
The practical, physical (and sometimes dangerous)
consequences of control must be respected, and the
underlying principles must be clearly and well taught.

By Gunter Stein

F
eedback control systems are all
around us in modern technological
life. They are at work in our homes,
our cars, our factories, our transpor-
tation systems, our defense sys-
tems—everywhere we look. Certainly,

one of the great achievements of the interna-
tional controls research community is that the
design principles for these systems are well de-
veloped and broadly understood by control engi-
neers, so that the systems operate productively
and safely in so many applications.

In this article, I want to talk about two trends
that threaten to undermine this achievement. My
objective is to heighten our awareness of these
trends and hopefully bring about an appropriate re-
sponse to them.

The first trend has to do with the applications
themselves. Among the abundance of control sys-
tems operating today are increasing numbers of
dangerous ones. Society trusts our technology. We
are permitted to do things with automatic controls
that cannot be done manually and that, if done im-
properly, can have dire consequences for property,
the environment, and human life. Most, but not all,
of these dangerous applications involve open-loop
unstable plants with divergence rates violent
enough to elude manual control. This characteriza-
tion motivates the title of the article, and I will de-
scribe specific examples of such applications.

The second trend has been evident at our con-
ferences, and certainly in our journals, over the
years. This trend is the increasing worship of ab-
stract mathematical results in control at the ex-
pense of more specific examinations of their
practical, physical consequences. I will provide ex-
amples of this trend as well.

12 IEEE Control Systems Magazine August 2003
0272-1708/03/$17.00©2003IEEE

Gunter Stein’s Bode Lecture

An understanding of fundamental limitations is an essential
element in all engineering. Shannon’s early results on chan-
nel capacity have always had center court in signal process-

ing. Strangely, the early results of Bode were not accorded the same
attention in control. It was therefore highly appropriate that the IEEE
Control Systems Society created the Bode Lecture Award, an honor
which also came with the duty of delivering a lecture. Gunter Stein
gave the first Hendrik W. Bode Lecture at the IEEE Conference on
Decision and Control in Tampa, Florida, in December 1989. In his
lecture he focused on Bode’s important observation that there are
fundamental limitations on the achievable sensitivity function ex-
pressed by Bode’s integral. Gunter has a unique position in the con-
trols community because he combines the insight derived from a
large number of industrial applications at Honeywell with long ex-
perience as an influential adjunct professor at the Massachusetts In-
stitute of Technology from 1977 to 1996. In his lecture, Gunter also
emphasized the importance of the interaction between instability
and saturating actuators and the consequences of the fact that con-
trol is becoming increasingly mission critical.

After more than 13 years I still remember Gunter’s superb
lecture. I also remember comments from young control scientists
who had been brought up on state-space theory who said: “I
believed that controllability and observability were the only
things that mattered.” At Lund University we made Gunter’s
lecture a key part of all courses in control system design. Gunter
was brought into the classroom via videotapes published by the
IEEE Control Systems Society and the written lecture notes. It was
a real drawback that the lecture was not available in more archival
form. I am therefore delighted that IEEE Control Systems
Magazine is publishing this article. I sincerely hope that this will
be followed by a DVD version of the videotape. The lecture is like
really good wine; it ages superbly.

—Karl J Åström, Professor Emeritus
Lund University, Lund, Sweden



Together, these trends threaten to undermine our
good standing in society as masters of a technology that
can be trusted.

The Punch Line
In slightly dramatized form, the message of this article can
be summarized by drawing some contrasts. Consider the
following mathematical statement:

Theorem: Given plant g s( ), compensator k s( ), and
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In words, this theorem states that the sensitivity function
of a feedback system must not only be finite in the right-half
plane, but it must pass through certain interpolation points
corresponding to right-half-plane singularities of the loop.
Most of us recognize this immediately as an elegant and
compact description of control system constraints imposed
by unstable, nonminimum-phase systems. It was formally
developed in the context of parametrizing all stabilizing
controllers, and it was popularized in the 1980s as part of
the interpolation-theoretic approach to H∞ optimization.
(Of course, it was understood as stated above for single-in-
put, single-output (SISO) systems as far back as the 1950s.
Some historical notes on this theorem can be found in [1].)

Unfortunately, we are not as quick to recog-
nize that this mathematical description includes
some very dangerous systems. For example, the
theorem applies to the JAS-39 airplane (the SAAB
Gripen), which crashed on landing in 1989 in one
of its first test flights. Figure 1 shows a video
frame from the crash. Fortunately, the pilot sur-
vived, but the airplane was lost and its develop-
ment program substantially delayed.

The theorem also applies to the Chernobyl
nuclear plant, shown in Figure 2 as it appeared
shortly after its accident in 1986. We are all famil-
iar with the consequences of that accident—
hundreds of people dead, hundreds of thou-
sands evacuated, and hundreds of millions of
dollars in cleanup costs.

These and other examples dramatize the con-
trast between elegant mathematical statements
and the real physical systems that they purport
to describe. I have selected these two examples
because both catastrophes involve explicit,

traceable responsibilities of control systems. We will take a
closer look at those responsibilities later.

My point is this: As society permits control engineers to
operate more such dangerous systems, we who teach
those engineers and fashion their tools cannot hide from
responsibility under a cloak of mathematics. We dare not
instill the notion that mathematical rigor is the only goal to
strive for in control. We must also instill respect for the
practical, physical consequences of control, and we must
make certain that its underlying principles are taught
clearly and well.

I want to explore this point by reviewing some basic facts
about unstable plants. Again, we will consider unstable to be
synonymous with dangerous, even though this is not all in-
clusive. I want to review these facts:

• unstable systems are fundamentally, and quantifiably,
more difficult to control than stable ones

• controllers for unstable systems are operationally
critical

• closed-loop systems with unstable components are
only locally stable.

These facts should be well known to all of us, but as we
will see, they are not always taken to heart.

August 2003 IEEE Control Systems Magazine 13

Basic Facts About Unstable Plants
• Unstable systems are fundamentally, and quantifiably,

more difficult to control than stable ones.
• Controllers for unstable systems are operationally

critical.
• Closed-loop systems with unstable components are only

locally stable.

Figure 1. Gripen JAS39 prototype accident on 2 February 1989. The pilot
received only minor injuries.
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Fact 1: Fundamental,
Quantifiable Control Difficulty
One of the best-known examples of instability is the inverted
pendulum, or the “broomstick balancing problem.” Those of
us who learned our craft in the 1950s and 1960s know this
problem well, either through the little cart experiments that
appeared during those years in various university labs
around the world or through textbook examples and simula-
tions. Recall that this problem was motivated by the space

race. Control engineers had to learn how to balance rockets
on top of their plumes on their way to earth orbit. It is still an
important problem today, in the post-Challenger era, as mod-
ern boosters, now built in several countries around the
world, become more difficult to balance.

I bring up the inverted pendulum because it nicely illus-
trates our first fact. The illustration is this: I can obviously
balance an ordinary stable pendulum without difficulty. I
can also easily balance a long inverted pendulum, even in
front of a room full of people. However, I find it more difficult
to balance a shorter inverted pendulum, and I find it impos-
sible to balance a very short one. You have probably tried
this yourself. The exact lengths you can balance might be
different, but the trend will be the same.

Certainly the theorem just cited has an explanation for
this illustration hidden in it somewhere, and we could try to
extract that explanation using all the modern machinery at
our disposal. Perhaps we could compute some minimum H∞

norms or even some minimum structured singular values
achievable by human controllers. Of course, in our calcula-
tions, we would need to pay due attention to the inherent
handicaps of such controllers, such as reaction time,
neuromuscular lags, limb inertias, and many other uncer-
tainties covering the fact that humans, and most everything
else in the physical world, are not finite dimensional, linear,
and time invariant.

The Bode Integrals
I will try to explain these observations in the frequency do-
main the way Hendrik Bode might have done it. It turns out
that such an explanation is insightful, plain, and clear and is
therefore preferable to many modern ones.

First, note that the difference between balanc-
ing long sticks and short sticks has to do with the
location of the unstable mode. This is obvious
from the linearized equations of motion of the
stick. Under the simplifying assumption that all
mass is concentrated at the end of the stick, these
equations show an unstable pole at g L/ , where
g denotes the acceleration of gravity and L de-
notes length. Divergence becomes more rapid as
L decreases.

A frequency domain quantification of control
difficulty in the face of such changing instabili-
ties is captured by the Bode integrals (see
sidebar). At the risk of sounding dogmatic, I be-
lieve that every control theoretician and every
control engineer should know these integrals
and understand their meaning. Unfortunately,
we have not always taught them well.

My own background illustrates this last obser-
vation. You can judge for yourself, using your own
background. During my entire control education
as an undergraduate and graduate student in the
1960s, I ran across only the first integral, only
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Figure 2. Chernobyl nuclear power plant shortly after the accident on 26 April
1986.

Bode Integrals

The first integral applies to stable plants and the sec-
ond to unstable plants. They are valid for every stabi-
lizing controller, assuming only that both plant and

controller have finite bandwidths. In words, the integrals
state that the log of the magnitude of sensitivity function of a
SISO feedback system, integrated over frequency, is con-
stant. The constant is zero for stable plants, and it is positive
for unstable ones. It becomes larger as the number of unsta-
ble poles increases and/or as the poles move farther into the
right-half plane. (Technically, we must count all unstable
poles here, including those in the compensator, if any.)
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once, and only in an optional reading of an unassigned chap-
ter in one of the classical textbooks. This integral surfaced for
me for the second time in the mid 1970s, referenced in a paper
by Isaac Horowitz titled “On the Superiority of Transfer Func-
tions over State-Variable Methods. . . .” It appeared as a per-
spectives paper in IEEE Transactions on Automatic Control
amid a certain amount of controversy [2].

The second integral did not surface for me until 1983, in a
talk by Jim Freudenberg at an IEEE Conference on Decision
and Control in San Antonio [3]. If memory serves, someone
pointed out at the time that this result was “just a version of
Jensen’s theorem,” well known in mathematics for a long
time. Perhaps this historical reference reduced the value of
the result in the minds of some listeners, but it should not
have, because the integral explains so much about the diffi-
culties of controlling unstable systems.

A Bode Integral Interpretation
I like to think of Bode’s integrals as conservation laws. They
state precisely that a certain quantity—the integrated value
of the log of the magnitude of the sensitivity function—is
conserved under the action of feedback. The total amount
of this quantity is always the same. It is equal to zero for sta-
ble plant/compensator pairs, and it is equal to some fixed
positive amount for unstable ones.

Since we are talking about the log of sensitivity magnitude,
it follows that negative values are good (i.e., sensitivities less
than unity, better than open loop) and positive values are bad
(i.e., sensitivities greater than unity, worse than open loop).
So for open-loop stable systems, the average sensitivity im-
provement a feedback loop achieves over frequency is ex-
actly offset by its average sensitivity deterioration. For
open-loop unstable systems, things are worse because the
average deterioration is always larger than the
improvement. This applies to every controller,
no matter how it was designed. Sensitivity im-
provements in one frequency range must be paid
for with sensitivity deteriorations in another fre-
quency range, and the price is higher if the plant
is open-loop unstable.

It is curious, somehow, that our field has not
adopted a name for this quantity being con-
served (i.e., the integrated log of sensitivity
magnitude), to put it on a par with some of the
great quantities of physics such as mass, mo-
mentum, or energy. But since it has not, we are
free to choose a name right now. Let me propose
that we simply call it dirt. It is stuff we would
rather not have around; the less we have, the
better. I want to choose this name because it
lets me liken the job of a serious control de-
signer to that of a ditch digger, as illustrated in
Figure 3. He moves dirt from one place to an-
other, using appropriate tools, but he never gets
rid of any of it. For every ditch dug somewhere,

a mound is deposited somewhere else. This fact is most evi-
dent to the ditch digger, because he is right there to see it
happen.

In the same spirit, I can also illustrate the job of a more ac-
ademic control designer with more abstract tools such as
linear quadratic Gaussian (LQG), H∞ , convex optimization,
and the like, at his disposal. This designer guides a powerful
ditch-digging machine by remote control from the safety of
his workstation (Figure 4). He sets parameters (weights) at
his station to adjust the contours of the machine’s digging
blades to get just the right shape for the sensitivity function.
He then lets the machine dig down as far as it can, and he
saves the resulting compensator. Next, he fires up his auto-
matic code generator to write the implementation code for
the compensator, ready to run on his target microprocessor.
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Figure 3. Sensitivity reduction at low frequency unavoidably
leads to sensitivity increase at higher frequencies.
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Figure 4. Sensitivity shaping automated by modern control tools.



He downloads that code automatically to the microprocessor
and hits the power-on button on the control system. Indeed,
this entire process can become so automatic and insulated
that the designer may never look at what has actually hap-
pened to his control loop, and all too often the power-on cre-
ates a rude surprise.

Available Bandwidth
Many rude surprises that occur in automated design scenar-
ios have to do with excessive bandwidth. The designer un-
wittingly allows the machine to dig too deeply, piling up dirt
at high frequencies where it cannot be supported.

The notion that dirt piled at high frequencies needs sup-
port is not taken seriously enough in the theoretical commu-
nity, even today. For example, an argument is sometimes
made that the Bode integrals are not really restrictive be-
cause we only seek to dig holes over finite frequency bands.
We then have an infinite frequency range left over into which
to dump the dirt, so we can make the layer arbitrarily thin.
The weakness of this argument is evident from standard
classical theory. A thin layer, say with ln| |s = ε, requires a
loop transfer function whose Nyquist diagram falls on a
near-unit circle, centered at (– )1 0+ j with radius ≈ ( – )1 ε ,
over a wide frequency range. This means that the loop can-
not simply attenuate at high frequencies but must attenuate
in a very precise way. The loop must maintain very good fre-
quency response fidelity over wide frequency ranges.

But a key fact about physical systems is that they do not
exhibit good frequency response fidelity beyond a certain
bandwidth. This is due to uncertain or unmodeled dynamics
in the plant, to digital control implementations, to power lim-
its, to nonlinearities, and to many other factors. Let us call
that bandwidth the “available bandwidth,” Ωa , to distinguish
it from other bandwidths such as crossover or 3-dB magni-
tude loss. The available bandwidth is the frequency up to

which we can keep gk j( )ω close to a nominal design and be-
yond which we can only guarantee that the actual loop mag-
nitude will attenuate rapidly enough (e.g., | |gk < δ /ω2). In
today’s popular robust control jargon, the available band-
width is the frequency range over which the unstructured
multiplicative perturbations are substantially less than unity.

Note that the available bandwidth is not a function of the
compensator or of the control design process. Rather, it is
an a priori constraint imposed by the physical hardware we
use in the control loop. Most importantly, the available
bandwidth is always finite.

Given all this, Bode’s integrals really reduce to finite
integrals over the range 0 ≤ ≤ω Ωa , i.e,
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All the action of the feedback design, the sensitivity im-
provements as well as the sensitivity deteriorations, must
occur within 0 ≤ ≤ω Ωa . Only a small error ( )δ occurs out-
side that range, associated with the tail of the complete
integrals. Since the details of this tail are not guaranteed by
the design, the error can be either positive or negative. The
design only guarantees that it will be small.

As an aside, you probably know that other constraints
imposed by right-half-plane zeros also give rise to finite
integrals, although in different variables [4]. I did not
choose to use these additional integrals here because they
still require infinite available bandwidth, and I believe that
finiteness of available bandwidth is a more significant con-
cept in control than nonminimum phaseness, even though it
is not nearly so elegant.

An Explanation
of the Broomstick
These last integrals bring us to the point
where we can explain the broomstick balanc-
ing illustration in a Bode-like way. First, what
is the available bandwidth of the feedback
loop in that experiment? Looking at the plant
alone, it is fairly high. The stick is stiff, air drag
is negligible, and little else prevents the stick
from moving as required. The compensator,
however, is another matter. Its physical imple-
mentation by a human operator has many
complex limitations associated with percep-
tion, computation, and actuation of limbs.
Many years of study and experimentation
have gone into the characterization of these
limitations, especially for piloting tasks in mil-
itary airplanes. Since we obviously cannot go
through all that here, let us simply agree that
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Figure 5. Sensitivity constraints as a function of broomstick length.



the compensator is good for a frequency range up to ≈2 Hz
(say, 10-15 rad/s) and that its control strategy is to keep
sensitivity as small as possible over that range (i.e., keep
the loop’s Nyquist diagram as far away from the critical
point as possible everywhere).

The curves in Figure 5 show how well the closed-loop
system will perform. These curves are sim-
ply restatements of the finite Bode inte-
gral, with sensitivity assumed equal to a
constant minimum achievable value over
0 ≤ ≤ω Ωa and equal to unity elsewhere.
The minimum achievable value is an expo-
nential function of the ratio of unstable pole to available
bandwidth ( / Ωp a )and with p given by g L/ , it is an explicit
function of the broomstick length. Notice that a dramatic in-
crease in sensitivity occurs below a foot and a half. These
large sensitivities put the loop close to the critical point, and
even minor imperfections in the implementation will cause
instability. That, quite simply, is the reason we humans have
trouble balancing short sticks, and other controllers with
similar available bandwidth limits have trouble as well. This
reason follows directly from the most fundamental conser-
vation laws of feedback, Bode’s integrals, and needs none of
our modern mathematical machinery. More importantly,
none of the modern results overcome these limitations.
They can (and do!) hide them from us, but they do not re-
move them.

The X-29 Airplane Story
Although the broomstick-balancing illustration itself is
only a toy, it represents some very serious physical sys-
tems with similar dynamics. In addition to the launch
booster analogy already mentioned, there is also a direct
analogy to unstable airplanes. As an example of the latter,
I would like to tell a story about the X-29, the forward-
swept-wing research airplane shown in Figure 6.

This airplane was built to demonstrate basic
aerodynamic performance improvements that
might be gained from new composite materials
tailored specifically for aerodynamic efficiency.
The wings are swept forward instead of aft, so
that bending enhances lift instead of decreasing
it at high angles of attack; a large canard surface
is placed close in to take advantage of favorable
interactions with the wing; and there are several
other features as well. Once demonstrated, these
technologies will make their way into next-gener-
ation airplanes.

The airplane was built by Grumman Aircraft
Company, under U.S. Air Force, DARPA, and
NASA sponsorship, and underwent successful
flight tests for several years. Honeywell supplied
the control hardware and software. Control laws
were designed at Grumman, with supporting de-
sign activity at Honeywell, as well as several
other places.

Although the airplane’s controls were not a major focus
of the flight demonstration, they are of interest here be-
cause they illustrate how extreme our worship of formal
methods has become.You see, all of the various control de-
sign teams used modern digging machines early in the de-
sign process. As a result, we were well insulated from the

fundamental difficulties imposed by the airplane’s violent
open-loop instability. We discovered only at the last mo-
ment that the vehicle was almost too unstable to control
with the given hardware.

I want to relate this story by talking first about what
makes the airplane unstable, then about the hardware fea-
tures that restrict available bandwidth, and finally, I will put
these together with Bode’s integral to show the airplane’s
fundamental control limitations.

Static Instability
An airplane is open-loop unstable when its center of pres-
sure (cp, the effective point of action of lift forces) is located
ahead of its center of gravity (cg). Since lift forces grow in di-
rect proportion to pitch (nose up or down) attitude, any ini-
tial pitching motion changes lift, which acts through the cp –
cg offset to produce moments in the same direction, and the
attitude diverges. In aeronautical circles, this condition is
called static instability. The associated linearized dynamics
look very much like broomstick-balancing equations. There
are two roots—one stable, one unstable—approximately
equal in magnitude.

Static instability does not happen arbitrarily. It is deliber-
ately designed into an airplane by locating lifting surfaces
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Figure 6. NASA X-29 forward-swept-wing aircraft (photo courtesy of NASA).

We will consider unstable to be
synonymous with dangerous.



and distributing mass appropriately. In the years before
full-authority automatic flight controls, most airplane de-
signs constrained the placement of these elements to ensure
stability over all flight regimes and all loading conditions.
(The Wright brothers’ airplane is a notable exception.) To-
day, however, when automatic controls are accepted and
trusted in so many applications, there are important benefits
to be gained by making the basic design unstable. For in-
stance, note that a stable airplane requires a tail to balance
the moment produced by lift acting through the cp – cg offset.
The force produced by the tail is down, opposing the lift and
making the overall configuration aerodynamically less effi-
cient. The airplane also needs to carry the weight of the tail,
which reduces payload. The less stable an airplane is, the
smaller these performance and weight penalties. There are
also other reasons for wanting instability, having to do with
maneuverability and speeds of command response.

In the case of the X-29, the benefits of instability were de-
sired in the transonic and supersonic flight regimes, so the
airplane was designed to be modestly unstable in those re-
gimes. Unfortunately, there is a basic aerodynamic phenom-
enon that moves the center of pressure of a lifting surface

dramatically aft as speeds go from sub- to supersonic. As a
result, the X-29’s slight instability at supersonic speeds
turns into a much more dramatic instability at subsonic
speeds. Indeed, the airplane’s real pole is as large as +6 rad/s
in some flight regimes.

Recalling the broomstick’s formula ( / )p g L= , flying
this airplane manually corresponds to balancing a 1-ft-long
stick. It is not something we can expect a pilot to do without
automatic assistance, at least for very long.

X-29 Available Bandwidth
As with the broomstick, control difficulties associated with
the X-29’s unstable pole should not arise merely because the
pole is large. Rather, they should arise if the pole is large
compared with available bandwidth. Some of the major
hardware elements in the control loop that limit this band-
width include the following:

• Sensors: rate gyros and accelerometers, used for inner-
loop stabilization. Their bandwidths, measured in the
usual 3-dB-gain sense, are typically 120 rad/s or more.

• Control processors: digital computer systems sampling
sensor data and computing surface commands at 80
Hz. This update rate can pass signals with good fidelity
up to 30-40 rad/s (two to three samples per radian).

• Actuators: high-pressure hydraulic systems with ser-
vos to position each aerodynamic control surface. For
the pitch axis, control surfaces include the canard, in-
board and outboard flaperons along the wing, and
strakes at the tail. The servo bandwidths, again mea-
sured by 3-dB gain, are approximately 20 rad/s. Basi-
cally, each of the servos is a position feedback loop
around a hydraulic ram (an integrator). This gives a
dominant first-order-lag response that retains its
characteristics up to perhaps 70-80 rad/s, where valve
dynamics, fluid compressibility, and local structural
dynamics begin to take effect. The bottom line is that
the available bandwidth of actuators is approximately
70 rad/s, at least for small signals.

• Aerodynamics: flow conditions around the airplane
that map its geometric configuration (e.g., net orienta-
tion and control surface positions) into forces and mo-
ments. At low frequencies, this map is algebraic and
well known, but because air itself has mass and mo-
mentum, the map becomes dynamic and poorly known
on time scales comparable to characteristic length di-
vided by velocity. For a 2-ft surface traveling at 200 ft/s,
that time scale is 0.01 s, so the available bandwidth for
aerodynamics is approximately 100 rad/s.

• Airframe: the mechanical structure linking the attach-
ment points of actuators to the attachment points of
sensors. (These are the important structural points
affecting control. Other disciplines are, of course, in-
terested in additional attachment points, such as
where the wings are attached, where the pilot sits,
etc.) The structure is rigid at low frequencies, but it
begins to bend and flex dramatically at higher fre-
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Figure 7. Prototype X-29 sensitivity function.

Figure 8. Minimum X-29 sensitivities.



quencies. Typical fighter-sized airplanes have a first
fuselage bending mode at ≈ 7.0 Hz (40 rad/s). The fre-
quency of this mode, as well as its mode shape and
damping characteristics, move around substantially
with mass distribution (fuel, payloads) and with dy-
namic loading (maneuvers). This makes it very diffi-
cult to maintain good frequency response fidelity
beyond the first mode frequency.

This list shows that the most severe limitation on avail-
able bandwidth for the X-29 is approximately 40 rad/s and
comes from the airplane’s mechanical structure and from
the sampling rate of its computers. I have elected to de-
scribe the various other items, at least briefly, to emphasize
the point that real physical systems have a multitude of limi-
tations on available bandwidth, not just one or two that can
be easily pushed out or removed. We cannot simply ignore
them, as we often do in formal theories. Instead, we should
fashion theories to clearly expose the consequences of
these limitations, and we should honestly tell ourselves and
our employers what the consequences are.

As mentioned earlier, in the initial X-29 designs, the vari-
ous design teams used some of the formal digging ma-
chines, which hide these consequences. Not until late in
the design process, and not without heated arguments
among designers, did we all agree that they are indeed real
and unavoidable.

X-29 Limitations
Using Bode’s integral, the limitations are easy to demon-
strate. We have a plant with an unstable pole, p = 6 rad/s, and
with an available bandwidth, Ωa = 40 rad/s. We want to
achieve a sensitivity function shaped approximately like the
prototype shown in Figure 7. This prototype has small sensi-
tivity at low frequencies, rising with a +1 slope up to Ω1. It
then stays flat up to Ωa , so as to pay as small a penalty as
possible, consistent with Bode’s integral. Finally, it returns
to unity (0 dB) beyond Ωa . A formula for the smallest sensi-
tivity penalty, smin, is easy to derive directly from the integral
and is also shown in the figure.

Some smin curves based on this formula are shown in Fig-
ure 8. We see that the penalty level rises as the airplane be-
comes more unstable and also as the frequency Ω1, up to
which we want good performance, increases. The design
point for the X-29 is shown at p = 6 rad/s and Ω1 3= rad/s.
The resulting smallest sensitivity penalty is ≈ 1.75. Classical
designers will immediately recognize this to be marginal be-
cause traditional phase margins will not be satisfied. These
margins are given in terms of smin by well-known formulas
[e.g., PM s= −2 1 21sin ( / )min ]. Boundaries for standard mili-
tary flight control specifications, a 45°-phase margin and a
6-dB gain margin, are shown in the figure.

Notice that we have not actually done any design work.
We have made no reference to design methods or to big
ditch-digging machines. Instead, we have just used a ba-
sic Bode integral calculation to determine that the situa-
tion is marginal.

To confirm that the situation is marginal, Figure 9 shows
a Bode diagram of a loop transfer function corresponding
to a realizable version of the prototype shape in Figure 7.
This realizable version was found by taking a fourth-order
approximation of Figure 7 (basically rounding the cor-
ners), selecting one free parameter (the new smin) to satisfy
Bode’s integral, and then solving explicitly for the loop
transfer function (i.e., gk s s s( ) ( ) –= −1 1). Note that the re-
sulting loop is well rolled off at the 40-rad/s available band-
width and that 35° is the largest phase margin achieved by
the prototype.

Based on what we have just shown, no controller can
make smin smaller under the given constraints. Thus, we
should not be surprised that no acceptable controller was
ever found, even with several design teams working on the
problem. Indeed, the airplane flies today only because spe-
cial specification relief was granted. As described in [5],
the airplane’s stability margins were actually measured ex-
plicitly in flight. Two curves from these flight tests are
shown as Bode diagrams in Figure 10, one with slightly dif-
ferent control gains than the other. Note the remarkably
close correspondence between the Bode-integral-derived
prototype and the actual final flight control loop.

Based on this experience with the X-29, it is unlikely that
airplanes now being developed, such as the Saab JAS-39, the
Advanced Technology Fighter (ATF), and the National Aero-
space Plane (NASP X-30), will be so violently unstable. A
good rule of thumb, seen from Figure 8, is that available
bandwidth should exceed the airplane’s unstable pole by at
least a factor of ten.
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Figure 9. Prototype Bode diagram for the X-29.



Fact 2: Operationally
Critical Controllers
We now turn to the second fact about unstable/dangerous
systems that I want to emphasize, namely, that controllers
for these systems are operationally critical. Controllers
must work properly for the systems to be safe. In the case of
airplanes, such controllers are called “flight critical.”
Bluntly stated, this means that if the controller fails, you
eject or you die.

Although this may be obvious, it is well worth some dis-
cussion. In effect, today’s control engineers working with
dangerous applications must design and build control sys-
tems that are so nearly perfect that we are willing to stake
our fortunes and sometimes our lives on them.

More often than not, the backbone of a control system in-
volves electronic equipment, and it is safe to say that most
of us have had experiences with such equipment—with our
TVs, stereo systems, personal computers, etc.—that do not
encourage excessive risk taking. Even the very best equip-
ment fails at a rate of 10−3 to 10−4 failures per operating hour.
The job of control hardware designers, therefore, is to build
very reliable systems out of unreliable components. This
can be done with careful use of redundant elements ar-
ranged in architectures that let the overall hardware/soft-
ware system maintain its function even though components
within it have failed. Indeed, an entire engineering
subspecialty has evolved to handle such design problems. It
is not my intent to cover much of this subspecialty here, but
we should be aware of some of its basic concepts and issues.
Certainly we need to recognize that this work is every bit as
important to control as are the control theories and design
tools that are our own specialty.

Perhaps the most basic architectural concept for building
reliable systems out of unreliable components is shown in
Figure 11. We simply replicate the entire hardware set of a
control loop (sensors, processors, and input/output devices)
in several channels and arrange for some sort of voting logic
to keep only good channels in control. A simple majority-vot-
ing scheme suggests that it takes2 1f + channels to still be op-
erational after f failures. This is because there are still f +1
channels that agree and can outvote the f failed ones. So if a
system must be operational after one failure (so-called
fail-op), we get a three-channel or triplex architecture. If oper-
ation is required after two arbitrary failures (fail-op squared),
we get a five-channel architecture, and so on. (In practice, it is
customary to claim fail-op squared capability even with only
four channels. This relies on an unstated assumption that the
two failures are not simultaneous and that the first has been
isolated before the second occurs.)

The statistical reliability of the architecture also in-
creases with the number of channels, as given by the formu-
lae in the figure.Qc is the failure rate of a channel andQ is the
overall failure rate of the implementation.
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Figure 10. X-29 flight data (courtesy Mr. J. Gera, NASA).

Figure 11. Basic redundant control architecture.



Voting
Before this basic concept sinks in too firmly, let
me caution that the picture presented in Figure 11
hides most of the difficulties and issues that make
redundancy management a challenging engineer-
ing discipline. In particular, the figure makes refer-
ence to “some sort of voting scheme” to
distinguish good channels from bad. The scheme
is not shown, but consider how it might be built.
The basic idea is to compare outputs of various
channels and to proceed with the majority. How-
ever, the outputs are not discrete yes-or-no votes,
but are digital words, 8 to 12 bits long. In separate
channels, the words will be different because the
sensors read different signals and processors run
at different rates, and perhaps for other reasons
as well. So we cannot simply vote, but must make
comparisons against preset thresholds instead.

This raises the first big issue: How large must the thresh-
olds be? Consider a case where each processor imple-
ments a control law that includes a sophisticated control
algorithm—say, an adaptive law with explicit identification
(e.g., parameter estimates evolving according to
d t eTφ φ/ d = +L). Each channel executes this law with dif-
ferent noisy sensor data. The channel differences will then
consist of free integrations driven by noise, and from our
first course in stochastic processes, these differences be-
have like Brownian motion and will exceed any particular
threshold infinitely often. This is not good for voting!

Note that the fancy control law is not the culprit here. The
same problem arises for any algorithm with free integrations
or unstable dynamics, as well as for control laws with mode
logic, saturation protections, and other discrete switches. It
arises with any control algorithm for which small input differ-
ences can produce large output differences.

A common solution to this voting issue is to utilize
cross-channel communication to “equalize” all channels
(e.g., force them to synchronize clocks and to process iden-
tical data). Voting then reduces to simple bit-by-bit compar-
isons. Unfortunately, this solution only peels back the first
layer of difficulty, because the communications hardware
needed to equalize channels must also be very reliable. This
requires still more levels of redundancy, fortunately re-
stricted to fewer components [6]. Even with appropriately
reliable communications, however, there remain certain
failures that cannot be detected, namely those that produce
identical symptoms in each channel.

Failures with identical symptoms are called “generic
faults.” At first glance they would appear to be unlikely
(two or more identical failures at the same time), until we
realize that undiscovered design errors in hardware or
software have precisely this characteristic. In fact, the un-
deniable possibility of such errors has caused most
bit-by-bit synchronous architectures to also carry one or
more backup channels, using different control laws, differ-

ent hardware, and different software. The X-29, for exam-
ple, has a triplex digital system as its primary controller,
but carries three backup channels with very basic control
laws implemented in analog electronics. The Space Shuttle
has a quadruplex digital system as its primary and a fifth
dissimilar digital channel as a backup.

Heterogeneous Redundancy
As an alternative to identical primaries with dissimilar back-
ups, other architectures use dissimilar primary channels—dif-
ferent hardware, software, and control laws. Dissimilar
channels make the voting problem more difficult (how to set
thresholds?), but they alleviate problems with generic faults.

This alternative, incidentally, is one in which some of us
have placed a lot of trust. It is used on the Airbus A320 trans-
port aircraft, shown in Figure 12. This airplane was certified for
commercial service in 1989 and is now flying regular routes in
Europe and the United States. Although the hardware architec-
ture of the A320 does not fit exactly into the prototypes we
have looked at, it basically consists of four dissimilar chan-
nels. Two channels are built out of one brand of microproces-
sor, and two others are built out of a second brand. The
software in each of these similar hardware channels is differ-
ent, developed by different design teams using different pro-
gramming languages. Unfortunately, I do not know much
about the control laws themselves, but presumably they are
similar enough to permit reasonably tight voting thresholds.

In the context of this article, it is important to point out
that the A320 is not statically unstable. However, it is a
fly-by-wire airplane, which means that there are no mechan-
ical connections between the pilot’s input device (a side-
stick hand controller, not the traditional control wheel) and
the main control surfaces. Only electronic connections exist
through the control computers. If these connections fail, the
airplane can continue to cruise and can be brought down
with the aid of a low-authority mechanical trim system. On
the other hand, complete loss of control functions during
critical phases of autoland (e.g., just before touchdown)
could well be catastrophic.
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Figure 12. Airbus A320.
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So in the spirit of my discussions so far, the A320 qualifies
as a dangerous system that we should treat with appropri-
ate respect. And the A320 is only the beginning. Both Boeing
and McDonnell Douglas expect to build their next trans-
ports as fly-by-wire also. It is perhaps comforting to know
that neither of these manufacturers expects to build stati-
cally unstable commercial transports in the immediate fu-

ture. Designers at Boeing have told me that un-
stable fly-by-wire transports are not likely
unless they are supersonic. The argument is the
same as for the X-29. Relaxed stability for aero-
dynamic efficiency at supersonic speeds means
pronounced instability at subsonic speeds.

Paper studies of new supersonic transports
are ongoing but are not likely to produce com-
mercial vehicles until the next century. But the
next century is not far away! Engineers who will
design the controls for those vehicles are being
trained by us right here today. I, for one, still ex-
pect to be traveling when these new vehicles
come online, so I have a vested interest that we
teach the fundamentals well, not just the formal
tools and the mathematics!

Fact 3: Local Stability
Finally, let us turn to the third fact I want to re-
view: Closed-loop systems with unstable com-
ponents are only locally stable. This should be
well known to all of us. An unstable system can-
not be stabilized globally with bounded control
authority. For linear systems, this follows di-
rectly from the equations. Consider motion
along an unstable eigenvector. If the control sig-
nal is constrained to have a bounded compo-
nent along that vector, then there exist initial
conditions large enough to keep the state-deriv-
ative positive, and the system diverges. This ar-
gument holds both for magnitude limits on the
controls and for rate limits.

An example of local stability due to rate lim-
its is given in Figure 13. This figure shows re-
sponses of the prototype X-29 controller from

Figure 9 implemented with rate limits and excited by several
different step commands. We see that small commands give
linear responses. There is about 100% overshoot, consis-
tent with the (unavoidably) large sensitivity of the design.
As commands increase, the control rate saturates, and with
very little additional command, the system diverges. Please
keep the general characteristics of these traces in mind—
the triangular waveform of the control at the edge of insta-
bility and finally the dramatic divergence with control rate
fully saturated. Later I will present some very similar plots,
only much more frightening.

For control engineers, local stability means that special
care must be taken to avoid excessive commands (i.e., limits
on operator inputs). We must also verify that worst-case up-
sets due to external disturbances do not drive the closed-
loop system out of its region of attraction.

These observations bring us back to our first example,
the Saab JAS-39 airplane in Figure 1. This airplane was stati-
cally unstable, with divergence rates about half as severe as
the X-29. Like the X-29, it carried a triplex digital control sys-
tem with three analog backup channels. As one might ex-
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Figure 13. Simulation traces for the X-29 demonstrating rate limit constraints.
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pect, extensive investigations have been going on ever since
the airplane’s accident, with final official conclusions still
not out. However, various reports in the media suggest that
the control hardware did not malfunction. Instead, unstable
behavior of the control laws in the face of surface rate limits
is being cited as the cause. The control laws have already
been redesigned to cure the problem (see [7], for example).

Heuristically, we can think of rate limits as acting to reduce
available bandwidth for large signal levels (i.e., the controls
can only follow position commands whose frequency-ampli-
tude product is less than the rate limit). This suggests that the
effects of rate limits can indeed be alleviated by redesigning
control laws for lower assumed available bandwidth. Accord-
ing to Bode’s integrals, however, such redesigned controllers
will achieve poorer sensitivity performance, especially for un-
stable problems. So the improvements that can be gained for
the JAS-39 will necessarily be limited.

Once again, it is evident that unstable/dangerous sys-
tems must be treated with more than casual respect.

The Chernobyl Story
Finally, to make this point most dramatically, let me recount
the story of the nuclear accident at Chernobyl (Figure 2). On 28
April 1986, news came out of Ukraine that a nuclear power
plant had destroyed itself two days earlier and had released
significant amounts of radioactive contaminants over a wide
area. Short of nuclear war or impending long-term climate
changes, this kind of accident certainly looms large in the pub-
lic mind as one of the more serious threats to our well being.

Whether we choose to recognize it or not, control played
a major role in that accident. The plant’s hardware did not
fail. No valve hung up, no electronic box went dead, and no
metallurgical flaw caused a critical part to break. Instead,
the reactor control system systematically drove the plant
into an operating condition from which there was no safe
way to recover. This is true, at least, if we count the control
system’s hardware, its human operators, and its operating
policies as part of the system.

The Plant
To tell this story, we need a few facts about the plant itself.
The information comes from a seminar given by Herbert
Kouts of Brookhaven National Laboratory summarizing
the accident [8]. I want to emphasize, however, that the
very simplified control interpretations I am about to make
are my own, so the blame for any errors and absurdities is
mine as well.

The plant at Chernobyl consisted of four units, each laid
out as shown in Figure 14. Unit 4 is the one that experienced
the accident. It had a boiling water reactor that took in water
at the bottom and heated it to produce a mixture of water
and steam. The steam was separated in steam drums and
drove conventional turbine-generators to supply power to
the distribution grid. There were two turbines rated at 500
MWe (electrical) each and two complete water/steam flow
circuits through the reactor. The water/steam circuits oper-
ated at about 1,000 psi pressure, with a boiling temperature
inside the reactor of about 540 °F.
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Chernobyl
Events of the Night of 25 April 1986

• 1) Power had been brought down during the previous day to
around 700 MWt, the edge of the legal low-power operating
limit, ready to run the test.

• 2) A switchover was made to different flux detectors, better
suited for power sensing at this low level, which was appar-
ently a standard procedure. During the switchover, how-
ever, the operator neglected to engage the power-hold
mode. This oversight set up the conditions for the accident.

• 3) Without automatic power hold, reactor power dropped
rapidly to 30 MWt. The operator halted this drop and re-
covered to 200 MWt by withdrawing control rods.

• 4) With automatic control of power and manual control of
feedwater, the plant successfully maintained 200 MWt. Be-
cause feedwater flow settings were high, however, the steam
void in the reactor dropped to zero. Lower reactivity was
compensated for by pulling even more control rods. Only six
to eight rods remained in the reactor, far fewer than the mini-
mum number (30) required by operating regulations.

• 5) To avoid automatic shutdown triggered by out-of-
range steam drum and feedwater signals, the operator

disabled the associated automatic scram control cir-
cuits.

• 6) Recognizing excessive feedwater, the operator finally re-
duced pumping rates. The steam void recovered, producing
increased reactivity. Automatic power controls responded
to keep power regulated. This response was rate limited and
barely stable.

• 7) Next, in preparation for the actual intended test, the oper-
ator disabled the automatic scram circuits associated with
turbine trip signals.

• 8) Finally, the test was actually started. Steam was cut to the
test turbine. The steam void began to rise, and the power con-
troller responded by inserting all three available banks of con-
trol rods at maximum rates. This was too little control
authority, applied too slowly. A huge power rise followed, up
to an estimated 300,000 MWt (100 times rated capacity). The
reactor was destroyed. Steam at primary working pressure
was released into the reactor containment chamber. The
1,000-ton cover plate of the chamber blew off, and the entire
radioactive debris was exposed to the environment.



The reactor itself consisted of a graphite core with many
pressure tubes (≈1,600) through which the water flowed to
be boiled. Each tube contained several fuel rods of uranium
oxide that produced the nuclear fission reaction. The gener-
ated thermal power was measured by ion flux devices and
controlled by several banks of control rods, inserted or with-
drawn from the core to moderate the reaction. A second ma-
jor control input was provided by the feedwater pumps,
which regulated flow rates into the bottom of the reactor.

The reason this plant is of interest is that its reactor de-
sign has a so-called positive void coefficient. The void refers
to the ratio of steam to water in the pressure tubes. The void
coefficient refers to the gradient of thermal power with re-

spect to the void. In Chernobyl’s de-
sign, this coefficient is positive at low
power, leading in the linearized sense
to a first-order, open-loop instability.
Heuristically, as more steam fills the
tubes, the reaction becomes stronger
(water is apparently a better modera-
tor than steam). This produces more
steam, which produces more reactiv-
ity, and so it goes.

At nominal operating power, 3,200
MWt (thermal), the positive void co-
efficient is swamped by other effects
and the reactor design is stable. For
this reason, operating policies only
permitted sustained operation above
a minimum power threshold of 700
MWt. Of course, to get the reactor
started and stopped, it had to transi-
tion through the unstable region.

An Experiment
The accident occurred in connection
with an experiment conducted on the
electrical side of the plant. The opera-
tors wanted to evaluate a scheme for
drawing electrical power from a tur-
bine-generator coasting down after a
trip from the main power grid. During
such a trip, electrical power at the
plant is momentarily lost, the reactor
scrams (shuts down) automatically,
and backup diesels are started to re-
supply local electrical equipment at
the plant. The new scheme would go
through this sequence without local
power interruption.

The test was scheduled in con-
junction with a routine reactor shut-
down for maintenance. The intent
was to slowly bring power down into
the 700- to 1,000-MWt range, load the
test turbine-generator with some of

the circulation pumps, cut steam to the turbine, and
scram the reactor.

A summary of the events of that evening is given in the
sidebar. Traces of the last few seconds of this event are
shown at the tail end of Figure 15 and continue on an ex-
panded time scale into Figure 16. We can see a slight steam
void drop as pressure increased momentarily after steam
was cut to the turbine. The steam void then began to build
steadily, the control rods dropped in at maximum rate,
and finally the power rose uncontrollably. Simple
time-to-double calculations approximated from the final
power rise place the reactor’s unstable pole between 1.5
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and 2.0 rad/s, equivalent to a 10-ft broomstick. Again, ex-
cept for signs, these traces are very similar to Figure 13.

Back to the Punch Line
Why have I taken the time to describe these details of the
Chernobyl accident? Certainly I do not want to focus on its
tragic consequences, nor do I want to make a case for
antinuclear advocates. I simply find this accident to be the
most compelling example of blatant disregard for the basic
facts I have restated here. We all claim to know these facts,
to respect them, and to teach them. Yet the operators at
Chernobyl did not appear to know them. Indeed, it can be ar-
gued that the plant’s designers did not know them either.
How else would they be content to write paper regulations
prohibiting operation at low power and not insist on reliable
hardware to enforce such regulations? On at least two occa-
sions, the operators were able simply to shut off critical
safety circuits. Had these shutoffs not been made or not
been possible, there would have been adequate time to
scram the reactor automatically and to save the plant, even
after item 6 of the fateful sequence of events. In redundancy
management terms, this possibility qualifies as a generic
fault, a single design flaw able to defeat the safety of the en-
tire control architecture.

The Chernobyl accident also provides the most com-
pelling motivation I can think of for us to improve the way
we do our job. This reactor control application, as well as
the airplane applications I talked about earlier, illustrate
that society does indeed permit control engineers to op-
erate dangerous systems. The number of such applica-
tions increases steadily. Not all of them have such
dramatic consequences as Chernobyl, but they are dan-
gerous nevertheless. Control designers and operators
appreciate and respect the practical, physical conse-
quences of these applications only to the extent that we,
their teachers, value and instill that appreciation. Unfor-
tunately, our behavior over the past few years at confer-
ences, in our journals, and I suspect also in our lecture
halls, places little value upon it. Instead, our behavior
tends to uphold mathematical rigor as the only virtue to
strive for in control. This trend is incompatible with the
trend in applications.

We must place renewed emphasis on stating and teach-
ing the principles of our subject clearly and well. The appli-
cations out there are simply too serious for us to hide from
responsibility under a cloak of mathematics.

Historical Notes
Much has changed since this article was first presented as
the Bode Prize Lecture in December 1989. Here are some
brief notes of how certain topics in the lecture have
played out:

1) The SAAB JAS-39 accident was indeed attributed to un-
stable oscillations involving actuator saturations.
Control laws were redesigned and retested. The new

design experienced a second accident in August 1993,
for similar causes. Another redesign followed, this
time successful, and the aircraft reached a production
milestone with the delivery of 30 aircraft completed in
1996. A prototype of the USAF F-22 fighter also experi-
enced unstable oscillations in 1992, barely avoiding
loss of the aircraft.

2) The X-29 research aircraft completed its flight test pro-
gram without incident. It was retired in 1992 after 374
test flights.

3) After a shaky start, the Airbus A320 fly-by-wire commer-
cial transport has accumulated a strong record of
safety and performance and continues to be in service
worldwide. It has been joined by Boeing’s 777, also
fly-by-wire, with a similar strong safety and perfor-
mance record. No supersonic transports are foreseen
in the near future. Design studies during the late 1990s
showed their economics to be unattractive using cur-
rently projected material and propulsion technologies.

4) The sarcophagus at Chernobyl continues to stand as a
stark reminder of the need to “respect the unstable.”
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