesday, March 21, 2006, at 5:00 pm in Professor Krstic’s office.

Collaboration not allowed.

1. (20 pts) Show that the following system has an unstable equilibrium at the origin:
il = .T? + 2$%
By = iz +as.

Hint: For second order systems one should always first try Chetaev functions of the form V = 2? — ax3,
where a is some positive constant which you are free to choose in the analysis.

2. (25 pts) Show that the following system is ISS

= —a:+y3
= —y—fla)+p°
= _p+u7

=B @ K.

where f(z) is a function such that [; f(£)d¢ and zf(x) are positive definite and radially unbounded
functions.

[An example of such a function is the function f(x) = e® — 1—convince yourself that this is so. A
simpler, trivial example is the function is f(z) = x.]

This is the hardest problem on the exam. You can solve it either by showing that the (z,y)-system
is ISS with respect to p and by noting that p is ISS with respect to u, or by directly building an ISS-
Lyapunov function for the whole (z,y, p)-system (the latter is more difficult but more impressive if you
can do it). In any case you will have to construct some Lyapunov functions. Hints: Use the terms
Iy f(€)dE and y*/4 in those Lyapunov functions. In showing that the (z,y)-system is ISS with respect
to p you should use Young’s inequality (the version with powers of 4 and 4/3).

3. (20 pts) Using averaging theory, analyze the following system:

i1 = [(z1 —sinwt)? — o] sinwt

Ty = f(xlfsinwt)2fx2.



MAE 281A Prof. M. Krstic

NONLINEAR SYSTEMS Winter 2007

FINAL EXAM

Take home. Open books and notes.
Total points: 75
Tuesday, March 20, 2006

Collaboration not allowed.

1. (10 pts) Prove global stability of the origin of the system

i:l = X2

. x1

Ty = ——5.
1+ 23

2. (10 pts) Prove global asymptotic stability of the origin of the system
i‘l = —w%

.i'g = 1 —T2.
Is the origin exponentially stable (at least locally)?

3. (10 pts) Which of the state variables of the following system are guaranteed to converge to zero from
any initial condition?

il = X9 + 13
:i’g = —XI1 — T2+ Tox3
i3 = —axf— 13,

4. (10 pts) Using averaging theory, analyze the behavior of the following system for large w, for both
a=1and a=—-1:

&1 = —sinx; + 2z9 + (1 + 4w sinwt) sinwt

To = (—2301 coswt + w% sin wt) coswt — axs .

5. (10 pts) Consider the following control system:

T = Az +Apz+ Biu
€z = Agx+ Az

Assume that the matrix Ago is Hurwitz and that there exists a matrix/vector K (of appropriate dimen-
sions) such that
A — A12A521A21 + Bi1 K



is also Hurwitz. Prove that the “partial-state” feedback law
u= Kz
exponentially stabilizes the equilibrium (z,z) = (0,0) for sufficiently small e.
6. (5 pts) Show that the following system is ISS and determine its gain function:

i=—2+ zu.

7. (5 pts) Show that the following system is ISS and determine its gain function:

i=—x+u’.

8. (5 pts) Show that the following system is ISS and guess its gain function:

i = —ad+ay

= —y+u3.
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