Problem 1: Block Diagram Reduction (3 points) Consider the following block diagram:

Using block diagram algebra, reduce the block diagram to find the transfer function $T = \frac{Y}{U}$. Simplify the transfer function as much as possible to receive full credit.

$$T = \frac{G_3}{1 + G_1 H_1}$$
Problem 2: Transfer Function (4 points) Find the transfer function \(\frac{y}{r} \) for the following system:

![Block diagram of the system]

The best way to solve this problem is by writing a system of equations involving the signals \(a \) and \(b \). It is probably impossible (or very difficult) to solve this problem using only block diagram manipulations, whereas the use of Mason’s rule is possible but overly complicated.

Equations involving the signals \(a \) and \(b \):

\(a = r - Gb \) \hspace{1cm} (1)
\(b = a + Gy \) \hspace{1cm} (2)
\(y = a + b \) \hspace{1cm} (3)

Plugging (2) in (1) and (3), we have

\(a = r - Ga - G^2y \)
\(y = 2a + Gy \)

which lead to

\[y = 2 \frac{r - G^2y}{1 + G} + Gy = \frac{2}{1+G}r \frac{G - G^2}{1+G} y \]
\[\Rightarrow \left(1 - \frac{G - G^2}{1+G} \right) y = \frac{2}{1+G} \]
\[\Rightarrow \frac{y}{r} = \frac{2}{1 + G^2} \]
Problem 3: Time Domain Specifications and Sensitivity (8 points) The following block diagram models an armature-controlled DC motor.

(a) (3 points) Find the transfer function \(G(s) \) from \(T_d(s) \) to \(\Omega(s) \), and the transfer function \(H(s) \) from \(V_a(s) \) to \(\Omega(s) \).

\[
G(s) = -\frac{\frac{1}{Js+F}}{1 + \frac{\frac{k_1 k_5}{k_4 k_5}}{(Js+F)(L_a s+R_a)}} = -\frac{L_a s + R_a}{(Js+F)(L_a s+R_a) + k_4 k_5}
\]

\[
H(s) = \frac{\frac{k_5}{k_4 k_5}}{1 + \frac{\frac{k_5}{k_4 k_5}}{(Js+F)(L_a s+R_a)}} = \frac{k_5}{(Js+F)(L_a s+R_a) + k_4 k_5}
\]

(b) (2 points) Given \(L_a = 1, R_a = 1, J = 2, F = 3, k_4 = 5 \), calculate the sensitivity of the closed-loop transfer function \(H(s) \) with respect to changes in \(k_5 \).

Define \(A(s) \triangleq L_a s^2 + (R_a J + L_a F)s + R_a F \). Then, \(H(s) = \frac{k_5}{A(s) + k_4 k_5} \).

\[
S_{k_5}^H = \frac{dH}{dk_5} \left(\frac{k_5}{H} \right) = \frac{(A(s) + k_4 k_5) - k_5 k_4}{(A(s) + k_4 k_5)^2} (A(s) + k_4 k_5) = \frac{A(s)}{A(s) + k_4 k_5}
\]

\[
= \frac{L_a J s^2 + (R_a J + L_a F)s + R_a F}{L_a J s^2 + (R_a J + L_a F)s + R_a F + k_4 k_5}
\]

\[
= \frac{2s^2 + 5s + 3}{2s^2 + 5s + 3 + 5k_5} = \frac{s^2 + \frac{5}{2}s + \frac{3}{2}}{s^2 + \frac{5}{2}s + \frac{3}{2} + \frac{5}{2}k_5}
\]

(c) (1 points) Determine \(k_5 \) such that the overshoot is \(M_p = e^{-\frac{\pi}{\sqrt{3}}} \).

From \(M_p = e^{-\frac{\pi}{\sqrt{1 - \zeta^2}}} = e^{-\frac{\pi}{\sqrt{3}}} \), we have

\[
\frac{\zeta}{\sqrt{1 - \zeta^2}} = \frac{1}{\sqrt{3}} \Rightarrow \frac{\zeta^2}{1 - \zeta^2} = \frac{1}{3} \Rightarrow 4\zeta^2 = 1 \Rightarrow \zeta = \frac{1}{2}
\]

3
From
\[2\zeta \omega_n = \frac{5}{2} \Rightarrow \omega_n = \frac{5}{2}\]
we have
\[\frac{3}{2} + \frac{5}{2} k_5 = \omega_n^2 = \frac{25}{4} \Rightarrow k_5 = \frac{19}{10}\]

(d) (2 points) What are the settling time, rise time, and peak time for \(H(s)\) determined in (c)?

\[t_s = \frac{4.6}{\zeta \omega_n} = \frac{4.6}{(1/2)(5/2)} = 3.68\]
\[t_r = \frac{1.8}{\omega_n} = \frac{1.8}{5/2} = 0.72\]
\[t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\frac{5}{2} \sqrt{1 - (1/2)^2}} = \frac{4\pi}{5\sqrt{3}} = \frac{4\sqrt{3}}{15}\]

Problem 4: PID Control (7 points) Consider the following system:

(a) (2 points) Using Routh’s criterion, find the gain \(K\) that would make the feedback system marginally stable.

\[\frac{Y}{U} = \frac{K}{s^3 + 2s^2 + 2s + 1} = \frac{K}{s^3 + 2s^2 + 2s + 1 + K}\]

This closed-loop system is asymptotically stable. \(\Leftrightarrow 1 + K > 0\) and \(4 > 1 + K\)

\(\Leftrightarrow -1 < K < 3\)

Therefore, the closed-loop system becomes marginally stable when \(K = -1\) or 3.

(b) (1 points) Using Ziegler-Nichols tuning, find the gain \(k_p\) needed for P (proportional) control.

As we increase \(K\) from 0, the closed-loop system becomes marginally stable when \(K = 3\), which means that the ultimate gain is \(K_u = 3\). Thus, the ultimate sensitivity method leads us to \(k_p = \frac{K_u}{2} = \frac{3}{2}\).

(c) (2 points) The ultimate period corresponding to the Ziegler-Nichols tuning in (b) can be shown to be \(P_u = \sqrt{2}\pi\). What should be the PI, PID control gains?

With the ultimate gain \(K_u = 3\) in (b), we have

\[PI : \quad k_p = 0.45 K_u = 1.35, \quad T_I = \frac{P_u}{1.2} = \frac{\sqrt{2}}{1.2} \pi = \frac{5\sqrt{2}}{6} \pi\]

\[PID : \quad k_p = 0.6 K_u = 1.8, \quad T_I = \frac{P_u}{2} = \frac{\sqrt{2}}{2} \pi, \quad T_D = \frac{P_u}{8} = \frac{\sqrt{2}}{8} \pi\]
(d) (2 points) Show that indeed $P_u = \sqrt{2\pi}$.

When $K = 3$, we have

$$\frac{Y}{U} = \frac{K}{s^3 + 2s^2 + 2s + 4} = \frac{K}{s^2(s + 2) + 2(s + 2)} = \frac{K}{(s^2 + 2)(s + 2)}$$

Thus, $\omega_n^2 = 2$, which leads to

$$P_u = \frac{2\pi}{\omega_n} = \frac{2\pi}{\sqrt{2}} = \sqrt{2\pi}$$

Problem 5: Stability (3 points) Are the following polynomials stable? If not, how many eigenvalues in the right-half plane do they have?

(a) (1 points) $p_a(s) = s^3 + 2s^2 + 2s + 5$

$$\begin{array}{c|ccccc}
s^3 & 1 & 2 \\
s^2 & 2 & 5 \\
s^1 & -\frac{1}{2} \\
s^0 & 5 \\
\end{array}$$

Unstable. There are 2 poles in the right-half plane.

(b) (2 points) $p_b(s) = s^6 + s^5 + 2s^4 + 4s^3 + 3s^2 + 3s + 2$

$$\begin{array}{c|ccccc}
s^6 & 1 & 2 & 3 & 2 \\
s^5 & 1 & 4 & 3 \\
s^4 & -2 & 0 & 2 \\
s^3 & 4 & 4 & \\
s^2 & 2 & 2 \\
s^1 & 0 & a_1(s) = 2s^2 + 2 \\
s^0 & 4 & a'_1(s) = 4s^1 \\
s^0 & 2 \\
\end{array}$$

Unstable. There are 2 poles in the right-half plane.