Problem 1. (2+2+2+3+3 points) Draw the root locus for the five systems below. For each of the sub-problems, if proportional feedback (of any size of the gain K—small, medium, or large) is not sufficient to stabilize the system, namely, to place all the closed-loop poles in the left half plane, design a compensator $D(s)$ to stabilize the system and draw the root locus with respect to K for the equation $1 + KD(s)G(s) = 0$.

(a) $G(s) = \frac{1}{s(s+5)}$
(b) $G(s) = \frac{s}{(s-1)^2}$
(c) $G(s) = \frac{1}{(s^2 - 2s + 2)}$
(d) $G(s) = \frac{s-2}{s}$
(e) $G(s) = \frac{s-1}{s(s-2)}$

Problem 2. (6 points) A second order system is controlled with unity feedback, as shown on the right. Draw the root locus with respect to ζ.

Problem 3. (6 points) Sketch the magnitude and phase Bode plots of $G(s) = \frac{s(s^2 + 100)}{(s-1)^2}$.

Problem 4. (6 points) From the approximate Bode plots on the next page, determine the system transfer function $G(s)$. In case you are curious about the true Bode plots in Matlab, they are given below.
Problem 1

(a) \[G(s) = \frac{1}{s(s+5)} \]

rel. deg. = 2

\[x = -\frac{5}{2} \]

stable for all \(K > 0 \)

(b) \[G(s) = \frac{s}{(s-1)^2} \]

rel. deg. = 1

stable for suffic. high \(K \)

(c) \[G(s) = \frac{1}{(s-1)^2 + 1^2} \]

rel. deg. = 2

unstable for all \(K > 0 \)
\[D(\delta) = \frac{\delta + z}{\delta + p}, \quad \lambda = -\frac{p + 2 + z}{2} \]

We need \(p > z + 2 \). Let \(z = 0, p = 4 \).

\(\lambda = -1 \)

Stable for suffic. high \(K \)

\((d)\) \[G(\delta) = \frac{\delta - 2}{\delta} \]

Unstable for all \(K > 0 \).

Take \(D(\delta) = \frac{\delta - 1}{\delta + 1} \)

Stable for suffic. small \(K > 0 \)
(e) \[G(s) = \frac{s-1}{s(s-2)} \quad \text{rel. deg.} = 1 \]

Unstable for all \(K > 0 \)

Non-robust stabilizing compensator: \(D(s) = \frac{s+1}{s-1} \)

If the pole-zero cancellation \(\frac{s-1}{s-1} \) is not exact, then we get a branch of RL on the positive real axis.
Robust but trickier compensator:

\[D(s) = \frac{(s+0.3)(s-0.1)}{(s+0.22)(s-3.5)} \]

This is one of the many possible speculative solutions that happens to actually work. The stabilizing range for \(K \) is \([5.52, 5.96]\).

Obviously, this solution is FYI only. It required Matlab to verify.
Problem 2

Char. poly: \(\delta^2 + 2\xi \omega_n \delta + \omega_n^2 + \omega_n^2 = 0 \)

\[
1 + \delta \frac{2\omega_n \delta}{\delta^2 + 2\omega_n^2} = 0
\]

Diagram:

\(\delta_{\text{crit}} = \sqrt{2} \)
Draw the Bode Diagram

\[G(s) = \frac{3(s^2 + 100)}{(s - 1)^2} \]

for the system using straight line approximations.

- Zero at the origin
- Double pole
- Unstable double pole
- Resonant zero

Problem 3
Problem 4

\[G(s) = \frac{10^8 s (s-1)^2}{(s+10^2)(s-10^4)^2} \]

1. The initial phase of 90° and a slope of 20°/decade indicates a zero at the origin.
2. At 10°, the magnitude response increases by 40 dB/decade while the phase decreases, indicating an unstable double zero.
3. At 10^2, the magnitude decreases by 20 dB/decade and the phase decreases, indicating a stable pole.
4. The magnitude decreases by 40 dB at 10^5 while the phase increases, unstable double pole.

5. To find K, let S be smaller than 10:

\[
K \left(10^{-1}\right) \left(10^{-1}\right)^2 = 10^{-3} \frac{(10^2)}{(10^2)(10^4)^2} \]

K = 10^8