SOLUTIONS

Problem 1. (2+2+2+3+3 points) Draw the root locus for the five systems below. For each of the subproblems, if proportional feedback (of any size of the gain *K*—small, medium, or large) is not sufficient to stabilize the system, namely, to place all the closed-loop poles in the left half plane, design a compensator D(s) to stabilize the system and draw the root locus with respect to *K* for the equation 1 + KD(s)G(s) = 0.

(a) $G(s) = \frac{1}{s(s+5)}$	(b) $G(s) = \frac{s}{(s-1)^2}$	(c) $G(s) = \frac{1}{(s^2 - 2s + 2)}$
(d) $G(s) = \frac{s-2}{s}$	(e) $G(s) = \frac{s-1}{s(s-2)}$	

Problem 3. (6 points) Sketch the magnitude and phase Bode plots of $G(s) = \frac{s(s^2 + 100)}{(s-1)^2}$.

Problem 4. (6 points) From the *approximate* Bode plots on the *next page*, determine the system transfer function G(s). In case you are curious about the true Bode plots in Matlab, they are given below.

 $D(3) = \frac{5+2}{5+p},$ $\chi = -\frac{p+2+z}{z}$ p > Z + 2, Let Z = 0, p = 4. We need $\lambda = -1$ Stable for suffic. high K $(d) G(3) = \frac{5-2}{5}$ Unstable for all K>0,1 Take $D(5) = \frac{5-1}{5+1}$ Stable-for suffic. small K>0 ≫ 2

5-1 (e) G(s) =rel. deg. =] × 2 0 Unstable for all K > 0 Non-robust stabilizing compensator: D(3) = 3+1 If the pole-zero cancellation $\frac{5-1}{5-1}$ is not exact, then we get a branch of RL on the positive real axis.

Robust but trickier compensator: $D(3) = \frac{(6+0.3)(3-0.1)}{(8+0.22)(5-3.5)}$

This is one of the many possible speculative solutions that happens to actually work. The stabilizing range for K is (5.52, 5.96).

Obviosly, this solution is FYI only. It required Matlab to verify.

PROBLEM 2 Char. poly: $S^2 + 2\xi \omega_n S + \omega_n^2 + \omega_n^2 = 0$ $\left| + \right\rangle \frac{2\omega_n \delta}{\delta^2 + 2\omega_n^2} = 0$ * On VZ WnVZ $S_{crit} = VZ$

