SUMMARY: Rules for sketching Bode Plots

$$G(j\omega) = K_o(j\omega)^m (j\omega\tau + 1)^n \left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1 \right]^q$$

- 1. The DC gain : K_o
 - slope of $|G(j\omega)| = 0$

• value of
$$|G(j\omega)| = 20 \log(|K_o|) dB$$

• phase of $G(j\omega) = \begin{cases} 0 & \text{if } K_o > 0 \\ \pm \pi & \text{if } K_o < 0 \end{cases}$

- 2. The DC behavior (at $\omega \approx 0$) pole/zero at the origin : $(j\omega)^m$
 - slope of $|G(j\omega)| = m \cdot 20 \, dB/dec$
 - phase of $G(j\omega) = m\frac{\pi}{2}$

- 3. Stable $(\tau > 0)$ real poles : $(j\omega\tau + 1)^n$ with n < 0
 - Reduce the value of $|G(j\omega)|$ by $|n| 20 \, dB/dec$ (slope)
 - Reduce the phase of $G(j\omega)$ by $|n|\frac{\pi}{2}$ (gradually)

- 4. Stable $(\tau > 0)$ real zeros : $(j\omega\tau + 1)^n$ with n > 0
 - Increase the value of $|G(j\omega)|$ by |n|20 dB/dec (slope)
 - Increase the phase of $G(j\omega)$ by $|n|\frac{\pi}{2}$ (gradually)

- 5. Resonant stable $(\zeta > 0)$ pair of poles : $\left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1\right]^q$ with q < 0
 - Reduce the value of $|G(j\omega)|$ by 2|q|20 dB/dec (slope) Peak in $|G(j\omega)|$
 - Reduce the phase of $G(j\omega)$ by $2|q|\frac{\pi}{2}$ Sharp change in phase

Figure 5:
$$G(j\omega) = \frac{1}{\left[\left(j\omega\frac{1}{10}\right)^2 + 2 \cdot 0.5 j\omega\frac{1}{10} + 1\right]}$$

> 0) pair of zeros : $\left[\left(\frac{j\omega}{\omega_n}\right)^2 + 2\zeta \frac{j\omega}{\omega_n} + 1\right]^q$ with $q > 0$

• Increase the value of $|G(j\omega)|$ by $2|q|20 \, dB/dec$ (slope) - Dip in $|G(j\omega)|$

• Increase the phase of $G(j\omega)$ by $2|q|\frac{\pi}{2}$ - Sharp change in phase

Resonant stable (ς

6.

- 7. Unstable poles/zeros (both real $(\tau < 0)$ and resonant $(\varsigma < 0)$):
 - Same $|G(j\omega)|$
 - The effect on the phase of G(jω) is opposite than the stable case.
 An unstable pole behaves like a stable zero.
 An unstable zero behaves like a stable pole.

Remember to normalize the terms of the transfer function. All the terms, except the DC gain, MUST be one at $\omega = 0$. Example:

