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1
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0
f (r,x,0)dr. (AV)
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= ε fav(Xt), fav(x) =

1
T

∫ T

0
f (r,x,0)dr. (AV)

Theorem 1 [Khalil’s book, Theorem 10.4] Let f (t,x,ε) and its partial derivatives with re-

spect to (x,ε) up to the second order be continuous and bounded for (t,x,ε) ∈ [0,∞)×
D0× [0,ε0], for every compact set D0 ⊂ D, where D ⊂ R

n is a domain. Suppose f is

T-periodic in t for some T > 0 and ε is a positive parameter. If the origin x= 0∈ D is an

exponentially stable equilibrium point of the average system (?? ), then there exist positive

constants ε∗ and k such that, for all 0< ε < ε∗, (?? ) has a unique, exponentially stable,

T-periodic solution XT,ε
t with the property ‖XT,ε

t ‖ ≤ kε.
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An Averaging Example

+ +

ẋ = −sin(ωt)(x+sin(ωt))2

= −x2sin(ωt)
︸ ︷︷ ︸

ave = 0

−2xsin2(ωt)
︸ ︷︷ ︸

ave = 1
2

−sin3(ωt)
︸ ︷︷ ︸

ave = 0

ẋave=−xave
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Theorem 2 By Theorem 1, For sufficiently large ω, there exists a locally exponentially

stable periodic solution x2π/ω(t) such that

∣
∣
∣x2π/ω(t)

∣
∣
∣≤ O

(
1
ω

)

, ∀t ≥ 0.



Theorem 2 By Theorem 1, For sufficiently large ω, there exists a locally exponentially

stable periodic solution x2π/ω(t) such that

∣
∣
∣x2π/ω(t)

∣
∣
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1
ω

)

, ∀t ≥ 0.

Corollary 1 For sufficiently large ω, there exist M,m> 0 such that

|x(t)| ≤ M|x(0)|e−mt+O

(
1
ω

)

, ∀t ≥ 0.



Basic Idea of Extremum Seeking



Arbitrary Unknown Quadratic Function

+ +

sgnk=−sgnf ′′

θ̃ = θ̂−θ∗

dθ̃
dt

= kasin(ωt)

[

f ∗+
f ′′

2

(
θ̃+asin(ωt)

)2
]



f ( (t))

f
*  - unknown!
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dθ̃ave

dt
=

<0
︷︸︸︷

k f ′′ a2

2
θ̃ave



dθ̃ave

dt
=

<0
︷︸︸︷

k f ′′ a2

2
θ̃ave

Theorem 3 There exists sufficiently large ω such that, locally,

|θ(t)−θ∗| ≤ |θ(0)−θ∗|e
k f ′′a2

2 t
+O

(
1
ω

)

+a, ∀t ≥ 0.



Chronology of Extremum Seeking



Leblanc, 1922 electric railways

Russia, 1940s many applications and attempts at theory

Draper & Li, 1951 SI engines (spark timing)

1960s last wave of efforts towards theory

MK, late 1990s
stability proof and implementation on axial-flow com-

pressors and gas turbine combustors

2000s
numerous applications, including aerodynamic flow

control, wind turbines, photovoltaics, fusion

MK and others, late 2000s
mobile robots and UUVs in GPS-denied environments;

fish and bacterial locomotion

MK and others, 2010s non-cooperative games
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Extremum Seeking for

Multivariable Dynamic Systems



ES for multivariable static map

×

✲
θ

+ K
s

❄

✲

S(t) M(t)

y

Ĝθ̂
✛ ✛ ✛✲

Q(·)

Q(·) = unknown map, y = measurable scalar, θ = [θ1,θ2, · · · ,θn]
T = input vector
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ai 6= 0, K = positive diagonal matrix

ωi/ω j rational, ωi 6= ω j and ωi +ω j 6= ωk for distinct i, j, and k



ES for multivariable static map

For quadratic map Q(θ) = Q∗+ 1
2(θ−θ∗)TH(θ−θ∗), the averaged system is

˙̃θ = KH θ̃ H = Hessian < 0



ES algorithm for dynamic systems

ẋ= f (x,u), u∈ R
n

y= h(x), y∈ R

Control law u= α(x,θ) parametrized by θ ∈ R
n

Closed-loop system ẋ= f (x,α(x,θ)) has equilibria x= l(θ) parametrized by θ



ES algorithm for dynamic systems

Assumption 1 Equilibria x= l(θ) are loc. exp. stable uniformly in θ.

Assumption 2 ∃ θ∗ ∈ R
n s.t.

∂
∂θ

(h◦l)(θ∗)=0,

∂2

∂θ2(h◦l)(θ∗)=H < 0, H = HT .



ES algorithm for dynamic systems

s
s+ωh

ωl
s+ωl

×+ K
s

✲

S(t)

✲

y

z= y−η
✛✛✛

θ

❄
✛

Ĝ

M(t)
❄

θ̂

y= h(x)

ẋ= f (x,α(x,θ))

❄



ES algorithm for dynamic systems

ωi = ωω′
i = O(ω), ω′

i is a rational number, i ∈ {1,2, . . . ,n}
ωh = ωωH = ωδω′

H = O(ωδ), ω′
H is O(1) positive constant

ωl = ωωL = ωδω′
L = O(ωδ), ω′

L is O(1) positive constant

ωr = ωωR= ωδω′
R= O(ωδ), ω′

R is O(1) positive constant

K = ωK′ = ωδK′′ = O(ωδ), K′′ > 0∈ R
n×n

K′′ is diagonal O(1) matrix, ω and δ are small positive constants

ω′
i /∈
{

ω′
j ,

1
2
(ω′

j+ω′
k),ω

′
j+2ω′

k,ω
′
j+ω′

k±ω′
l

}

, for all distinct i, j,k, and l



Stability of ES algorithm

Closed-loop system

d
dt







x
θ̃
Ĝ
η̃






=









f (x,α(x,θ∗+ θ̃+S(t)))
−KĜ

−ωlĜ+ωl

(

y−h◦l(θ∗)− η̃
)

M(t)

−ωhη̃+ωh

(

y−h◦l(θ∗)
)









(1)

Plant, parameter estimator, and two filters

Error variables: θ̃ = θ̂−θ∗, η̃ = η−h◦l(θ∗)



Main result

Theorem 4 Consider the feedback system (1) under Assumptions 1 and 2.

∃ ω > 0 and

∀ ω ∈ (0,ω) ∃ δ(ω),a(ω)> 0 s.t.

for the given ω and ∀ |a| ∈ (0,a(ω)) and δ ∈ (0,δ(ω))

∃ a nbhd of the point (x, θ̂,Ĝ,η) = (l(θ∗),θ∗,0,h◦l(θ∗)) such that

any solution of systems (1) from the neighborhood exponentially converges to an

O(ω+δ+ |a|)–neighborhood of that point.

Furthermore, y(t) converges to an O(ω+δ+ |a|)–neighborhood of h◦l(θ∗).



Proof by Singular Perturbation + Averaging (3 time scales!)

Convert to time scale τ = ωt:

ω
dx
dτ

= f (x,α(x,θ∗+ θ̃+S(τ)))

d
dτ





θ̃
Ĝ
η̃



= δ







−K′′Ĝ
−ω′

LĜ+ω′
L

(

y−h◦l(θ∗)− η̃
)

M(τ)

−ω′
Hη̃+ω′

H

(

y−h◦l(θ∗)
)







S(τ)=S(t/ω),M(τ)=M(t/ω)

First study reduced/slow system (ω = 0) by averaging.

(Boundary layer model e.s. because plant is e.s.)



Averaging analysis

Theorem 5 Consider reduced system under Assumption 2. ∃ δ,a > 0 s.t. ∀ δ ∈ (0,δ)
and |a| ∈ (0,a) the reduced system has a unique exponentially stable periodic solution
(

θ̃Π
r (τ),ĜΠ

r (τ), η̃Π
r (τ)

)

of period Π and this solution satisfies

∣
∣
∣θ̃Π

r,i(τ)−
n

∑
j=1

ci
j, ja

2
j

∣
∣
∣≤ O(δ+ |a|3)

∣
∣
∣ĜΠ

r (τ)
∣
∣
∣≤ O(δ)

∣
∣
∣η̃Π

r (τ)−
1
4

n

∑
i=1

Hi,ia
2
i

∣
∣
∣≤ O(δ+ |a|4)

for all τ ≥ 0,



where



















c1
j, j
...

ci−1
j, j

ci
j, j

ci+1
j, j
...

cn
j, j



















=− 1
12

H−1


























∂3(h◦l)
∂zj∂z2

1
(θ∗)

...
∂3(h◦l)

∂zj∂z2
j−1

(θ∗)

3
2

∂3(h◦l)
∂z3

j
(θ∗)

∂3(h◦l)
∂zj∂z2

j+1
(θ∗)

...
∂3(h◦l)
∂zj∂z2

n
(θ∗)




























Newton-Based Extremum Seeking



Weakness of Gradient Algorithm

Convergence rate depends on unknown Hessian

Newton algorithm removes this weakness.

Pitfall of Newton approach for multivariable maps:

Requires an inverse of the Hessian matrix estimates—not necessarily invertible!



Newton algorithm for static map

✲
θ

×

×+ K
s

✛
❄

✲
y

M(t)

✛

Ĥ N(t)
−ΓĜ

❄

✛
θ̂ Ĝ

✛

✛

❄

S(t)

✛
✻

Γ̇ = ωrΓ−ωrΓĤΓ

Q(·)

1. Multiplic. excitation N(t): generate estimate of Hessian
∂2Q(θ)

∂θ2 as Ĥ(t) = N(t) y(t)

2. Riccati martrix diff eq Γ(t): generate estimate of Hessian’s inverse matrix



Estimate of the Hessian matrix

Taylor expansion

y= Q(θ∗+ θ̃+S(t))

= Q(θ∗)+
1
2

(
θ̃+S(t)

)T
H
(
θ̃+S(t)

)

︸ ︷︷ ︸

quadratic in θ̃+S(t)

+R(θ̃+S(t))
︸ ︷︷ ︸

H.O.T

H :=
∂2Q( θ∗ )

∂θ2 < 0

Task: design N(t) so that Ave{N(t)y−H.O.T}= H



Estimate of the Hessian matrix

After lengthy averaging calculations, we find

Nii(t) =
16

a2
i

(

sin2(ωit)−
1
2

)

Ni j (t) =
4

aia j
sin(ωit)sin(ω jt)



Computing the estimate of the inverse of the Hessian matrix

Matrix inversion of Ĥ(t) = bad

Consider low-pass filter of Hessian estimate:

Ḣ =−ωrH +ωrĤ

H (t)− Ĥ(t)→ 0

Denote Γ=H −1. Ricatti equation:

Γ̇ = ωrΓ−ωrΓĤΓ

Γ(t)− Ĥ(t)−1 → 0



Computing the estimate of the inverse of the Hessian matrix

Equilibria:

Γ∗ = 0n×n unstable

Γ∗ = Ĥ−1 loc. exp. stable (provided Ĥ settles)



Computing the estimate of the inverse of the Hessian matrix

For a quadratic map, the averaged system in error variables θ̃ = θ̂−θ∗, Γ̃ = Γ−H−1 is

dθ̃ave

dt
= − K θ̃ave−KΓ̃aveHθ̃ave

dΓ̃ave

dt
= − ωr Γ̃ave−ωrΓ̃aveHΓ̃ave

(local) convergence rate user-assignable!



Simulation results

Static quadratic map: y= Q(θ) = Q∗+
1
2
(θ−θ∗)TH(θ−θ∗)

All ES parameters chosen the same except gain matrices.

Gradient convergence: KgH. Newton convergence: −KnΓ(t)H.

We select Γ(0) =−K−1
n Kg (fair)

δ=0.1, ω = 0.1rad/s, ω1 = 70ω, ω2 = 50ω, ω′
L = 10, ω′

H = 8, ω′
R= 10, a= [0.1 0.1]T ,

K′′
g = 10−4diag([−25 − 25]), K′′

n = diag([1 1]), Γ−1
0 = 400diag([1 1]), θ̂0 = [2.5 5]T ,

Q∗ = 100, θ∗ = [2 4]T , H11= 100, H12= H21= 30, and H22= 20.



Simulation results
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Convergence of the estimate of the Hessian inverse matrix, Γ(t)
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The “straight” transient in the phase space starts after Γ(t) has converged.



Attempt at non-local stability analysis

For the scalar case we can prove semiglobal stability on the set (θ̂,γ) ∈ R×R+.

Error system

˙̃θ = −θ̃− θ̃γ̃
˙̃γ = −γ̃− γ̃2

Global Lyapunov fcn on R× (−1,∞):

V =
1
2

ln
(

1+ θ̃2
)

+ γ̃− ln(1+ γ̃)

(Hessian = 1)



Newton algorithm for dynamic systems

s
s+ωh

ωl
s+ωl

×+ K
s

ẋ= f (x,α(x,θ))

ωl
s+ωl

θ y

z= y−η❄

y= h(x)

Ĥ
×

✻

−ΓĜ

S(t)

Λ
✛

Ĝ

Σ
N(t)

M(t)

❄
✛

✲

✛Γ̇ = ωrΓ−ωrΓĤΓ ✛

✛

✛

✛

❄

✲

✛

❄



Nash Equilibrium Seeking

(non-cooperative games)



Non-Cooperative Games

Multiple players, multiple cost functions.

Team optimization — ‘easy’ mulitvariable problems.

Selfish optimization — harder, because overall convexity is lost.

Simplest case: two players, zero-sum game (H∞ control). One saddle surface, equilibrium

at the saddle point.

Harder: two players, non-zero sum. Two saddle surfaces, equilibrium at the intersection of

their “ridges.”

Even harder: 3 or more players, Nash game
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Two Players — Duopoly

Coca-Cola vs. Pepsi

Boeing vs. Airbus

Let fA and fB be two firms that produce the same good and compete for profit by setting

their respective prices, vA and vB.

Profit model:

JA(t) = iA(t)(vA(t)−mA) ,

JB(t) = iB(t)(vB(t)−mB) ,

where iA and iB are the number of sales and mA and mB are the marginal costs.

Sales model where the consumer prefers fA:

iA(t) = I − iB(t), iB(t) =
vA(t)−vB(t)

p
,

where I are the total sales and p> 0 quantifies the preference of the consumer for fA.
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Boeing vs. Airbus
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,

where I are the total sales and p> 0 quantifies the preference of the consumer for fA.



The profit functions JA(vA,vB) and JB(vA,vB) are both quadratic functions of the prices vA

and vB.

The Nash strategies are

v∗A =
2mA+mB+2I p

3
, v∗B =

mA+2mB+ I p
3

.

How can the players ever know each other’s marginal costs, the customers preference, or

the overall market demand?



Extremum seeking applied by firms fA and fB in a duopoly



Simulation with mA = mB = 30, I = 100, p= 0.2.
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Theorem 6 Let ωA 6= ωB, 2ωA 6= ωB, and ωA 6= 2ωB. There exists ω∗ such that, for all

ωA,ωB > ω∗, if |∆(0)| is sufficiently small, then for all t ≥ 0,

|∆(t)| ≤ Me−mt|∆(0)|+O

(
1

min(ωA,ωB)
+max(aA,aB)

)

,

where

∆(t) = ( vA(t)−v∗A, vB(t)−v∗B )T

M =

√
√
√
√

max(kAa2
A,kBa2

B)

min(kAa2
A,kBa2

B)

m =
1

2p
min(kAa2

A,kBa2
B)

Proof. Let τ = ωt and ω = min(ωA,ωB). The average system is

d
dτ

(
ṽave
A

ṽave
B

)

=
1

2ωp

(
−2kAa2

A kAa2
A

kBa2
B −2kBa2

B

)(
ṽave
A

ṽave
B

)

.

Q.E.D.
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ṽave
B

)

=
1

2ωp

(
−2kAa2

A kAa2
A

kBa2
B −2kBa2

B

)(
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General Nonquadratic Games with N Players

Consider the payoff function of player i:

Ji = hi(ui,u−i)

where ui ∈ R is player i’s action and u−i = [u1, . . . ,ui−1,ui+1, . . . ,uN] represents the ac-

tions of the other players.

ES strategy:

˙̂ui(t) = kiµi(t)Ji(t)

µi(t) = ai sin(ωit +ϕi)

ui(t) = ûi(t)+µi(t)
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Assumption 3 There exists at least one (possibly multiple) isolated Nash equilibrium

u∗ = [u∗1, . . . ,u
∗
N] such that

∂hi

∂ui
(u∗) = 0,

∂2hi

∂u2
i

(u∗)< 0,

for all i ∈ {1, . . . ,N}.



Assumption 3 There exists at least one (possibly multiple) isolated Nash equilibrium

u∗ = [u∗1, . . . ,u
∗
N] such that

∂hi

∂ui
(u∗) = 0,

∂2hi

∂u2
i

(u∗)< 0,

for all i ∈ {1, . . . ,N}.

Assumption 4 The matrix

Λ =












∂2h1(u
∗)

∂u2
1

∂2h1(u
∗)

∂u1∂u2
· · · ∂2h1(u

∗)
∂u1∂uN

∂2h2(u
∗)

∂u1∂u2

∂2h2(u
∗)

∂u2
2... . . .

∂2hN(u
∗)

∂u1∂uN

∂2hN(u
∗)

∂u2
N












is diagonally dominant and hence, nonsingular.



Theorem 7 Let ωi 6= ω j , ωi 6= ω j +ωk, 2ωi 6= ω j +ωk, and ωi 6= 2ω j +ωk for all i, j ,

k ∈ {1, . . . ,N}. Then there exists ω∗, a and M, m> 0 such that, for all mini ωi > ω∗ and

ai ∈ (0,a), if |∆(0)| is sufficiently small, then for all t ≥ 0,

∣
∣∆(t)

∣
∣≤ Me−mt∣∣∆(0)

∣
∣+O

(

max
i

a3
i

)

,

where

∆(t) =
[

û1(t)−u∗1−∑N
j=1c1

j j a
2
j , . . . , ûN(t)−u∗N−∑N

j=1cN
j j a

2
j

]














c1
ii...

ci−1
ii
ci
ii

ci+1
ii...
cN
ii














=−1
4Λ−1





















∂3h1
∂u1∂u2

i
(u∗)

...
∂3hi−1

∂ui−1∂u2
i
(u∗)

1
2

∂3hi
∂u3

i
(u∗)

∂3hi+1
∂u2

i ∂ui+1
(u∗)

...
∂3hN

∂u2
i ∂uN

(u∗)























Numerical Example with Dynamics and Non-Quadratic Payoffs
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Oligopoly ( N competing firms)

vi = price of firm i
mi = marginal cost of firm i
i i = sales volume of firm i

1/Ri = preference for (conductance of sales towards) firm i

Ji(t) = i i(t)(vi(t)−mi) = profit of firm i = power absorbed by generator i



For N players, the sales volume is obtained as

i i(t) =
R||
Ri








I − vi(t)

Ri
+

N

∑
j = 1
j 6= i

v j(t)

Rj







,

R|| =

(
N

∑
k=1

1
Rk

)−1

, Ri =








N

∑
k= 1
k 6= i

1
Rk








−1

Nash prices:

v∗i =
ΛRi

2Ri +Ri

(

RiI +mi +
N

∑
j=1

mjRi −miRj

2Rj +Rj

)

,

where

Λ =

(

1−
N

∑
j=1

Rj

2Rj +Rj

)−1

> 0
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Extremum seeking strategy:

dv̂i(t)
dt

= kiµi(t)Ji(t) , µi(t) = ai sin(ωit +ϕi)

vi(t) = v̂i(t)+µi(t)



Simulation with m1 = 22, m2 = 20, m3 = 26, m4 = 20, I = 100, R1 = 0.25, R2 = 0.78,

R3 = 1.10, and R4 = 0.40.
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Theorem 8 Let ωi 6= ω j , 2ωi 6= ω j for all i 6= j , i, j = 1, . . . ,N. There exists ω∗ such that,

for all mini ωi > ω∗, if |∆(0)| is sufficiently small, then for all t ≥ 0,

|∆(t)| ≤ Ξe−ξt|∆(0)|+O

(
1

mini ωi
+max

i
ai

)

,

where

∆(t) = ( v1(t)−v∗1, . . . , vN(t)−v∗N )T

Ξ =

√
√
√
√

maxi{kia
2
i }

mini{kia2
i }

ξ =
R||mini{kia

2
i }

2maxi{RiΓi}
Γi = min

j∈{1,...,N}, j 6=i
Rj



Proof. Let τ = ωt where ω = mini ωi. The average system is obtained as d
dτṽave = Aṽave

where

A=
R||
2ω











−2k1a2
1

R1R1

k1a2
1

R1R2
· · · k1a2

1
R1RN

k2a2
2

R2R1
−2k2a2

2
R2R2... . . .

kNa2
N

RNR1
−2kNa2

N
RNRN











is diagonally dominant no matter what the Ri ’s.

Let V = (ṽave)TPṽave be a Lyapunov function, where P = ω
R||

diag

(

1
k1a2

1
, . . . , 1

kNa2
N

)

and

satisfies the Lyapunov equation PA+ATP=−Q,

Q=









2
R1R1

− 1
R1R2

· · · − 1
R1RN

− 1
R2R1

2
R2R2... . . .

− 1
RNR1

2
RNRN









.



The matrix Q is positive definite symmetric and diagonally dominant, namely,

N

∑
j = 1
j 6= i

∣
∣qi, j

∣
∣=

1

RiRi
<

2

RiRi
=
∣
∣qi,i
∣
∣ .

From the Gershgorin Theorem, λi(Q) ∈ 1
RiRi

[1,3], which implies that

λmin(Q)>
1

maxi{RiRi}
>

1
max{RiΓi}

.

Q.E.D.



Continuum of Players

Stock market (Robert Aumann)

Battery-equipped (“plug-in electric”) vehicles connected to the power grid and trading
power with utilities and other households

Renewable Energy 

Production

Traditional Energy Production

Power Grid

Households



Oligopoly w/ uncountably many non-atomic players, indexed by continuum index x∈ [0,1].

The profit of firm f (x):

J(x, t) = i(x, t)(v(x, t)−m(x)) ,

with the sales modeled as

i(x, t) =
R||

R(x)

(

I − v(x, t)
R||

+
∫ 1

0

v(y, t)
R(y)

dy

)

,

R|| =

(∫ 1

0

dy
R(y)

)−1

.

The Nash equilibrium values of the prices and the corresponding sales are

v∗(x) = R||

(

I +
1
2

m(x)
R||

+
1
2

∫ 1

0

m(y)
R(y)

dy

)

,

i∗(x) =
R||

R(x)

(

I − 1
2

m(x)
R||

+
1
2

∫ 1

0

m(y)
R(y)

dy

)

.
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2
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)

.



Extremum seeking algorithm:

∂
∂t

v̂(x, t) = k(x)µ(x, t)J(x, t)

µ(x, t) = a(x)sin(ω(x)t +ϕ(x))
v(x, t) = v̂(x, t)+µ(x, t)

where a(x),k(x) > 0, for all x∈ [0,1].

Not a PDE but an ODE with a continuum state.

Integro(x)-differential(t) equation
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∂
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µ(x, t) = a(x)sin(ω(x)t +ϕ(x))
v(x, t) = v̂(x, t)+µ(x, t)

where a(x),k(x) > 0, for all x∈ [0,1].

No element in the union of the image of ω(·) and 2ω(·) has a level set of positive measure.

Satisfied if no frequency is used by more than a countable number of players.

(The set Ωω contains all functions that are either strictly increasing or strictly decreasing,

as well as all bounded C1[0,1] positive functions whose derivative is zero on a set of

measure zero.)
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Theorem 9 There exists ω∗ such that, for all functions ω ∈ Ωω∗, if the L2[0,1] norm of

∆(x,0) is sufficiently small, then for all t ≥ 0,

∫ 1

0
∆2(x, t)dx≤ Σe−σt

∫ 1

0
∆2(x,0)dx+O

(
1

minxω2(x)
+max

x
a2(x)

)

,

where

∆(x, t) = v(x, t)−v∗(x)

Σ =
maxx{k(x)a2(x)}
minx{k(x)a2(x)}

σ =
minx{k(x)a2(x)}

maxx{R(x)}

Ωω: set of bounded positive measurable functions ω : [0,1]→ R+ bounded from below by ω such that no

element in the union of the image of ω(·) and 2ω(·) has a level set of positive measure.



Proof. Error system

∂
∂t

ṽ(x, t) =
k(x)
R(x)

G[ṽ,R, i∗,µ](x, t),

with the operator G defined as

G[ṽ,R, i∗,µ](x, t) , µ(x, t)

[(

R(x)i∗(x)− ṽ(x, t)+

〈R||
R
, ṽ

〉

(t)

)

(R(x)i∗(x)+ ṽ(x, t))

+µ(x, t)

(

−2ṽ(x, t)+

〈R||
R
, ṽ

〉

(t)

)

+

〈R||
R
,µ

〉

(t)(R(x)i∗(x)+ ṽ(x, t))+µ(x, t)

〈R||
R
,µ

〉

(t)−µ2(x, t)

]

,

where 〈a,b〉(t),
∫ 1
0 a(y, t)b(y, t)dy.

Recall: µ(x, t) = a(x)sin(ω(x)t +ϕ(x))



To apply infinite-time averaging (“general averaging”) to the infinite dimensional system, we

have to compute integrals in both x and time and verify the conditions of the dominated

convergence theorem for their integrands, to justify swapping the order of integrals in x

and limits in τ.

We obtain the average system

∂
∂τ

ṽave(x,τ) =−k(x)a2(x)
ωR(x)

ṽave(x,τ)+
R||
2

k(x)a2(x)
ωR(x)

∫ 1

0

ṽave(y,τ)
R(y)

dy



To apply infinite-time averaging (“general averaging”) to the infinite dimensional system, we

have to compute integrals in both x and time and verify the conditions of the dominated

convergence theorem for their integrands, to justify swapping the order of integrals in x

and limits in τ.

Let ω = minx{ω(x)}, γ(x) = ω(x)/ω, and τ = ωt.

We obtain the average system

∂
∂τ

ṽave(x,τ)
︸ ︷︷ ︸

derivative in time

=−k(x)a2(x)
ωR(x)

ṽave(x,τ)+
R||
2

k(x)a2(x)
ωR(x)

∫ 1

0

ṽave(y,τ)
R(y)

dy
︸ ︷︷ ︸

integral in x



Let V(τ) be a Lyapunov functional defined as

V(τ) =
ω
2

∫ 1

0

1

k(x)a2(x)

(
ṽave)2(x,τ)dx

and bounded by

ω
∫ 1
0 (ṽave)2(x,τ)dx

2maxx{k(x)a2(x)} ≤V(τ)≤ ω
∫ 1
0 (ṽave)2(x,τ)dx

2minx{k(x)a2(x)}

Taking the time derivative and applying the Cauchy-Schwarz inequality, we obtain

V̇ ≤−1
2

∫ 1

0

(ṽave)2(x,τ)
R(x)

dx

From the infinite-dimensional averaging theory in [Hale and Verduyn Lunel, 1990], the

result of the theorem follows.

Q.E.D.



Proposition The spectrum of the average system is
{

−k(x)a2(x)
R(x)

, x∈ [0,1]

}

︸ ︷︷ ︸

continuous stable spectrum

∪
{

all λ ∈ C that satisfy
∫ 1

0

λR||
λR(x)+k(x)a2(x)

dx=−1

}

︸ ︷︷ ︸

a stable discrete eigenvalue

Example Let k(x) = a(x)≡ 1 and R(x) = 1
2+x. The spectrum is

[−2,−2/3]∪{−1/2}



Proposition The spectrum of the average system is
{

−k(x)a2(x)
R(x)

, x∈ [0,1]

}

︸ ︷︷ ︸

continuous stable spectrum

∪
{

all λ ∈ C that satisfy
∫ 1

0

λR||
λR(x)+k(x)a2(x)

dx=−1

}

︸ ︷︷ ︸

a stable discrete eigenvalue

Example Let k(x) = a(x)≡ 1 and R(x) = 1
2+x (linearly growing resistance).

The spectrum is
[

−2,−2
3

]

∪
{

−1
2

}



GPS-Denied Source Seeking



Fish seeking food in vortex flow

Jukowski foil curvature(t) = cos(ωt)+ksin(ωt) H(s)[J(t)]
︸ ︷︷ ︸

high-pass
filtered

concentration

MOVIE



Stochastic Extremum Seeking



Deterministic ES
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A quartic static map

f (θ) = θ4+θ3−2θ2−3θ ,

with local minimum f (−1) = 1 and global minimum f (1) =−3.

2nd derivatives at the minima are f ′′(−1) = 2< 14= f ′′(1), which is consistent with the

global min at θ = 1 being much “deeper” and “sharper” than the local min at θ =−1.
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Time response of a discrete-time version of the stochastic ES algorithm, starting from the

local minimum, θ̂(0)=−1. The parameters are chosen as q= 1,ε= 0.25, a= 0.8,k= 10.



A heuristic analysis of a simple stochastic ES algorithm

To simplify our analysis, we eliminate the washout filter.

Perturbation signal (colored noise)

εdη =−ηdt+
√

εqdW (2)

Input

θ(t) = θ̂(t)+aη(t) (3)

Estimation error

θ̃(t) = θ∗− θ̂(t) (4)

Estimation error governed by

˙̃θ(t) = − ˙̂θ(t)
= kη(t) f (θ(t)) . (5)



Applying the Taylor expansion to f (θ) around θ∗ up to second order we get

f (θ) ≈ f (θ∗)+ f ′(θ∗)
︸ ︷︷ ︸

= 0 by assmpn

(
aη− θ̃

)
+

1
2

f ′′(θ∗)
(
aη− θ̃

)2
. (6)

Substituting (6) into (5) and grouping the terms in powers of η we obtain

˙̃θ(t) ≈ k

{

η(t)
[

f (θ∗)+
1
2

f ′′(θ∗)θ̃2(t)

]

−η2(t)a f ′′(θ∗)θ̃(t)

+η3(t)
a2

2
f ′′(θ∗)

}

. (7)



The signal η(t) is governed by εdη=−ηdt+
√

εqdW, where W(t) is the Wiener process.

With small ε, the signal η is a close approximation of white noise Ẇ(t).

Using elementary Ito calculus,

lim
t→∞

E{η(t)} = 0 (8)

lim
t→∞

E
{

η2(t)
}

=
q2

2
(9)

lim
t→∞

E
{

η3(t)
}

= 0. (10)



To illustrate how these relations are obtained, we consider the case of η2, namely, (9),

which is obtained by applying Ito’s differentiation rule to η2, which yields the ODE

ε
2

dE{η2}
dt

=−E{η2}+ q2

2
The solution of this linear ODE is

E{η2(t)} = e−2t/εE{η2(0)}+ q2

2

(

1−e−2t/ε
)

→ q2

2
as t → ∞ .

When ε is small, it is clear that the convergence in time t is very fast. This is the case with

the convergence rates of all three expectations given in (8), (9), and (10).



Approximating now the η-terms in (7) by their respective expectations, after a short tran-

sient whose length is O(ε), the estimation error is governed by

˙̃θ(t)≈−kaq2

2
f ′′(θ∗)θ̃(t)



Unfortunately, the scheme with the unbounded stochastic perturbation η(t) is not
amenable to rigorous analysis. To make analysis feasible, using stochastic averaging the-
ory, we replace η by a bounded stochastic perturbation sin(η).
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Convergence speeds of the two algorithms are related as
speedsin(η)

speedη
=

(

1−e−q2
)

q2 .



Stochastic Averaging

Theorem [Liu and Krstic, TAC 2010]

Removes the following restrictions in the stochastic averaging theorems by Blankenship-

Papanicolou, Freidlin, Khasminskii, Korolyuk, Kushner, Skorokhod:

• system’s right-hand side linearly bounded

• average system globally exponentially stable

• ‘vanishing’ (equilibrium-preserving) stochastic perturbation

• time interval finite

Consider the system

dXε
t

dt
= a(Xε

t ,Yt/ε), Xε
0 = x,

where Xε
t ∈R

n; Yt ∈R
m is a time-homogeneous continuous Markov process defined on a

complete probability space (Ω,F ,P), where Ω is the sample space, F is the σ-field, and

P is the probability measure. Let D ⊂ R
n be a domain (open connected set) of Rn and SY

be the living space of the perturbation process (Yt, t ≥ 0).



Suppose that the vector field a(x,y) is a continuous function of (x,y), and for any x∈ D, it
is a bounded function of y. Further, suppose that it satisfies the locally Lipschitz condition
in x∈ D uniformly in y∈ SY, i.e., for any compact subset D0 ⊂ D, there is a constant kD0
such that for all x′,x′′ ∈ D0 and all y∈ SY, |a(x′,y)−a(x′′,y)| ≤ kD0 |x′−x′′|. Assume that
the perturbation process (Yt, t ≥ 0) is ergodic with invariant distribution µ.

If the equilibrium Xt ≡ x∈ D of the average system

dXt

dt
= a(Xt), X0 = x,

where

a(x) =
∫

SY
a(x,y)µ(dy),

is exponentially stable, then there exist constants r > 0, c> 0, γ > 0 and a function T(ε) :
(0,ε0)→ N such that for any initial condition x∈ {x′ ∈ D : |x′−x|< r}, and any δ > 0,

lim
ε→0

inf
{

t ≥ 0 : |Xε
t −x|> c|x|e−γt +δ

}
=+∞, a.s..

and

lim
ε→0

P
{
|Xε

t −x| ≤ c|x|e−γt +δ,∀t ∈ [0,T(ε)]
}
= 1

with lim
ε→0

T(ε) = +∞.



Stochastic Nonholonomic Source Seeking
(autonomous vehicles and bacterial locomotion)



Vehicle model

·

·

v

R
sr

cr
u

y

x

Eqns of motion for vehicle center:

ṙc = vejθ

θ̇ = u

Sensor is located at rs= rc+Rejθ.



Problem statement

Task: seek a source that emits a spatially distributed signal J = f (r(x,y)), which has an

isolated local maximum f (r∗) at r∗.

Assumption (in the analysis, but not in simulations): Spatial distribution is quadratic, with

circular level sets, i.e.,

f (r) = f ∗−qr |r − r∗|2 .

Result of the paper: A stochastic seeking algorithm and a proof of local convergence to

r∗, in a particular probabilistic sense, without the knowledge of qr , r∗, f ∗ and without the

measurement of rc(t), using only the measurement of J(t) at the vehicle sensor.
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Problem statement

Task: seek a source that emits a spatially distributed signal J = f (r(x,y)), which has an

isolated local maximum f (r∗) at r∗.

Assumption (in the analysis, but not in simulations): Spatial distribution is quadratic, with

circular level sets, i.e.,

f (r) = f ∗−qr |r − r∗|2 .

Result of the paper: A stochastic seeking algorithm and a proof of local convergence to

r∗, in a particular probabilistic sense, without the knowledge of qr , r∗, f ∗ and without the

measurement of rc(t), using only the measurement of J(t) at the vehicle sensor.



Two control approaches

• tuning of angular velocity [forward velocity = const.]

• tuning of forward velocity [angular velocity = const.]



Two control approaches

• tuning of angular velocity [forward velocity = const.]

• tuning of forward velocity [angular velocity = const.]

Angular velocity controller:

u= cJsin(η)+a
1
ε
(
−η+g

√
εẆ
)

︸ ︷︷ ︸

dη/dt

Forward velocity controller:

v= cJsin(η)+a
1
ε

[

−
(

ηcos(η)+g2sin(η)
)

+g
√

εcos(η)Ẇ
]

︸ ︷︷ ︸

dsin(η)/dt

where η =
g
√

ε
εs+1

[Ẇ]



Controller with v(t) =Vc ≡ constand tuning of angular velocity

J
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(WLOG we place the source at the origin, r∗ = (0,0).)



Theorem Consider the stochastic system in the block diagram (5 states):

d
dt







rc
e
θ
η







=








Vcejθ

hξ
−a

εη+(cξ−d0ξ2)sin(η)
−1

εη








dt+
g√
ε







0
0
a
1







dW

ξ = −(qr

∣
∣
∣rc+Rejθ− r∗

∣
∣
∣

2
+e)

and let the parameters h,Vc,a,g> 0 be chosen such that

1
h
>

R
2Vc

(

2− I2(2a,g)
I1(a,g)I2(a,g)

)

,

where I1(a,g) = e−
a2g2

4 , I2(a,g) = 1
2

[

e−
(a−1)2g2

4 −e−
(a+1)2g2

4

]

.

Denote

ρ =

√

VcI1(a,g)
2qrcRI2(a,g)

.



If the initial conditions rc(0), θ(0), e(0) are such that the quantities

||rc(0)− r∗|−ρ| ,
∣
∣
∣e(0)+qr(R2+ρ2)

∣
∣
∣ ,

either
∣
∣θ(0)−arg(r∗− rc(0))+ π

2

∣
∣ or

∣
∣θ(0)−arg(r∗− rc(0))− π

2

∣
∣

are sufficiently small,

i.e., if the vehicle starts close to the annulus and not pointing too far away from the annulus

−0.1 −0.05 0 0.05 0.1
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−0.05
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0.1

x

Y

g = 2

(b)



then there exists a constant C0 > 0 dependent on the initial condition (rc(0),θ(0),e(0))
and on the parameters a,c,d0,h,R,Vc,qr ,g, a constant γ0 > 0 dependent only on the

parameters a,c,d0,h,R,Vc,qr ,g, and a function T(ε) : (0,ε0)→ N with the property

lim
ε→0

T(ε) = ∞,

such that for any δ > 0,

lim
ε→0

inf
{

t ≥ 0 : ||rc(t)− r∗|−ρ|>C0e−γ0t +δ
}
= ∞, a.s.

and

lim
ε→0

P
{
||rc(t)− r∗|−ρ| ≤C0e−γ0t +δ, ∀t ∈ [0,T(ε)]

}
= 1.



Built mobile robots and a ‘plume/wind’ tunnel; tested the algorithms.

(UCSD-led ONR MURI on olfactory sensing/localization, 2007-2012.)

MOVIE



Controller with θ̇ = µ= constand tuning of forward velocity
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Theorem

lim
ε→0

P







∣
∣
∣
∣
∣
∣





xε(t)−x∗

yε(t)−x∗

θε(t)−θ0−µt





∣
∣
∣
∣
∣
∣

≤ c

∣
∣
∣
∣

[
x0−x∗

y0−y∗

]∣
∣
∣
∣
e−γt +δ+O(a), ∀t ∈ [0,T(ε)]






= 1



Newton -Based Stochastic ES



Multivariable Gradient ES

( )f

K

s

y

ˆ Ĝ ( ( ))M t( ( ))S t

S(η(t)) = [a1sin(η1(t)), . . . ,ansin(ηn(t))]
T ,

M(η(t)) =

[
1

a1G0(q1)
sin(η1(t)), . . . ,

1
anG0(qn)

sin(ηn(t))

]T

where ηi =
qi
√

εi

εis+1
[Ẇi] and G0(q) =

1
2(1−e−q2

)

Convergence rate governed by the unknown Hessian at the extremum:

dθ̃ave(t)
dt

= KHθ̃ave(t)



Newton -based ES

( )f

K

s

y

( ( ))S t

ˆ
Ĝ

( ( ))M t

Ĝ

ˆh h H

( ( ))N tĤ

Nii =
4

a2
i G2

0(
√

2qi)

[

sin2(ηi)−G0(qi)
]

Ni j =
1

aia jG0(qi)G0(q j)
sin(ηi)sin(η j), i 6= j

Γ: matrix Riccati diff. eq. that estimates the inverse of Hessian matrix



Convergence rate user-assignable!

dθ̃ave

dt
= − K θ̃ave−KΓ̃Hθ̃ave

dΓ̃ave

dt
= − h Γ̃ave−hΓ̃aveHΓ̃ave



Photovoltaic Arrays
maximum power point tracking

Azad Ghaffari



Maximum power point tracking
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Maximum power point tracking
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Extremum Seeking Based on

Atmospheric Turbulence for

Aircraft Endurance

(ES without injecting a perturbation)



Endurance = the length of time an aircraft can remain airborn e

Goal: Find the airspeed for optimal endurance

50 100 150 200 250 300
0

100

200

300

400

500

600

700

800

900

1000

Airspeed − feet/sec

D
ra

g
 F

o
rc

e
 −

 p
o
u
n
d
s

Typcial Drag Curve

total drag

parasite drag

induced drag



Jet aircraft (Global Hawk)

• Min. fuel ∝ thrust = drag(speed )

• Speed controlled through throttle

• Altitude controlled through elevator

Propeller aircraft (Predator)

• Min. fuel ∝ power = thurst×speed = drag(speed )×speed

• Speed controlled through elevator

• Altitude controlled through throttle



• The optimal speed is different for each individual aircraft

• Perturbing the airspeed may burn more fuel and annoys air traffic control



Turbulence-Based ES

V = airspeed v = ground speed a satη = turbulence
u = throttle D = drag measured : airspeed, accel, & throttle setting



Theorem

If the adaptation gain is chosen small (in inverse proportion to upper bound on minimum

drag) then an airspeed near the value that minimizes drag (with bias ∝ variance of airspeed

and 3rd derivative of drag curve) is weakly exponentially stable (wp1 as turbulence time

constant → 0).



Simulation
Theorem on Northrop Grumman

proprietary software

turbulence saturated filtered gaussian Dryden turbulence

no vertical turbulence

altitude = pitch = const 6 DOF model



Proprietary aircraft performance data (result presented w /o units)
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Some more applications of ES



High Voltage Converter Modulators

in Accelerators (LANL)

Alex Scheinker



High Voltage Converter Modulator for Klystron RF source
(at Los Alamos and Oak Ridge national labs)
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Beam Alignment Control

to Maximize EUV Production

Paul Frihauf and Matt Graham Cymer



EUV (extreme ultra-violet) system



Z: lens moved w/ stepper motors Y: mirror moved w/ piezos



Energy maximization in EUV (under temperature-induced drift)
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Peak Seeking Stonewall Peak (Lake Cuyamaca)
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