MIDTERM EXAM

October 30, 2001

NAME: SOLUTIONS

- Open books and notes.
- Present your reasoning and calculations clearly. Random or inconsistent etchings will not be graded.
- Write only on the paper provided. If you run out of space for a given problem, continue on the pages at the end of the set and indicate "Continued on page X."
- ullet The problems are *not* ordered by difficulty.
- Total points: 30.
- Time: 2:20–3:40 (2.7 minutes/point)

Problem 1. (8 points)

For the time function

$$x(t) = 5e^{-2t} - 3t$$
, $t \ge 0$

- (a) Find the Laplace transform $X(s) = \mathcal{L}\{x(t)\}.$
- (b) Based on point (a), and the initial value theorem, find x(0).
- (c) Based on points (a) and (b) and the theorem about the Laplace transform of a derivative of a time function, find $\mathcal{L}\{\dot{x}(t)\}$.

(a)
$$X(s) = \frac{5}{5+2} - \frac{3}{5^2}$$

(b)
$$x(0) = \lim_{s \to \infty} 5 \times (6)$$

$$= \lim_{s \to \infty} \left[\frac{55}{5+2} - \frac{3}{5} \right]$$

$$= \lim_{s \to \infty} 5 \frac{5}{5+2} = 5$$

$$= \lim_{s \to \infty} 5 \frac{5}{5+2} - \frac{3}{5^2} - 5$$

$$= \frac{55}{5+2} - \frac{3}{5} - 5$$

$$= \frac{135+6}{5(5+2)}$$

Problem 2. (10 points)

Find the closed-loop transfer function for the system

Problem 3. (12 points)

The Hubble space telescope control system has the following structure

where Y(s) is the pointing angle and R(s) is the commanded angle.

- (a) Let the disturbance D(s) be a unity step input and let R(s) = 0. Calculate the steady state value of the output, y_{ss} , as a function of the general gains K and/or K_1 .
- (b) Find the values of K and K_1 to achieve an overshoot of only 10% and a peak time of 2 seconds with respect to a unity step command in R(s) (for zero disturbance).

(a)
$$\frac{Y(6)}{D(3)} = \frac{G(6)}{1 + KG(3)}$$

 $y_{55} = \lim_{S \to 0} \frac{S}{1 + KG(3)} = \frac{1}{S}$
 $= \lim_{S \to 0} \frac{1}{5^2 + K_1 S + K} = \frac{1}{K}$
(b) $\frac{Y(3)}{R(3)} = \frac{KG(3)}{1 + KG(3)} = \frac{K}{S^2 + K_1 S + K}$
We want $\frac{1}{1 + KG(3)} = \frac{1}{2500} = \frac{1}{45^2 K = K_1^2}$
 $\frac{1}{1 + KG(3)} = \frac{1}{1 + KG(3$

From Mp(\$) we have:

$$(\ln 10)^2(1-\xi^2) = \pi^2 \xi^2$$

 $\Rightarrow \xi^2 = \frac{(\ln 10)^2}{(\ln 10)^2 + \pi^2} = \frac{K_1^2}{4K}$
From tp(\$\xi,\omega_n\$) we have:
 $= \frac{1-\xi^2}{4K} = 1-\xi^2 = 1-\frac{K_1^2}{4K}$
 $= \frac{\pi^2}{(\ln 10)^2 + \pi^2}$
 $\Rightarrow K_1^2 = 4K = \frac{(\ln 10)^2}{(\ln 10)^2 + \pi^2} = \frac{(\ln 10)^2}{(\ln 10)^2 + \pi^2}$
 $\Rightarrow K_1 = \ln 10$
 $K = 3.8$ $K_1 = 2.3$