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Average system

dX - 17
= efadlX),  fal) =7 /O f(r,x,0)dr (AV)

Theorem 1 [Khalil's book, Theorem 10.4] Let f(t,x,€) and its partial derivatives with re-
spect to (X,€) up to the second order be continuous and bounded for (t,X,€) € [0,00) x
Do x [0, &g], for every compact set Dg C D, where D € R" is a domain. Suppose f is
T-periodic int for some T > 0 and € is a positive parameter.



Averaging

d)(t8
g — et X, €) (SYS)

Average system

dX - 17
Sr=efalX),  fa) =1 [ f(rx0)dr (AV)

Theorem 1 [Khalil's book, Theorem 10.4]

If the origin x=0¢& D is an
exponentially stable equilibrium point of the average system (AV), then there exist positive
constants €* and k such that, for all 0 < € < €*, (SYS) has a unigue, exponentially stable,
T-periodic solution XtT’s with the property HXtT’SH < ke.



An Averaging Example




An Averaging Example

sin(wt)

X = —sin(wt) (X+ sin(oot))2



An Averaging Example
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An Averaging Example

Xave = —Xave



Theorem 2 For sufficiently large w, there exists a locally exponentially
stable periodic solution X2V ®(t) such that

‘xzn/‘*’(t)‘ <0 (é) . Wt>0.



Theorem 2

Corollary 1 For sufficiently large w, there exist M, m > 0O such that

1
x(t)| < M|x(0)je ™+ 0O (6) ,  Wt>0.



Basic Idea of Extremum Seeking



Arbitrary Unknown Quadratic Function
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Arbitrary Unknown Quadratic Function
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Theorem 3 There exists sufficiently large w such that, locally,

kf//az
t
6(t) —6*| < |6(0) — B*|e 2 +O(é)+a, vt > 0.




Chronology of Extremum Seeking
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Extremum Seeking for

Multivariable Dynamic Systems



ES for multivariable static map

Q) :
S(t) %& &L M(t)

Q(+) = unknown map, y = measurable scalar, 8 = [61,85, - - -, 6]

n|x

T= input vector



ES for multivariable static map

0 y
Q() -
i) & K % M (1)
Q(+) = unknown map, y = measurable scalar, 8 = [01,0, - - - ,Gn]T = input vector
St)=[ asin(@yt) - ansinunt) |'




ES for multivariable static map

0 y
Q() -
i) & K % M (1)
Q(+) = unknown map, y = measurable scalar, 8 = [01,05, - - ,Gn]T = input vector
St)=[ asin(@yt) - ansinunt) |'

g # 0, K = positive diagonal matrix
Wi /wj rational, 0} # wj and W} + Wj # Wy for distinct 1, |, and k



ES for multivariable static map

For quadratic map Q(0) = Q* + %(9 —0*)TH (0 —6%), the averaged system is

Dt
I
2\
L
D




ES algorithm for dynamic systems

Control law u = o (x, 0) parametrized by 6 € R"

Closed-loop system x = f(X,0(X,0)) has equilibria X =1(8) parametrized by 0



ES algorithm for dynamic systems
Assumption 1 Equilibria X =1(0) are loc. exp. stable uniformly in 6.

Assumption 2 3 0* € R"s.t.
9 (hol)(6)=0,

—(hol)(8*)=H <0, H=HT.
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w and O are small positive constants

+°3f<)aw/j+2wf<,w/j+w|’(iw|’}, for all distinct i, j,k, and |



Stability of ES algorithm

Closed-loop system

- f(x (%, 6+ 8+ S(t)))
—KG

= | @G+ (y-hol () i) M(1)
Ll —nfi + on (y— hol (6%))

d
ot

S ) DX

Plant, parameter estimator, and two filters

~ ~

Error variables: 6 =0 — 0%, N =n —hol (8%)

(1)



Main result

Theorem 4

4 ®> 0and

Vwe (0,0) dJo(w),a(w)>0s.t.

for the given wand V |a] € (0,a(w)) and d € (0,0(w))

N

3 a nbhd of the point (x,0,G,n)

(1(8%),8%,0, hol (8%)) such that

any solution of systems (1) from the neighborhood exponentially converges to an
O(w+ &+ |a|)—neighborhood of that point.



Proof by Singular Perturbation + Averaging (3 time scales!)

Convert to time scale T = wit:

dx

= f(x,a(x,6*+8+S1)))

. —K"G

d |9 A -

< H _5 —chG+ch(y—ho|(e )—r]>|V|(T)
A — i+ oy (y— ol (64))

S(1)=S(t/w), M(1) =M(t/w)
First study reduced/slow system (w = 0) by averaging.

(Boundary layer model e.s. because plant is e.s.)



Averaging analysis

Theorem 5 38,a>0st Ve (0,0)
and |a| € (0,3@) the reduced system has a unique exponentially stable periodic solution

(érn (1),GH (T),ﬁP(T)) of period ' and this solution satisfies

n .
AL c'jjja'j2| <O(5+|a®)
=1

G| <0
rI'I —}nHii-2<05 4
(1) =3 3 Huaf] < 0@+ al

forall T > 0,



where

i1
Cii
i

1
Cii

I




Newton-Based Extremum Seeking



Weakness of Gradient Algorithm

Newton algorithm removes this weakness.

Pitfall of Newton approach for multivariable maps:

Requires an inverse of the Hessian matrix estimates—not necessarily invertible!



Newton algorithm for static map

Y
N
.
N—
Y

P

n|x
|
—
o)
o)
X%

1. Multiplic. excitation N(t): generate estimate of Hessian

2. Riccati martrix diff eq ' (t): generate estimate of Hessian’s inverse matrix




Estimate of the Hessilan matrix

Taylor expansion

y=Q(6*+8+5(t))

= Q(8")+ (B+51)) Tl (B+S()) + R(@

A\ 7

quadratic in 8+ S(t)

. 0%Q(8Y)
902

Task: design N(t) so that Ave{N(t)y—H.O.T} =H



Estimate of the Hessian matrix

After lengthy averaging calculations, we find



Computing the estimate of the inverse of the Hessian matrix

Matrix inversion of H(t) = bad

Consider low-pass filter of Hessian estimate:

H o= —wyH +wxH

7 (t)—H(t) = 0

Denote M= —1. Ricatti equation:

M=ol —oxHT

rt)—Ht1-o0



Computing the estimate of the inverse of the Hessian matrix
Equilibria:
[* = Opnxpn unstable

M =H"1 loc. exp. stable (provided H setiles)



Computing the estimate of the inverse of the Hessian matrix

For a quadratic map, the averaged system in error variables 0=0-— 0 T=r—H1lis

déave 5 ~ N
it — —_K eave_ KraveH eave
dfave 5 N N
it — _-I—ave_ wrraveH rave

(local) convergence rate user-assignable!



Simulation results

Static quadratic map: y=Q(0) = Q* + %(6 —0")TH(6—6%)

Gradient convergence: KgH. Newton convergence: —Knpl (t)H.

We select [(0) = —Kn_lKg (fair)
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Convergence of the estimate of the Hessian inverse matrix, (1)
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The “straight” transient in the phase space starts after I'(t) has converged.



Attempt at non-local stability analysis

For the scalar case we can prove semiglobal stability on the set (é,y) cRxR;.

Error system

<t D
|
|
DIl
RN

Global Lyapunov fcn on R x (—1, ):

1 "
v tn(1+) -

(Hessian = 1)



O | %= f(xa(x0)) y
y = h(x) )
S
S(t) M ( 7o
$§ Y SE A p-z=y=n
N(t)
[ a _Z@




Nash Equilibrium Seeking

(non-cooperative games)



Non-Cooperative Games
Multiple players, multiple cost functions.
Team optimization — ‘easy’ mulitvariable problems.

Selfish optimization — harder, because overall convexity is lost.



Non-Cooperative Games

Simplest case: two players, zero-sum game (He control). One saddle surface, equilibrium
at the saddle point.

Harder: two players, non-zero sum. Two saddle surfaces, equilibrium at the intersection of
their “ridges.”

Even harder: 3 or more players, Nash game




Two Players — Duopoly

Coca-Cola vs. Pepsi
Boeing vs. Airbus



Two Players — Duopoly

Coca-Cola vs. Pepsi
Boeing vs. Airbus

Let fa and fg be two firms that produce the same good and compete for profit by setting
their respective prices, Va and Vg.

Profit model:

Ja(t) = ia(t) (valt) —ma),
Jg(t) = ig(t)(va(t) —mg),

where ip and ig are the number of sales and mp and mg are the marginal costs.



Two Players — Duopoly

Coca-Cola vs. Pepsi
Boeing vs. Airbus

Let fa and fg be two firms that produce the same good and compete for profit by setting
their respective prices, Va and Vg.

Profit model;

Sales model where the consumer prefers fa:

At =1 —ig(t), it = AL ;VB(U,

where | are the total sales and p > 0 quantifies the preference of the consumer for fa.




The profit functions Ja(Va, V) and Jg(Va,VB) are both quadratic functions of the prices va
and V.

The Nash strategies are

_ 2ma+mg+2lp

Mp+2mg+ I p
3 ’ .

Va 3

ko
Vg =

How can the players ever know each other’s marginal costs, the customers preference, or
the overall market demand?



aasin(wat + o) l

S
VA Ja
MARKET
—e —
UvpB J B

apsin(wpt + ¢R)

Extremum seeking applied by firms fa and fg in a duopoly




Simulation with ma =mg = 30,1 =100, p=0.2.
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Theorem 6 Let Wp # WR, 2w # Wg, and wa # 2wg. There exists wW* such that, for all
wp, wg > W, if |A(0)] is sufficiently small, then for all t > O,

1
At) < Me~™A0)+0O( — maxaa, a
B0 < Me ™0+ O o S maxan ap) ).
where

At) = (valt)—Vi, ve(t)—vg)T

M — Jmax(kAaA, kBaB)
1

min kAaA, kBaB)

m = meln kAaA,kBaB)



Theorem 6 Let Wp # WR, 2w # W, and wa # 2wg. There exists wW* such that, for all
wp, wg > W, if |A(0)] is sufficiently small, then for all t > 0O,

A®)] < Me™A(0)] +o( -+ maan, aB>) |

min(wa, W
where

At) = (valt)—Vvi, ve(t)—vg)'

M Jmax(kAaA, kBaB)
1
p

min kAaA, kBaB)

Proof. Let T = wt and W= min(wa, wg). The average system is

REV_ L (2 k) (R

Q.E.D.



General Nonquadratic Games with N Players

Consider the payoff function of player I:
Ji = hi(ui, uj)

where U;j € R is player i’s action and U_j = [u1,...,Ui_1,Uj11,...,UN] represents the ac-
tions of the other players.



General Nonquadratic Games with N Players

ES strategy:

) = kip(t)J(t)
li(t) = asin(wit+¢;)
ui(t) = Gi(t) +m(t)



Assumption 3  There exists at least one (possibly multiple) isolated Nash equilibrium
u* = [u7,...,Uy] such that

oh;

92h;
L oThy

u*) <0,
)

forallie {1,...,N}.



Assumption 3

Assumption 4  The matrix

[ 02hy (") 92hy(u”)

auz aulauz
1
0%hy(u*)  0%hp(u”)

A= | Oudup ous

0%hy (U)
duq0un

Is diagonally dominant and hence, nonsingular.

0%hy (u*)
du10un

0%hy (u™)

2
auN




Theorem 7 Let Wy # Wj, W # Wj + Wy, 20 # W) + Wy, and w; # 2wj + wy for all |, ],
ke {1,...,N}. Then there exists w*, @ and M, m > 0 such that, for all min; & > w" and
a € (0,a), if |A(0)| is sufficiently small, then for all t > O,

A)] < Me™|A(0)|+0 (miaxa13) ,

where
~ ~ N 2
A(t):{ul(t)_ul Zj_lcjlj 127 .5 ON(E) —UN — Zj_lcu J}
i 03hy /, ]
aulau?< )
S i
Gi _
: 0°hj_1 ( *)
o1 ou;_10u7
i 3
_ 10°h;
|+1 3.
C|| 0°hi 41 (u*)
N 0U0U; | 1
G 5
a3hy ( *)
duouN ]




Numerical Example with Dynamics and Non-Quadratic Payoffs

a1 sin(wit + 1)
s

—I—Ll—> r = f(xvuhu@) Jl
Jl = ]’Ll(ZC)
U2 1 J, = ho(x) J2




X1 = —4X1 + X1 X2 + Uq
Xo = —4Xo + Up
_ 2 2 2.,2 2
J1 = —16x7 + 8X Xo — X7X5 — 4X1X5 + 15X1 X0 44X

Jp = —64% + 48k1x0 — 1215



Steady-state payoffs

J1 = —U%—F UqUo + Uq
Jo = —Ug—l— 3uUqU2



Steady-state payoffs

J1 = —U%—F UqUo + Uq
Jo = —Ug—F 3uUqU2

Reaction curves
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Oligopoly ( N competing firms)

Vi = price of firm i
M, = marginal cost of firm |
lj = sales volume of firm i
1/R; = preference for firm |

10 RiE RS R;
CYCIECIORTY®

Ji(t) =1j(t)(vij(t) — my) | = profit of firm i absorbed




For N players, the sales volume is obtained as

R . N
ij(t) = % I—%(_t)ntz
|

L]
A ]




Nash prices:

where

_<ﬁi|‘|‘ |
N
1_2 2R




Extremum seeking strategy:

Wi (t) = & sin(wit + ¢;)



Simulation with my = 22, mp = 20, mg = 26, my = 20, | = 100 Ry = 0.25, R, = 0.78,
R3 =1.10, and Ry = 0.40.
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Theorem 8 Let wj # Wj, 2w # wj foralli # j,i,j =1,...,N. There exists " such that,
for all min; wy > w*, if |A(0)| is sufficiently small, then for all t > O,

80 £ Ze N80+ O i mava ).
where
A) = (vit)—vi, ..., W) v )T
max {kia?}
min; {kia?}
R mini{kia?}
2max{R}

i = min R;
je{1,... N}, j#i




Proof. Let T = wt where w = min;j wj;. The average system is obtained as %\7"’“’e = AV

where
B 2k1_a§ kpaZ - kpaZ \

Rl§1 RiR> 5 RiRn

A e
= — 2 RoR
2 W 5 22
\ kNaﬁ . 2k|\|_61% )
RNR1 RnRN

is diagonally dominant no matter what the R;’s.

1 L) and

_ (vave\ T prave i _ W =
Let V = (V€)' PU@Y€ be a Lyapunov function, where P = Rﬂdlag (klaf’ e kNaﬁ

satisfies the Lyapunov equation PA+ ATP = —Q,

2 _ 1 1
( RlFil Rlez R1RN
Q= RR RR

K _ﬁ RNzﬁN )



The matrix Q is positive definite symmetric and diagonally dominant, namely,

% ‘q”‘: 1— : —‘Qii’
& M RRTRR
71
From the Gershgorin Theorem, Aj(Q) € ﬁ 1, 3], which implies that
1 1
Ami .

Q.E.D.



Continuum of Players
Stock market

Battery-equipped (“plug-in electric”) vehicles connected to the power grid and trading
power with utilities and other households

Traditional Energy Production

e SRR

=\

Power Grid / Renewable Energy
:& ’& & Production
% H % DHD%%

—

o Households []”D




Oligopoly w/ uncountably many non-atomic players, indexed by continuum index x € [0, 1].

The profit of firm f(X):
J(x,t) =i(x,t) (v(x,t) —m(x)),

with the sales modeled as

- _ R vixt) | ivyt)
I(x,t) = W(I_ R| +/O RY) dY>,

= (ha)




The Nash equilibrium values of the prices and the corresponding sales are
Im(x) 1 rIm(y)
Viix) = Ri[l+=—=<%+= ] =—==£dy],
( ) | < 2 RH 2.J0 R(y) y

| 1m(x) 1 im(y)



Extremum seeking algorithm:

Vv

0

ot

(1) = KX)uXx1)I(x1)

Hx,t) = alx)sin(w(x)t +(x))

where a(x),k(x) > 0, for all x € [0, 1].



No element in the union of the image of w(-) and 2w(-) has a level set of positive measure.



Satisfied if no frequency is used by more than a countable number of players.



(The set Q, contains all functions that are either strictly increasing or strictly decreasing,
as well as all bounded Cl[O, 1] positive functions whose derivative is zero on a set of
measure zero.)



Theorem 9 There exists " such that, for all functions w € Q, if the L[0,1] norm of
A(x,0) is sufficiently small, then for all t > O,

/OlAz(x,t)dxg se Ot /OlAZ(x, 0)dx+O (minxi)z(x) +m)231xa2(x)> :
where
A(x,t) = v(xt)—Vv (x)
o madkai(x)}
miny{k(x)a2(x)}
. mink{k(x)a2(x)}
max{R(X) }

Q@: set of bounded positive measurable functions w: [0,1] — R bounded from below by w such that no

element in the union of the image of w(-) and 2w(+) has a level set of positive measure.



Proof. Error system



To apply infinite-time averaging (“general averaging”) to the infinite dimensional system, we
have to compute integrals in both X and time and verify the conditions of the dominated
convergence theorem for their integrands, to justify swapping the order of integrals in X
and limits in T.



Let W= miny{w(X)}, y(X) = w(X)/w, and T =

We obtain the average system

0 aver, \ _ K00@00 e, . RIKXEZ() [1E(y1)
i = TR CURE R

- V -
integral in X

dy

7




Let V(1) be a Lyapunov functional defined as

w1l 2
V(T):E/o KX)a2(X (PY®) (x, 1) dx

and bounded by

W [ ()% (x,T) dx

_ ©Jo (P*)* (x 1) dxX
2 max{k(x)a2(x)}

— 2min{k(x)a2(x)}

<V(1)

Taking the time derivative and applying the Cauchy-Schwarz inequality, we obtain

_ 1 (cAave)2
oo 1@

=3 Rw

From the infinite-dimensional averaging theory in [Hale and Verduyn Lunel, 1990], the
result of the theorem follows.

Q.E.D.



Proposition  The spectrum of the average system is

2 1 AR
{_k(?{?x)(X)7 xe[o, 1]} U {all)\ e C that satisfy/o )\R(x)+kyx)a2(x)dxz —1}




Example Letk(X) =a(X) =1and R(x) =

The spectrum is



GPS-Denied Source Seeking



Fish seeking food in vortex flow

Jukowski foil curvature(t) = cogwt) + ksin(wt) H(s)[J(t)]

\ - 7

high‘-Toass
filtered
concentration



Stochastic Extremum Seeking



Deterministic ES

Stochastic ES

0 f Plant

v

y

1

y=-¢

o0k
\f‘ s %

a sin(wt) sin(wt)

0 f Plant

s+h

v

y
~
~

S
N’

y-¢

A

A

o0k
¥ s %

a n() n(t)
Jeq

es+1

(=

s+h

W] or edn=-ndt+eqdW )



A quartic static map
f(8) = 6%+ 03— 26°— 36,

with local minimum f(—1) = 1 and global minimum f(1) = —3.



l 77777777777777777777
stochastic ES value y = f(0)
of - — —local minimum
— — global minimum
_1 -

0 5 10 15 20 25 30
Time(sec)

1.5

0.51

— estimate value

- — —local minimum point

‘‘‘‘‘ global minimum point

5 10 15 20 25 30
Time(sec)

Time response of a discrete-time version of the stochastic ES algorithm, starting from the

local minimum, 8(0) = —1.



A heuristic analysis of a simple stochastic ES algorithm

Perturbation signal (colored noise)

edn = —ndt+ eqdW

Input

Estimation error

Estimation error governed by

(2)

(3)

(4)

(5)



Applying the Taylor expansion to f(0) around 8* up to second order we get

-~ * !/ Ok & 1 1 [ Ok ~\ 2
f(8) ~ f(0%)+ (0% (ar]—e)+§f (6") (an—8)~. (6)
= 0 by assmpn

Substituting (6) into (5) and grouping the terms in powers of I we obtain

8(t) ~ k{n()[f(ﬁ*) ;f”(e*)ﬁz( )]
f” 6*)8(t)

— f” 0* } (7)



The signal n(t) is governed by edn = —ndt+ +/eqdW, where W(t) is the Wiener process.
With small €, the signal n is a close approximation of white noise W(t).

Using elementary Ito calculus,

ImE{n®; = 0 (8)
2

ime{no} = 5 2

tllrgoE{r]?’(t)} — 0. (10)



To illustrate how these relations are obtained, we consider the case of r]z, namely, (9),
which is obtained by applying Ito’s differentiation rule to r]2, which yields the ODE

edE{n?} _ 20, &
2 at . Cty

The solution of this linear ODE is

E(n?(1)} = e—”/SE{n2<o>}+q—22(1—e—2t/8)

—  — ast — oo,
2

When € is small, it is clear that the convergence in time t is very fast. This is the case with
the convergence rates of all three expectations given in (8), (9), and (10).



Approximating now the n-terms in (7) by their respective expectations, after a short tran-
sient whose length is O(€), the estimation error is governed by

B(t) ~ — kaqu” 0")8(t)




Unfortunately, the scheme with the unbounded stochastic perturbation n(t) is not
amenable to rigorous analysis. To make analysis feasible, using stochastic averaging the-
ory, we replace | by a bounded stochastic perturbation sin(n).

6 f* Plant
g | y
<A >
M9 |k <_<%><_HV s,
\+/ S s+h
a sin() sin(77)

[W] or Edﬂ——ﬂdt+\/_QdW)

2

speedsin(n) (1 —e )

Convergence speeds of the two algorithms are related as = 5 :
speedy q




Stochastic Averaging

Theorem [Liu and Krstic, TAC 2010]

Consider the system

3

d;? (X Yt/e) Xg =X

where Xf € R"; Y; € R™Mis a time-homogeneous continuous Markov process defined on a
complete probability space (Q, 7 ,P), where Q is the sample space, ¥ is the o-field, and
P is the probability measure. Let D C R" be a domain (open connected set) of R" and Sy
be the living space of the perturbation process (Yt,t > 0).



Suppose that the vector field a(X,y) is a continuous function of (X,y), and for any x € D, it
Is a bounded function of y. Further, suppose that it satisfies the locally Lipschitz condition
in X € D uniformly iny € Sy, i.e., for any compact subset Dg C D, there is a constant kDO
such that for all X',X” € Dgand ally € Sy, |a(X,y) —a(x",y)| < kp, [X —x"|. Assume that
the perturbation process (Y;,t > 0) is ergodic with invariant distribution L1

If the equilibrium Xi = X € D of the average system

dXy _
W_a(xt)a Xo =X,

where

al) = [, atxyu(ay),

is exponentially stable, then there exist constants r > 0, ¢ > 0, y > 0 and a function T (€) :
(0,€9) — N such that for any initial condition X € {X' € D: |[X —X| < r}, and any 8 > O,

lim inf{t>0:|Xf—%|>c|xje " 4+38} =+, as..
e—0

and
lim. P{IXf —X <clxe "+ vt c[0,T(e)} =1
E—

with lim T(€) = 4.
e—0



Stochastic Nonholonomic Source Seeking

(autonomous vehicles and bacterial locomotion)



Vehicle model

Eqgns of motion for vehicle center:

Sensor is located atrs=r¢c+ Rel®.

vel

v



Problem statement

Task: seek a source that emits a spatially distributed signal J = f(r(X,y)), which has an
isolated local maximum f(r*) atr*.



Problem statement

Task: seek a source that emits a spatially distributed signal J = f(r(X,y)), which has an
isolated local maximum f(r*) atr*.

Assumption (in the analysis, but not in simulations): Spatial distribution is quadratic, with

circular level sets, I.e.,

f(r)=f*—q|r—r*°.



Problem statement

Task: seek a source that emits a spatially distributed signal J = f(r(x,y)), which has an
isolated local maximum f(r*) atr*.

Assumption (in the analysis, but not in simulations): Spatial distribution is quadratic, with

circular level sets, i.e.,

f(r)= f*—qr\r—r*\z.

Result of the paper: A stochastic seeking algorithm and a proof of local convergence to

r*, in a particular probabilistic sense, without the knowledge of g, r*, f* and without the
measurement of r¢(t), using only the measurement of J(t) at the vehicle sensor.



Two control approaches

e tuning of angular velocity [forward velocity = const.]

e tuning of _ [angular velocity = const.]



Two control approaches

e tuning of angular velocity [forward velocity = const.]

e tuning of _ [angular velocity = const.]

Angular velocity controller:

. 1 :
u=cJsin(n) + az (=N + gveW)

v=cJsin(n) +a% [— (n cogn) +gzsin(n)) +9ﬁ008(n)W}

gvV/E

es+1

W]

where N =



Controller with  v(t) = V¢ = constand tuning of

angular velocity

0 Unicycle Kinematics & r s Sigpal Field
> " » Nonlinear Map
Sensor Position Map
f ('xs 2 ys)
(M 0 ) T C ol S S
- N \{_ s+h
an(t)
gs || sin(e)
ag _ d. e ( .) 2
cs+1 ' 0
5 n(t)
ge
cs+1

white noise W (¢)



0.8

0.6}

0.4}

0.2}

-0.2

—— Vehicle (x., y.)

* Initial position

x Source (z*,y*)

ST

0.5

—— Vehicle motion

0.48;

0.46;

0.44;

(WLOG we place the source at the origin, r* = (0,0).)



Theorem Consider the stochastic system in the block diagram (5 states):

[ rc ] Veel® [ 0 |
dle| _ e dt+ -2
dt| 8 | | —&n+(cE—do&?)sin(n) Ve | a
1
LN I —£N | 1)
|0 * 2
& = —(grirc+RE”—r*| +e)

Denote

p _ VC'l(a7 g)
2quR|2(a, g) |



If the initial conditions rc(0), 6(0), e(0) are such that the quantities
Ire(@) = r*|=pl. |e(0)+ar(R2+p?)|.
either |8(0) —arg(r* —rc(0)) + 3| or [8(0) —arg(r* —rc(0)) — 5|

are sufficiently small,

l.e., if the vehicle starts close to the annulus and not pointing too far away from the annulus

0.1;

0.05¢




then there exists a constant Cg > 0 dependent on the initial condition (r¢(0),0(0),e(0))
and on the parameters a,c,dp,h,R,Vc,Qr,g, a constant yg > O dependent only on the
parameters a,¢,dg, h, R V¢, qr, g, and a function T(€) : (0,€9) — N with the property

lim T (&) = oo,
e—0

such that for any o > 0,

IimO inf{t>0:re(t) —r*| —p| > Coe V' + 8} =, as.
E—

and

lim  P{[|rc(t) —r*| —p| <Coe Y0' +5, vt € [0, T(g)]} = 1.

e—0



Built mobile robots and a ‘plume/wind’ tunnel; tested the algorithms.

(UCSD-led ONR MURI on olfactory sensing/localization, 2007-2012.)




Controller with 8 = L= constand tuning of [forward velocity

1.15

=
=
!

position y
=
o
a1

' - N
l\ ——a -~

0.4 0.45 0.5 0.55

position x

Source at (0,0).



Theorem

lim P{
e—0

Yo—Y*

o |=dles

e M1 5+0(a), Vi e [O,T(a)]} =1



Newton -Based Stochastic ES



Multivariable Gradient ES

a WA, g

(%)
~
S
~

~
\—
\——a

>

y G ®<M (17(1))

S(t)) = [agsin(ny(t)),...,ansin(nn(t))]",
M(n()) = sin(n(t)),...,

)
LTI 2
where nj = S'S\i_'l[V\,ﬂ and Gp(q) = %(1— e 1)
[

Convergence rate governed by the unknown Hessian at the extremum:

doavet)
dt

= KHB4t)



Newton -based ES

S(n(1))

M (n(1))

0 [k - (;%
<«—-1'G
L_ — H %N(n(t))
I =hl—hCHT

{Siﬂz(ni) - GO(Qi)}

4

a?G5(+/2q:)
1

8jajGo(0i)Go(q;

)Sin(ni)Si”(ﬂj)a | 7 ]

[: matrix Riccati diff. eq. that estimates the inverse of Hessian matrix



Convergence rate user-assignable!

dedatve — —_K éave
dl—ave _ _.l'iave

dt



Photovoltaic Arrays

maximum power point tracking

Azad Ghaffari



Maximum power point tracking
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(a) and (b) varying irradiance, T=25°C  (c) and (d) varying temperature, S=1000N/m?



Maximum power point tracking

Y—
y

DC
Bus

_|_
PV d|«Q
vV — Y/
Module ¢ ;:l C de

T, S|~

DC/DC boost converter

(Voltage V4c controlled via pulsewidth d on

transistor Q)

(Tm S%)

PV

Converter

To,

Converter

n

Cn_l_

V02

Von

Tor

Inverter

Cascade PV system including n PV modules



D1 | DC/DC | V1 | PV1 | Py

D D, | DC/DC | Vs | PV, | P,
Dn | DC/DC | Vi | PV, | P

St)

D2 A

Newton ES algorithm for tuning pulsewidths
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Extremum Seeking Based on
Atmospheric Turbulence for

Aircraft Endurance

(ES without injecting a perturbation)



Endurance = the length of time an aircraft can remain airborn e

Goal: Find the airspeed for optimal endurance

Typcial Drag Curve
1000 . . . .
total drag
— — — parasite drag /
sookF | induced drag

900

700

600

500

400

Drag Force — pounds

300

200

100

0 1 1
50 100 150 200 250 300
Airspeed - feet/sec




Jet aircraft (Global Hawk)
e Min. fuel [ drag(speed)
e Speed controlled through throttle

Propeller aircraft (Predator)
e Min. fuel [J drag(speed) x speed

e Speed controlled through elevator



e The optimal speed is different for each individual aircraft

e Perturbing the airspeed annoys air traffic control



Turbulence-Based ES asatn (unmeasured)

/ ‘ Airspeed Controller L .\.\
i 7 Aircraft Model '\\ i
i /'/ % \ i
. k; U 1 dt v S+ ' i
LG ey + — | b - LESG R
AN S | m S ! !
| | | |
| | | i
: '\_ D() b
\ i

I \ 7 I
! S - !
| |
\ J

S e i 7
do,
Dy dt D(v + asat bu
» 1 ks ( 77) q‘
il e dv
dt
m
U, — (v +asatn)
v

V = airspeed V = ground speed a satn = turbulence
u = throttle D =drag measured : airspeed, accel, & throttle setting



Theorem

If the adaptation gain is chosen small (in inverse proportion to upper bound on minimum
drag) then an airspeed near the value that minimizes drag (with bias L] variance of airspeed
and 3rd derivative of drag curve) is weakly exponentially stable (wpl as turbulence time
constant — 0).



Theorem

Simulation
on Northrop Grumman
proprietary software

turbulence saturated filtered gaussian
no vertical turbulence

altitude = pitch = const

Dryden turbulence

6 DOF model



Proprietary aircraft performance data (result presented w

Airspeed

Fuel Flow Rate

Endurance Optimization Using
Equivalent Steady-State Measurements

Relative Significance of Airspeed Bias

-

Time

/0 units)

1. Cruising in calm air
2. Turbulence encounter begins
e Fuel flow rate fluctuates
e Airspeed optimization be-
gins
3. Turbulence encounter ends
e Fuel flow rate stabilizes
4. Go to nominal loiter speed
e Fuel 7T slightly after switch
from ES to loiter speed

Relative Significance of Airspeed Bias

Fuel Flow Rate




Some more applications of ES



High Voltage Converter Modulators

In Accelerators (LANL)

Alex Scheinker



High Voltage Converter Modulator  for Klystron RF source
(at Los Alamos and Oak Ridge national labs)

H-Bridges (x3) é_‘ L, o Lond
— YY YL
DCHink + Leg A Leg B Transformer
Secondary Coeak
Windings J ; L ; L ; 1 . ]

% mqék S, T L

Primary

LI ZREREN

DC-link - Y-point connection p—

\

Voltage step response to —10V in 50us (~ 10° V/s)



Beam Alignment Control

to Maximize Production

Paul Frihauf Matt Graham



EUV (extreme ultra-violet) system

Laser / Droplet
Droplet Generator Targeting Cameras (visible)
X, Y — steer Line scan (2) - High speed
2D Frame (2) — Video rate

Z — steer (optional)

EUV Sensor(s) (4)
Internal Energy

Angular Symmetry Intermediate Focus

Elliptical Collector Turbomolecular Pump(s)

Turning Mirror
X, Y - steer ~—

Primary Focus, Plasma

Focusing Mirror
Z - steer

Droplet Catcher



Z: lens moved w/ stepper motors Y: mirror moved w/ piezos



Energy maximization in EUV

y—position

Initial Position
of Maximum

<—__ Initial

Position

Final Position
of Maximum

Energy Map

Z—position




Dank u wel



Peak Seeking Stonewall Peak (Lake Cuyamaca)
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