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Introduction

Miroslav Krstic



Various Approaches to Control of Distributed Parameter Sys tems

• Controllability

• Optimal control

• Abstract approaches based on semigroups

• Frequency-domain approaches based on robust control (not natural because PDEs

come in time domain and conversion to frequency domain is hard; model reduction,

implied by the robust control approach, is also hard)

• “Boundary damper” controllers (for a limited class of systems and under a very limited

actuation architecture)

• Very few of these results have ever been tested in simulations.



Books by

Lions; Komornik; Curtain and Zwart; Lasiecka and Triggiani; Bensoussan, Da Prato,

Delfour, and Mitter; Li and Yong; van Keulen; Luo, Guo, and Morgul; Lagnese; Lasiecka;

Banks, Smith, and Wang; de Queiroz, Dawson, Nagarkatti, and Zhang; Aamo and Krstic;

Gunzburger; Christofides



Where Does Control of PDEs Fit Within the Landscape of Mainst ream
Control?

• IEEE TAC, Automatica?

• Seems like a fringe discipline

• Most unfortunate because of all the potential applications



Applications

• flexible structures (aerospace, civil, AFM)

• chemical process control

• fluids, aerodynamics, turbulence, propulsion, acoustics

• quantum control
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Classes of PDEs

• Parabolic (heat transfer, chemical reactions, etc)

• Hyperbolic (waves—acoustics, strings, etc)

• Other “odd” equations (most physically relevant problems are): Navier-Stokes,

Korteweg-de Vries, Kuramoto-Sivashinsky, some beam/plate/shell models, etc



Actuator Location

• Boundary control

• In-domain control (a few actuators)
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Actuator Location

• Boundary control

• In-domain control (a few actuators)

• Distributed control (lots of actuators)



Dimension of Spatial Domain

1D, 2D, 3D,... nD?
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Control Objectives

• Stabilization and performance addressed in many publications

• Trajectory tracking barely touched



Benchmark PDEs

• heat equation

• reaction-advection-diffusion equations

• wave equation

• beam models (Euler-Bernoulli, Rayleigh, Timoshenko)

• Burgers

• Navier-Stokes

• MHD

• Korteweg-de Vries

• complex-valued PDEs: Ginzburg-Landau, Schrodinger

• Sine-Gordon

• ...



Basic Issues in PDEs

Eigenvalues, eigenfunctions, exact solutions,...



Stability

• no useful “general Lyapunov theory” for infinite dimensional systems

• spatial norms

• Poincare, Agmon, and Sobolev inequalities

• energy boundedness vs. pointwise (in space) boundedness



Choices of Boundary Controls

• Dirichlet (fluids)

• Neumann (thermal)



Static vs. Dynamic Behavior in PDEs

Equilibrium/static problems = PDEs themselves (or, in the 1D case, ODEs).



Nonlinear Issues

• blow up in time (superlinear nonlinearities like in chemical reactions)

• blow up in space (shock waves—Burgers, etc.)

• boundedness despite quadratic nonlinearities (Navier-Stokes)



On with the Course!

• boundary control only

• focus on unstable PDEs

• no Riccati equations

• all basic categories of PDEs, from all major applications areas, will be covered

No theorems.



PDE Basics

Andrey Smyshlyaev
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Introduction

Simplest physical model: heating rod

1 2

Heat equation Tt(x, t) = εTxx(x, t)

Left boundary condition T(0, t) = T1

Right boundary condition T(L, t) = T2

Initial condition T(x,0) = T0(x)

Want to represent this equation in a form suitable for our course.



Procedure

1. Scale x to normalize length: ξ = x
L ⇒ Tt = ε

L2Tξξ

2. Scale t to normalize diffusion coefficient: τ = ε
L2t ⇒ Tτ = Tξξ

3. Find steady-state solution T̄:

T̄ ′′(ξ) = 0

T̄(0) = T1 ⇒ T̄(ξ) = T1+ξ(T2−T1)

T̄(1) = T2

4. Introduce the error variable w = T − T̄

wτ(ξ,τ) = wξξ(ξ,τ)
w(0,τ) = 0

w(1,τ) = 0

w(ξ,0) = w0(ξ)

Finally, suppress time dependence and initial condition



Procedure

1. Scale x to normalize length: ξ = x
L ⇒ Tt = ε

L2Tξξ

2. Scale t to normalize diffusion coefficient: τ = ε
L2t ⇒ Tτ = Tξξ

3. Find steady-state solution T̄:

T̄ ′′(ξ) = 0

T̄(0) = T1 ⇒ T̄(ξ) = T1+ξ(T2−T1)

T̄(1) = T2

4. Introduce the error variable w = T − T̄

wτ = wξξ
w(0) = 0

w(1) = 0

w(1) = 0

Finally, suppress initial condition and time and space dependence



Basic types of boundary conditions

• Dirichlet: w(0) = 0 (temperature)

• Neumann: wx(0) = 0 (heat flux)

• Robin (mixed): w(0)+qwx(0) = 0



Stability of PDEs
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Stability of PDEs

Heat equation

wt = wxx

w(0) = 0

w(1) = 0

As in finite dimension, there are two ways to analyze stability properties:

— Find the exact solution [usually not possible]

— Use Lyapunov theory to show stability without solving the PDE

[there is no general Lyapunov theory for PDEs]

For this simple plant both methods can be applied

Not so for more complicated systems



Lyapunov Stability

Most common Lyapunov function for PDEs is L2 spatial norm:

V =
1
2

Z 1

0
w2(x)dx := ‖w‖2

Time derivative along the solutions:

V̇ =
dV
dt

=

Z 1

0
w(x)wt(x)dx

=

Z 1

0
w(x)wxx(x)dx

= w(x)wx(x)|10−
Z 1

0
w2

x(x)dx (integration by parts)

= −
Z 1

0
w2

x(x)dx

So the system is stable, but is it asymptotically stable?

Need to express ‖wx‖ in terms of ‖w‖



Useful inequalities

Cauchy-Schwartz Inequality
Z 1

0
uwdx ≤ ‖u‖‖w‖

≤ γ
2
‖u‖2+

1
2γ
‖w‖2

Poincare Inequality
Z 1

0
w2dx ≤ 2w2(1)+4

Z 1

0
w2

x dx
Z 1

0
w2dx ≤ 2w2(0)+4

Z 1

0
w2

x dx

In particular, if one of the boundary conditions is zero, then

‖w‖ ≤ 2‖wx‖



Proof of Poincare Inequality:
Z 1

0
w2dx = xw2|10−2

Z 1

0
xwwxdx

= w2(1)−2
Z 1

0
xwwxdx

≤ w2(1)+
1
2

Z 1

0
w2dx+2

Z 1

0
x2w2

x dx

We get

1
2

Z 1

0
w2dx ≤ w2(1)+2

Z 1

0
x2w2

xdx

≤ w2(1)+2
Z 1

0
w2

xdx

Finally
Z 1

0
w2dx ≤ 2w2(1)+4

Z 1

0
w2

x dx



Back to Lyapunov function:

V̇ = −
Z 1

0
w2

x dx

≤ −1
4

Z 1

0
w2dx (Poincare inequlaity)

≤ −1
2
V

Therefore

V(t) ≤V(0)e−t/2 or ‖w(t)‖ ≤ e−t/4‖w0‖

We showed that ‖w‖→ 0 as t → ∞

This does not imply that w(x, t) → 0 as t → ∞ for all x (“spikes” in space are possible)



Pointwise Stability

Would like to show that

max
x∈[0,1]

|w(x, t)| ≤ Ke−
t
4 max

x∈[0,1]
|w(x,0)|

This result cannot be proved. However, it is possible to show a slightly weaker result

max
x∈[0,1]

|w(x, t)| ≤ Ke−
t
4‖w0‖H1

We define H1 norm as

‖w‖H1 :=
Z 1

0
w2dx+

Z 1

0
w2

x dx

Note that by using Poincare inequality it is possible to drop the integral of w2 for most

problems



The following inequality bounds the maximum norm by L2 and H1 norms and boundary
condition:

Agmon Inequality

max
x∈[0,1]

|w(x)|2 ≤ w2(0)+2‖w‖‖wx‖

max
x∈[0,1]

|w(x)|2 ≤ w2(1)+2‖w‖‖wx‖

Proof:
Z x

0
w(ξ)wξ(ξ)dξ =

1
2

w2(ξ)|x0 =
1
2

w2(x)− 1
2

w2(0)

Using triangle inequality we get

1
2

w2(x) ≤ 1
2

w2(0)+
Z x

0
|w(ξ||wξ(ξ)|dξ

w2(x) ≤ w2(0)+2
Z 1

0
|w(ξ)||wξ(ξ)|dx

max
x∈[0,1]

|w(x)|2 ≤ w2(0)+2‖w‖‖wx‖



Back to our problem:

wt = wxx

w(0) = 0
w(1) = 0

Let us use the Lyapunov function

V =
1
2

Z 1

0
w2(x)dx+

1
2

Z 1

0
w2

x(x)dx

V̇ =
Z 1

0
wwxxdx+

Z 1

0
wxwtxdx

= w(x)wx(x)|10−
Z 1

0
w2

x dx+wt(x)wx(x)
1
0−

Z 1

0
wxxwt dx

= −
Z 1

0
w2

x dx−
Z 1

0
w2

xxdx

≤ −1
2
‖wx‖2− 1

2
‖wx‖2

≤ −1
8
‖w‖2− 1

2
‖wx‖2

≤ −1
4
V



We have

‖w(t)‖2+‖wx(t)‖2 ≤ e−t/2
(

‖w0‖2+‖w0x‖2
)

where w0 = w(x,0) is the initial condition.

Finally,
max

x∈[0,1]
|w(x, t)|2 ≤ 2‖w(t)‖‖wx(t)‖ (Agmon inequality)

≤ ‖w(t)‖2+‖wx(t)‖2

≤ e−t/2
(

‖w0‖2+‖w0x‖2
)

We showed that the equilibrium w≡ 0 is asymptotically stable for all x∈ [0,1].



Typical response
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Eigenvalues, Eigenfunctions, Exact Solutions
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Exact Solutions

Exist mostly for the plants with constant parameters.

Two standard methods for finding exact solutions: separation of variables and Laplace

transform.

Separation of Variables

Heat equation with reaction:

ut = uxx+λu

u(0) = 0

u(1) = 0

Postulate the solution in the form u(x, t) = X(x)T(t).



Substitute u(x, t) = X(x)T(t) in the equation:

X(x)Ṫ(t) = X′′(x)T(t)+λX(x)T(t)

Divide by X(x)T(t):

Ṫ
T

=
X′′+λX

X
= σ

ODE for T:

Ṫ = σT

T = eσt (without loss of generality)

ODE for X:

X′′+(λ−σ)X = 0

X(0) = X(1) = 0

Solution for X(x):

X(x) = Asin(
√

λ−σx)+Bcos(
√

λ−σx)



X(x) = Asin(
√

λ−σx)+Bcos(
√

λ−σx)

X(0) = 0 ⇒ B = 0

X(1) = 0 ⇒ Asin(
√

λ−σ) = 0

⇒
√

λ−σ = πn, wheren = 0,1,2, ...

⇒ σ = λ−π2n2

Solution

un(x, t) = Ane(λ−π2n2)t sin(πnx), n = 0,1,2, ...

Since the PDE is linear, the sum of solutions is also a solution. Therefore the formal

general solution is

u(x, t) =
∞
∑
n=1

Ane(λ−π2n2)t sin(πnx)

To find An we use the knowledge of the initial condition u(x,0) = u0(x)



Set t = 0 ⇒ u0(x) = ∑∞
n=1Ansin(πnx)

Multiply both sides with sin(πmx) ⇒ u0(x)sin(πmx) = sin(πmx)∑∞
n=1Ansin(πnx)

Use the orthogonality property
R 1
0 sin(πmx)sin(πnx)dx=

{
1/2 n = m
0 n 6= m

}

to get
Z 1

0
u0(x)sin(πmx)dx=

1
2

Am

The exact solution is eigenvalues effect of initial conditions

u(x, t) = 2
∞
∑
n=1

e

︷ ︸︸ ︷

(λ−π2n2) t sin(πnx)
︸ ︷︷ ︸

︷ ︸︸ ︷
Z 1

0
sin(πnx)u0(x)dx

eigenfunctions

The stability condition is λ < π2. Note that it is much less conservative than the one

obtained using Lyapunov method (which gives λ < 1/4).



Example. Find values of the parameter g for which the system

ut = uxx+gu(0)

ux(0) = u(1) = 0

is unstable.

Let u(x, t) = eσtX(x). Substitute this solution in the PDE to get an ODE

X′′(x)−σX = −gX(0)

which has a general solution

X(x) = Asinh(
√

σx)+Bcosh(
√

σx)+
g
σ

X(0)

To find B, let x = 0:

X(0) = B+
g
σ

X(0) ⇒ B = X(0)
(

1− g
σ

)

Boundary condition at x = 0 gives

X′(0) = 0 ⇒ A = 0



We have

X(x) = X(0)
[g

σ
+
(

1− g
σ

)

cosh(
√

σx)
]

Boundary condition at x = 1 gives

X(1) = 0 ⇒ cosh(
√

σ) =
g

g−σ

This equation cannot be solved in closed form. But we can still find the region of stability.

Solve for g in terms of σ:

g =
σcosh(

√
σ)

cosh(
√

σ)−1

Take the limit σ → 0:

g = lim
σ→0

σcosh(
√

σ)

cosh(
√

σ)−1
= lim

σ→0

σ(1+σ/2)

1+σ/2−1
= 2

Therefore, the PDE is unstable for g > 2.



Backstepping Design for Parabolic PDEs
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Backstepping Control Design

Unstable heat equation

ut = uxx+λu

u(0) = 0

u(1) = control

Backstepping transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

Target system

wt = wxx

w(0) = 0

w(1) = 0

Controller is obtained by setting x = 1 in the transformation

u(1) =
Z 1

0
k(1,y)u(y)dy



Useful knowledge from calculus: Leibniz Integral Rule

∂
∂z

Z b(z)

a(z)
f (x,z)dx=

Z b(z)

a(z)
fz(x,z)dx+ f (b(z),z)b′(z)− f (a(z),z)a′(z)

Notation:

kx(x,x) =
∂
∂x

k(x,y)|y=x

ky(x,x) =
∂
∂y

k(x,y)|y=x

d
dx

k(x,x) = kx(x,x)+ky(x,x)



Kernel PDE Derivation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

wx(x) = ux(x)−
Z x

0
kx(x,y)u(y)dy−k(x,x)u(x)

wxx(x) = uxx(x)−
Z x

0
kxx(x,y)u(y)dy−kx(x,x)u(x)− d

dx
(k(x,x)u(x))

Time derivative:

wt(x) = ut(x)−
Z x

0
k(x,y)ut(y)dy

= uxx(x)+λu(x)−
Z x

0
k(x,y)[uyy(y)+λu(y)]dy

= uxx(x)+λu(x)−k(x,x)ux(x)+k(x,0)ux(0)+
Z x

0
ky(x,y)uy(y)dy

−
Z x

0
λk(x,y)u(y)dy (integration by parts)

= uxx(x)+λu(x)−k(x,x)ux(x)+k(x,0)ux(0)+ky(x,x)u(x)−ky(x,0)u(0)

−
Z x

0
kyy(x,y)u(y)dy−

Z x

0
λk(x,y)u(y)dy (integration by parts)



wt −wxx = uxx(x)+λu(x)−k(x,x)ux(x)+k(x,0)ux(0)+ky(x,x)u(x)−ky(x,0)u(0)

−
Z x

0
kyy(x,y)u(y)dy−

Z x

0
λk(x,y)u(y)dy

−
[

uxx(x)−
Z x

0
kxx(x,y)u(y)dy−kx(x,x)u(x)−u(x)

d
dx

k(x,x)−k(x,x)ux(x))

]

= u(x)

[

λ+2
d
dx

k(x,x)

]

+k(x,0)ux(0)

+

Z x

0
u(y)[kxx(x,y)−kyy(x,y)−λk(x,y)]dy

For right hand side to be zero, 3 conditions should be satisfied:

kxx(x,y)−kyy(x,y) = λk(x,y)

k(x,0) = 0

λ+2
d
dx

k(x,x) = 0

Are these 3 conditions compatible? In other words, is this PDE well posed?



Control kernel PDE

kxx(x,y)−kyy(x,y) = λk(x,y)

k(x,0) = 0

k(x,x) = −λx
2

Domain



Converting Kernel PDE to Integral Equation

Introduce the change of variables

ξ = x+y

η = x−y

k(x,y) = G(ξ,η)

Then we have

kx = Gξ +Gη
kxx = Gξξ +2Gξη +Gηη
ky = Gξ−Gη

kyy = Gξξ−2Gξη +Gηη

The kernel PDE in new variables is

4Gξη(ξ,η) = λG(ξ,η)

G(ξ,ξ) = 0

G(ξ,0) = −λξ
4



Integrate 4Gξη = λG with respect to η from 0 to η:

Gξ(ξ,η) = Gξ(ξ,0)+

Z η

0

λ
4

G(ξ,s)ds

Integrate the result with respect to ξ from η to ξ and use boundary conditions to get

G(ξ,η) = −λ
4
(ξ−η)+

λ
4

Z ξ

η

Z η

0
G(τ,s)dsdτ

How to solve this integral equation?



Method of Successive Approximations

Very simple idea: start with a guess, compute the right hand side of the equation, use

the solution as the next guess and repeat. The result will converge to the solution of the

integral equation.

Let us start with initial guess

G0(ξ,η) = 0

and define

Gn+1(ξ,η) = −λ
4
(ξ−η)+

λ
4

Z ξ

η

Z η

0
Gn(τ,s)dsdτ

Performing the necessary integrations and observing the resulting pattern one can guess

the general term of this series and then prove by induction that it is correct:

Gn+1(ξ,η)−Gn(ξ,η) = −(ξ−η)ξnηn

n!(n+1)!

(
λ
4

)n+1
, n = 0,1,2, . . .



The solution to the integral equation is

G(ξ,η) = lim
n→∞

Gn(ξ,η)

= −
∞
∑
n=0

[Gn+1(ξ,η)−Gn(ξ,η)]

= −
∞
∑
n=0

(ξ−η)ξnηn

n!(n+1)!

(
λ
4

)n+1

This series can be summed up:

G(ξ,η) = −λ
2
(ξ−η)

I1
(√

λξη
)

√

λξη

or in the original variables

k(x,y) = −λy
I1

(√

λ(x2−y2)

)

√

λ(x2−y2)



Bessel Functions Jn and In

The function y(x) = Jn(x) is a solution to the following ODE

x2y′′xx+xy′x+(x2−n2)y = 0

Series representation

Jn(x) =
∞
∑

m=0

(−1)m(x/2)n+2m

m!(m+n)!

Other properties

2nJn(x) = x(Jn−1(x)+Jn+1(x))

Differentiation

d
dx

Jn(x) =
1
2
(Jn−1(x)−Jn+1(x))

d
dx

(xnJn(x)) = xnJn−1



Asymptotic properties

Jn(x) ≈
1
n!

(x
2

)n
, x→ 0

Jn(x) ≈
√

2
πx

cos
(

x− πn
2
− π

4

)

, x→ ∞

0 2 4 6 8 10
−0.5

0

0.5

1
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The function y(x) = In(x) is a solution to the following ODE

x2y′′xx+xy′x− (x2+n2)y = 0

Series representation

In(x) =
∞
∑

m=0

(x/2)n+2m

m!(m+n)!

Relationship with Jn(x)

In(x) = i−nJn(ix), In(ix) = inJn(x)

Other properties

2nIn(x) = x(In−1(x)− In+1(x))

Differentiation

d
dx

In(x) =
1
2
(In−1(x)+ In+1(x))

d
dx

(xnIn(x)) = xnIn−1



Asymptotic properties

In(x) ≈
1
n!

(x
2

)n
, x→ 0

In(x) ≈
ex

√
2πx

, x→ ∞

0 1 2 3 4 5
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Inverse Transformation

Remember the transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

We found k(x,y) and w-system is exp. stable. Does this imply that u is exp. stable?

Depends on the properties of k(x,y). Since our kernel k(x,y) is twice continuously differ-
entiable, it turns out that this is enough for inverse transformation to exist.

Let us find the inverse transformation

u(x) = w(x)+
Z x

0
l(x,y)w(y)dy

It can be shown that l(x,y) satisfies the following PDE

lxx(x,y)− lyy(x,y) = −λl(x,y)

l(x,0) = 0 ⇒ l(λ) = −k(−λ)!

l(x,x) = −λx
2



We have

l(x,y) = (−λ)y
I1

(√

(−λ)(x2−y2)

)

√

−λ(x2−y2)
= −λy

I1

(

j
√

λ(x2−y2)

)

j
√

λ(x2−y2)

= −λy
J1

(√

λ(x2−y2)

)

√

λ(x2−y2)

Therefore the inverse transformation is

u(x) = w(x)−
Z x

0
λy

J1

(√

λ(x2−y2)

)

√

λ(x2−y2)
w(y)dy

Since w(x, t) → 0 as t → ∞, we get u(x, t) → 0 for all x∈ [0,1] with a boundary controller

u(1) = −
Z 1

0
λy

I1

(√

λ(x2−y2)

)

√

λ(x2−y2)
u(y)dy



Control Gain
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Neumann Controller

Unstable heat equation with Neumann actuation

ut = uxx+λu

u(0) = 0

ux(1) = control

Exactly the same transformation as in case of Dirichlet actuation:

w(x) = u(x)+
Z x

0
λy

I1

(√

λ(x2−y2)

)

√

λ(x2−y2)
u(y)dy

But with a target system modified at x = 1 (easy to show that it is stable)

wt = wxx

w(0) = 0

wx(1) = 0



Simply differentiate the transformation with respect to x:

w(x) = u(x)+

Z x

0
λy

I1

(√

λ(x2−y2)

)

√

λ(x2−y2)
u(y)dy

wx(x) = ux(x)+
λx
2

u(x)+
Z x

0
λyx

I2

(√

λ(x2−y2)

)

x2−y2 u(y)dy

and evaluate at x = 1 to get Neumann controller:

ux(1) = −λ
2

u(1)−
Z 1

0
λy

I2

(√

λ(1−y2)

)

1−y2 u(y)dy



Closed Loop Simulation

ux(1)

t

x

t

u

Closed loop state Control effort



Reaction-Advection-Diffusion Systems

Plant

ut = ε(x)uxx+b(x)ux+λ(x)u

ux(0) = −qu(0)

These equations come from thermal / fluid / chemical problems.

What each term does:

Diffusion Advection Reaction

(smoothing) (transfer) (destabilizing)



Reaction-Advection-Diffusion Systems

Plant

ut = ε(x)uxx+b(x)ux+λ(x)u

ux(0) = −qu(0)

Spatially varying coefficients arise for several reasons:

— linearization

— non-homogenous materials

— unusually shaped domains

Using special transformation we can eliminate b(x) and make ε(x) constant.



Gauge transformation

z=
√

ε0

Z x

0

ds
√

ε(s)
, where ε0 =

(
Z 1

0

ds
√

ε(s)

)−2

v(z) = u(x)ε(x)−
1
4 exp

{
Z x

0

b(s)
2ε(s)

ds

}

Transformed plant

vt = ε0vxx+λ0(x)v

vx(0) = −q0v(0)

where

λ0(x) = λ(x)+
ε′′(x)

4
− b′(x)

2
− 3

16
(ε′(x))2

ε(x)
+

1
2
(b(x)ε′(x))

ε(x)
− 1

4
b2(x)
ε(x)

q0 = q

√

ε(0)

ε0
− b(0)

2
√

ε0ε(0)
− ε′(0)

4
√

ε0ε(0)



Backstepping transformation

w(x) = v(x)−
Z x

0
k(x,y)v(y)dy

Target system

wt = ε0wzz−cw

wz(0) = 0

w(1) = 0

Kernel PDE

kzz(z,y)−kyy(z,y) =
λ0(y)+c

ε0
k(z,y)

ky(z,0) = −q0k(z,0)

k(z,z) = −q0−
1

2ε0

Z z

0
(λ0(y)+c)dy

Kernel PDE can no longer be solved in closed form, but the solution can be computed

numerically (order of magnitude faster in computation time than solving a Ricatti equation).



Other Spatially Causal Plants

Plant

ut = uxx+g(x)u(0)+
Z x

0
f (x,y)u(y)dy

ux(0) = 0

u(1) = control

Control gain PDE

kxx−kyy = − f (x,y)+

Z x

y
k(x,ξ) f (ξ,y)dξ

ky(x,0) = g(x)−
Z x

0
k(x,y)g(y)dy

k(x,x) = 0

Example. Let f ≡ 0, then kxx−kyy = 0 which has a general solution

k(x,y) = φ(x−y)+ψ(x+y)



k(x,y) = φ(x−y)+ψ(x+y)

Setting y = x we get

φ(0)+ψ(2x) = 0 ⇒ φ(0) = 0 and ψ ≡ 0

Substituting k(x,y) = φ(x−y) into the boundary condition of the gain PDE we get

φ′(x) = g(x)−
Z x

0
φ(x−y)g(y)dy

Applying Laplace tranform with respect to x we get

−sφ(s)+φ(0) = g(s)−φ(s)g(s)

φ(s) =
g(s)

g(s)−s

Thus, the controller can be designed in closed form for any g(x)!



For example, if g(x) = g, then g(s) = g/s and we get

φ(s) =
g

g−s2 = −√
g

√
g

s2−g

This gives

φ(x) = −√
gsinh(

√
gx) ⇒ k(x,y) = −√

gsinh(
√

g(x−y))

Therefore, for the plant

ut = uxx+gu(0)

ux(0) = 0

stabilizing controller is

u(1) = −
Z 1

0

√
gsinh(

√
g(1−y))u(y)dy



Boundary Observers and Output Feedback

Andrey Smyshlyaev
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Observers

Plant

ut = uxx+λu

ux(0) = 0

Possible input-output architectures:

• Anti-collocated: u(0) measured and u(1) or ux(1) actuated

• Collocated: ux(1) measured and u(1) actuated (fluid problems)

u(1) measured and ux(1) actuated (thermal problems)



Anti-Collocated Setup

Plant

ut = uxx+λu

ux(0) = 0

Input: u(1) Output: u(0)

Observer

ût = ûxx+λû+ p1(x)[u(0)− û(0)]

ûx(0) = p10[u(0)− û(0)]

û(1) = u(1)

The function p1(x) and the constant p10 are observer gains.

Compare with finite dimension:

ẋ = Ax+Bu

y = Cx

˙̂x = Ax̂+Bu+L(y−Cx̂)



The error ũ = u− û satisfies

ũt = ũxx+λũ− p1(x)ũ(0)

ũx(0) = −p10ũ(0)

ũ(1) = 0

We use the transformation

ũ(x) = w̃(x)−
Z x

0
p(x,y)w̃(y)dy

to convert the error system into the stable target system:

w̃t = w̃xx

w̃x(0) = 0

w̃(1) = 0



Taking a derivative with respect to time we get

ũt = w̃t −
Z x

0
p(x,y)w̃yy(y)dy

= w̃xx− p(x,x)w̃x(x)+ p(x,0)w̃x(0)+

Z x

0
py(x,y)w̃y(y)dy

= w̃xx− p(x,x)w̃x(x)+ py(x,x)w̃(x)− py(x,0)w̃(0)−
Z x

0
pyy(x,y)w̃(y)dy

Taking derivatives with respect to x we get

ũx = w̃x− p(x,x)w̃(x)−
Z x

0
px(x,y)w̃(y)dy

ũxx = w̃xx−
d
dx

(p(x,x))w̃(x)− p(x,x)w̃x(x)− px(x,x)w̃(x)−
Z x

0
pxx(x,y)w̃(y)dy

From the error system we get

ũt − ũxx−λũ+ p1(x)ũ(0) = 0

= [−py(x,0)+ p1(x)]w̃(0)+

[

2
d
dx

(p(x,x))−λ
]

w̃(x)

+
Z x

0
[pxx(x,y)− pyy(x,y)+λp(x,y)]w̃(y)dy



This gives 3 conditions:

pxx(x,y)− pyy(x,y) = −λp(x,y)
d
dx

p(x,x) =
λ
2

p1(x) = py(x,0)

Boundary conditions of the error system give 2 more conditions

ũx(0) = −p10ũ(0) ⇒ p(0,0) = p10
ũ(1) = 0 ⇒ p(1,y) = 0

Observer kernel PDE

pxx(x,y)− pyy(x,y) = −λp(x,y)
p(1,y) = 0

p(x,x) = −λ
2
(1−x)

Observer gains

p1(x) = py(x,0)

p10 = p(0,0)



Change of variables

x̄ = 1−y ȳ = 1−x p̄(x̄, ȳ) = p(x,y)

Observer PDE in new variables

p̄x̄x̄(x̄, ȳ)− p̄ȳȳ(x̄, ȳ) = λp̄(x̄, ȳ)
p̄(x̄,0) = 0

p̄(x̄, x̄) = −λ
2

x̄

The solution is

p̄(x̄, ȳ) = −λȳ
I1

(√

λ(x̄2− ȳ2)

)

√

λ(x̄2− ȳ2)
= −λ(1−x)

I1
(√

λ(x−y)(2−x−y)
)

√

λ(x−y)(2−x−y)

Observer gains

p1(x) = py(x,0) = −λ(1−x)
x(2−x)

I2
(√

λx(2−x)
)

p10 = p(0,0) = −λ
2



Observer Gains

x

p1(x)

k(1,x)

λ = 15

λ = 10

λ = 5



Observer Simulation

t

L2 norm of the observer error

t

L2 norm of the open loop state



Collocated Setup

Plant

ut = uxx+λu

ux(0) = 0

Input: u(1) Output: ux(1)

Observer

ût = ûxx+λû+ p1(x)[ux(1)− ûx(1)]

ûx(0) = 0

û(1) = u(1)+ p10[ux(1)− ûx(1)]

The error ũ = u− û satisfies

ũt = ũxx+λũ− p1(x)ũx(1)

ũx(0) = 0

ũ(1) = −p10ũx(1)



Using the transformation

ũ(x) = w̃(x)−
Z 1

x
p(x,y)w̃(y)dy

we transform the error system into

w̃t = w̃xx

w̃x(0) = 0

w̃(1) = 0

Observer gain PDE

pxx(x,y)− pyy(x,y) = −λp(x,y)

p(x,x) = −λ
2

x

px(0,y) = 0

The observer gains are

p1(x) = p(x,1)

p10 = 0



Using the change of variables

x̄ = y ȳ = x

we get the same PDE as for the control kernel

p̄x̄x̄(x̄, ȳ)− p̄ȳȳ(x̄, ȳ) = λp(x̄, ȳ)

p̄ȳ(x̄,0) = 0

p̄(x̄, x̄) = −λ
2

x̄

The solution is

p(x̄, ȳ) = −λx̄
I1

(√

λ(x̄2− ȳ2)

)

√

λ(x̄2− ȳ2)
= −λy

I1

(√

λ(y2−x2)

)

√

λ(y2−x2)

Observer gain

p1(x) = −λ
I1

(√

λ(1−x2)

)

√

λ(1−x2)
= k(1,x) (duality)



Output Feedback

Plant

ut = uxx+λu

u(0) = 0

Input: ux(1) Output: u(1)

Observer

ût = ûxx+λû+
λx

1−x2I2

(√

λ(1−x2)

)

[u(1)− û(1)]

û(0) = 0

ûx(1) = ux(1)− λ
2
[u(1)− û(1)]

Controller

ux(1) = −λ
2

u(1)−
Z 1

0

λy

1−y2I2

(√

λ(1−y2)

)

û(y)dy



Frequency Domain Representation

Plant

ut = uxx+gu(0)

ux(0) = 0

Output: u(0) Input: u(1)

To derive the transfer function from u(1) to u(0), take the Laplace transform of the plant:

su(x,s) = u′′(x,s)+gu(0,s)

u′(0,s) = 0

General solution for this ODE:

u(x,s) = Asinh(
√

sx)+Bcosh(
√

sx)+
g
s
u(0,s)

and boundary condition gives

u′(0,s) = A
√

s= 0⇒ A = 0



We have

u(x,s) = Bcosh(
√

sx)+
g
s
u(0,s)

Setting x = 0 we get

B = u(0,s)
(

1− g
s

)

so that

u(x,s) = u(0,s)
[g

s

(

1− g
s

)

cosh(
√

sx)
]

Setting x = 1 we get the open-loop transfer function

u(0,s) =
s

g+(s−g)cosh(
√

s)
u(1,s)

There are infinitely many poles and no zeros (infinite relative degree).



Let us now design compensator. The observer is

ût = ûxx+gu(0)

ûx(0) = 0

û(1) = −
Z 1

0

√
gsinh(

√
g(1−y))û(y)dy

Applying Laplace transform we get

sû(x,s) = û′′(x,s)+gu(0,s)

û′(0,s) = 0

û(1,s) = −
Z 1

0

√
gsinh(

√
g(1−y))û(y,s)dy

The solution of this ODE is

û(x,s) = û(0,s)cosh(
√

sx)+
g
s

(
1−cosh(

√
sx)
)

u(0,s)

Setting x = 1 and using the boundary condition we express û(0,s) as a function of u(0,s):

û(0,s) =
cosh(

√
s)−cosh(

√
g)

scosh(
√

s)−gcosh(
√

g)
gu(0,s)



Finally, the compensator is

u(1,s) =
g
s

(

−1+
(s−g)cosh(

√
scosh(

√
g))

scosh(
√

s)−gcosh(
√

g)

)

u(0,s)
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Hyperbolic PDEs—Wave Equations
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Wave Equation with “Free End” Damping

String/Cable of unit length:

utt = uxx (wave equation)

ux(0) = 0 (“free” end)

u(1) = 0 (“pinned” end)

Energy/Lyapunov function

E =
1
2

(

‖ux‖2+‖ut‖2
)

ux = “shear” potential energy
ut = velocity kinetic energy



Ė =
Z 1

0
uxuxtdx+

Z 1

0
ututtdx (chain rule)

=
Z 1

0
uxuxtdx+

Z 1

0
utuxxdx

=
Z 1

0
uxuxtdx+ut(x)ux(x)|10−

Z 1

0
utxuxdx (integration by parts)

= ut(x)ux(x)|10
= 0 (using BCs)

Conservation of energy: E(t) ≡ E(0). The system is marginally/neutrally stable. Inifinitely

many eigenvalues on the imaginary axis.

A classical method of asymptotically stabilizing the system is to add “boundary damping:”

ux(0) = c0ut(0).

“Passive” control in both senses of the word (no active actuator and exploits the PRness

and ‘zero-state-observability’ of the plant).



Asymptotic stability proof by Lyapunov possible but tricky. Eigenvalue calculation easier.

First, the solution postulated as

u(x, t) = eσtφ(x).

Substituting this into the PDE gives

σ2eσtφ(x) = eσtφ′′(x),

and using the two BCs gives

eσtφ(1) = 0

eσtφ′(0) = c0σeσtφ(0).

Sturm-Louiville problem for wave eqn with boundary damping:

φ′′−σ2φ = 0

φ′(0) = c0σφ(0)

φ(1) = 0.



The solution given by

φ(x) = eσx+Be−σx

From the BC at x = 1 we get

B = −e−2σ.

From the BC at x = 0 we get

φ′(0)−c0σφ(0) = 0

σ(1+e2σ)−c0σ(1−e2σ) = 0

e2σ = −1−c0
1+c0

.

Solving for σ gives

σ = −1
2

ln

∣
∣
∣
∣

1+c0
1−c0

∣
∣
∣
∣
+ jπ

{

n+ 1
2 0≤ c0 < 1

n c0 > 1

Eigenvalues at −∞ for c0 = 1 (solution → 0 in finite time).



π/2

3π/2

π

5π/2

6

?

-

-

-

-

−π/2

c0 → 1

Re

Im

In real systems with (even the slightest) damping, the ideal c0 is not unity. The dependence

on c0 is extremely sensitive around c0 = 1.

The “boundary damper” feedback is very effective in adding damping to eigenvalues but it

requires actuation on the free end x = 0, which is seldom feasible.



Backstepping: Actuation at the “Base”

Suppose we apply the “boundary damper” feedback using an active actuator at the base,

while keeping the other end of the string/cable free:

utt = uxx

ux(0) = 0

ux(1) = −c1ut(1) , where c1 > 0.

(The sign of the gain must change to accommodate the switch from one boundary to the

other, which is equivalent to the reversal of the direction of the x axis.)

Due to the Neumann BC the system has one eigenvalue at the origin σ = 0.

As a result the system has any arbitrary constant u(x) = const. as an equilibrium profile.

To deal with this multitude of arbitrary equilibriums a more sophisticated (backstepping)

controller is needed at x = 1 if the boundary condition at x = 0 is to remain free.



Target system for the backstepping controller:

wtt = wxx

wx(0) = c0w(0)

wx(1) = −c1wt(1) , where c1 > 0.

The BC wx(0) = c0w(0) doesn’t use ∂t , i.e., it is not of “damping” type but of “Robin” type.

The idea with the BC wx(0) = c0w(0) is to use large c0 to make it behave like w(0) ≈ 0.

Lyapunov function for target system:

V =
1
2

(

‖wx‖2+‖wt‖2+c0w2(0)
)

+δ
Z 1

0
(1+x)wx(x)wt(x)dx

Positive definiteness: With Poincare’s and Young’s inequalities, one can show that for

sufficiently small δ, ∃ m1,m2 > 0 s.t.

m1U 6 V 6 m2U , where U = ‖wx‖2+‖wt‖2+w2(0)



V̇ =
Z 1

0
wxwtxdx+

Z 1

0
wtwttdx+c0w(0)wt(0)

+δ
Z 1

0
(1+x)(wxtwt +wxwtt)dx

substituting target system

=
Z 1

0
wxwtxdx+

Z 1

0
wtwxxdx+wx(0)wt(0)

+δ
Z 1

0
(1+x)(wxtwt +wxwxx)dx

integration by parts

=
Z 1

0
wxwtxdx+wtwx|10−

Z 1

0
wtwxtdx+wx(0)wt(0)

+δ
Z 1

0
(1+x)(wxtwt +wxwxx)dx canceling terms

= δ
(

Z 1

0
wxtwtdx+

Z 1

0
wxwxxdx+

Z 1

0
xwxtwtdx+

Z 1

0
xwxwxxdx

)

+wt(1)wx(1)



Notice that wxtwtdx= d
dx

w2
t

2 and wxwxxdx= d
dx

w2
x

2 and use integration by parts on the latter

two integrals involving an extra x term:

V̇ = wt(1)wx(1)+
δ
2

[

(1+x)(w2
x +w2

t )
]

|10−
δ
2

[

‖wx‖2+‖wt‖2
]

= −c1w2
t +δ(w2

t (1)+w2
x(1))− δ

2

[

w2
x(0)+w2

t (0)
]

− δ
2

[

‖wx‖2+‖wt‖2
]

V̇ = −
(

c1−δ(1+c2
1)
)

w2
t (1)− δ

2

(

w2
t (0)+c2

0w2(0)
)

− δ
2

[

‖wx‖2+‖wt‖2
]

which is negative definite for δ < c1
1+c2

1
. One can further show that

U(t) ≤ Me−t/MU(0)

for some possibly large M.

This exponential stability result legitimizes our “target system.”



Backstepping Design. The transformation

w(x) = u(x)+c0

Z x

0
u(y)dy

and the boundary controller

ux(1) = −c1ut(1)−c0u(1)−c1c0

Z 1

0
ut(y)dy

transform utt = uxx, ux(0) = 0 into wtt = wxx, wx(0) = c0w(0), wx(1) = −c1wt(1).

Homework: Prove this result.

So, k(x,y) = c0!

Gain selection guideline: c0 large and c1 around 1.

Term-by-term discussion: −c1ut(1)−c0u(1) is PD control; −c1c0
R 1
0 ut(y)dy is a spatially

averaged velocity and is a backstepping “damping” term.

Dirichlet implementation:

u(1) = − 1
c1s+c0

[ux(1)]− s
c1s+c0

[
Z 1

0
u(y)dy

]



The corresponding observer-based feedback is

ûtt = ûxx

ûx(0) = c̃0(ût(0)−ut(0))

û(1) = u(1)

ux(1) = −c0u(1)−c1(ut(1)+c0

Z 1

0
ût(y)dy).



Wave Equation with Kelvin-Voigt Damping

utt = uxx+duxxt

ux(0) = 0 (free end)

where d is a small positive damping coefficient.

-

6Im

Re

−1/d



Target system:

wtt = (1+d∂t)(wxx−cw)

wx(0) = 0

w(1) = 0

Damping in the PDE, no need for damping in the BCs.

Increasing c moves the eigenvalues along the circle in the negative real direction.

This adds damping (real part becomes more negative) but also increases the natural fre-

quency (imaginary part grows higher). The c term increases stiffness.

Trade-off between settling time and overshoot.



Transformation and boundary controller

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

u(1) =

Z 1

0
k(1,y)u(y)dy

with kernel

k(x,y) = −cx
I1

(√

c(x2−y2)

)

√

c(x2−y2)
.

Same as for the reaction-diffusion equation ut = uxx+λu with BC ux(0) = 0!

Remarks. The controller does not depend on d. For a fixed c, as d → 0, the controller’s

effect reduces to moving the eigenvalues up the jω-axis, which results in “jittery” response

and uses a lot of control energy. However in systems with moderate d, this technique

works great for adding more damping.



Flexible Beam PDEs
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Euler-Bernoulli beam model:

utt +uxxxx = 0

uxx(0) = uxxx(0) = 0 (free end condition)

u(0) = ux(0) = 0 (clamped end condition)

“Boundary damper” feedback at the tip with the base clamped:

uxx(0) = c0uxt(0), c0 > 0.

Eigenvalues the same as the wave equation but with different vertical spacing.



Photograph of cantilevered beam testbed. (Shaker disconnected.)



Shear Beam Model—Backstepping Control from the Base

The shear beam model:

utt − εuxxtt+uxxxx= 0,

where ε is inversely proportional to the “shear modulus.”

(uxxtt not a damping term. It reduces stiffness.)

Equivalent representation:

εutt = uxx−αx

0 = εαxx−α+ux,

where α(x, t) is the deflection angle due to the bending.

The free end BC:

ux(0) = α(0)

αx(0) = 0



Differential element of a beam:



To get the shear beam model

utt − εuxxtt+uxxxx= 0 (1)

from

εutt = uxx−αx (2)

0 = εαxx−α+ux (3)

the following steps are made:

a) (2)x+ (3) = (⋆).

b) (⋆)x = (⋆⋆).

c) (⋆⋆)− 1
ε(2) =(1).

Remark. In the Timoshenko beam model the equation (3) also contains αtt . The shear

beam model is a singular perturbation of the Timoshenko model.



The spatial ODE for α is a TPBV problem. It can be solved via Laplace transform (w.r.t. x):

α(x) = cosh(bx)α(0)+bsinh(bx)u(0)−b2
Z x

0
cosh(b(x−y))u(y)dy

where b = 1
ε .

The constant α(0) can be expressed in terms of α(1), which is a control input, by setting
x = 1 in α(x):

α(0) =
1

cosh(b)

[

α(1)−bsinh(b)u(0)+b2
Z 1

0
cosh(b(1−y))u(y)dy

]

The term
R 1
0 cosh(b(1−y))u(y)dy is non-strict-feedback. To eliminate it, we choose

α(1) = bsinh(b)u(0)−b2
Z 1

0
cosh(b(1−y))u(y)dy

and make α(0) = 0.

Then

α(x) = bsinh(bx)u(0)−b2
Z x

0
cosh(b(x−y))u(y)dy

is strict-feedback in u(x).



Taking ∂x of α(x) and substituing into the u-PDE yields

εutt = uxx+b2u−b2cosh(bx)u(0)+b3
Z x

0
sinh(b(x− y))u(y)dy,

which is a strict-feedback problem.

Target system:

εwtt = wxx
wx(0) = c0w(0)
wx(1) = −c1wt(1)

Same as for the wave/string equation.



Boundary control:

ux(1) = k(1,1)u(1)+
Z 1

0
kx(1,y)u(y)dy−c1ut(1)+c1

Z 1

0
k(1,y)ut(y)dy

Kernel PDE:

kxx = kyy+b2k−b3sinh(b(x−y))+b3
Z y

x
k(x,ξ)sinh(b(ξ−y))dξ

k(x,x) = −b2

2
x−c0

ky(x,0) = b2
(

Z x

0
k(x,y)cosh(by)dy−cosh(bx)

)

Can be implemented with Dirichlet actuation:

u(1) = − 1

c1s+c0+ b2

2

[· · · ]



Remark.

The controller makes a beam behave dynamically like a string. Is this a good idea?

It can be shown that for beams with high shear modulus the “target” string is very short

and has a “damper” BC. So, it seems like a very good idea.





Schrodinger Equation

ut = − juxx

Special case of Ginzburg-Landau equation.

Note: u(x, t) is complex valued.

Its nonlinear version of interest in quantum control.

Its linear version equivalent to the Euler-Bernoulli beam model.

Think of − j like the diffusion coefficient in parabolic PDEs.



If the uncontrolled BC is ux(0) = 0, the boundary controller is

u(1) =

Z 1

0
k(1,y)u(y)dy

Gain kernel:

k(1,y) =

√
c

2
(
1−y2

)

[

bei1

(√

c
(

1−y2
)
)

−ber1

(√

c
(

1−y2
)
)

+ j

(

ber1

(√

c
(

1−y2
)
)

+bei1

(√

c
(

1−y2
)
))]

where ber1(·) and bei1(·) are Kelvin functions.

Target system: wt = − jwxx−cw (well damped).
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First Order Hyperbolic PDEs

Traffic flow, chemical reactors, heat exchangers, delays.

The general first order hyperbolic PDE tractable by backstepping:

ut = ux+g(x)u(0)+
Z x

0
f (x,y)u(y)dy

u(1) = control .

Only one spatial derivative → only one boundary condition.

For g or f positive and large → open-loop unstable.

Transformation and boundary controller

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy

u(1) =
Z 1

0
k(1,y)u(y)dy.



Target system

wt = wx

w(1) = 0.

Solution

w(x, t) =

{
w0(t +x) 0≤ t < 1
0 t ≥ 1,

where w0(x) is the initial condition. Pure delay—converges to zero in finite time.

Kernel PDE (well posed):

kx+ky =

Z x

y
k(x,ξ) f (ξ,y)dξ− f (x,y)

k(x,0) =
Z x

0
k(x,y)g(y)dy−g(x) .



Example 1.

ut = ux+gebxu(0)

Transformation/controller kernel

k(x,y) = −ge(b+g)(x−y)

Example 2.

ut = ux+
Z x

0
f eb(x−y)u(y)dy

Transformation/controller kernel

k(x,y) = − f eb(x−y)y
I1
(

2
√

f x(x−y)
)

√

f x(x−y)



Systems with Delay

Ẋ = AX+BU(t −D)

Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.

A hyperbolic PDE representation:

Ẋ = AX+Bu(0, t)

ut = ux

u(D, t) = U(t)

e−sD - Ẋ = AX+BU(t −D) -
X(t)U(t −D)U(t)

-

u(D, t) u(0, t)

�x

1 0

- direction of convection

Note that u(x, t) = U(t +x−D).



Consider the backstepping transformation

w(x) = u(x)−
Z x

0
q(x,y)u(y)dy− γ(x)TX

and the target system

Ẋ = (A+BK)X +Bw(0)

wt = wx

w(D) = 0.

Since w becomes zero in finite time, the w-system is exponentially stable.

As usual, let us calculate the time and spatial derivatives of the transformation:

wx = ux−q(x,x)u(x)−
Z x

0
qx(x,y)u(y)dy− γ′(x)TX

wt = ut −
Z x

0
q(x,y)ut(y)dy− γ(x)T [AX+Bu(0)]

= ux−q(x,x)u(x)+q(x,0)u(0)−
Z x

0
qy(x,y)u(y)dy

−γ(x)T [AX+Bu(0)] .



We get three conditions:

qx+qy = 0

q(x,0) = γ(x)TB

γ′ = ATγ

The first two conditions form a familiar first order hyperbolic PDE and the third one is a

simple ODE.

To find the initial condition for the ODE, we set x = 0 in w(x), which gives w(0) = u(0)−
γ(0)TX, and hence

Ẋ = AX+Bu(0)+B
(

K − γ(0)T
)

X .

We thus get γ(0) = KT .



Therefore the ODE is

γ′ = ATγ
γ(0) = KT

The solution is

γ(x)T = KeAx

The q-PDE is

qx+qy = 0

q(x,0) = γ(x)TB

The solution is given explicitly:

q(x,y) = KeA(x−y)B



This gives the control law:

u(D) =

Z D

0
KeA(D−y)Bu(y)dy+KeADX

or

U(t) = K

[

eADX(t)+

Z t

t−D
eA(t−θ)BU(θ)dθ

]

Same controller as in Artstein (1982) but a better proof (complete Lyapunov function).

The equivalent of Smith Predictor for unstable systems.
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Past Efforts

• LQR based on discretized Navier-Stokes — Bewley; Speyer-Kim

• Model reduction based interior control — Christofides, et al.

• Controllability of Navier-Stokes — Coron; Fursikov-Imanuvilov; Barbu

• Transient energy growth — Bamieh, Dahleh, Jovanovic



Past Efforts

Stabilization of channel flow in 2-D — Vazquez, Krstic

• for Navier-Stokes without discretization or model reduction

• for arbitrary Reynolds numbers

• closed loop linearized Navier-Stokes solved explicitly



Linearized Navier-Stokes Model
(around parabolic streamwise equilibrium flow Ue = 4y(1−y))

ut =
1

Re
(uxx+uzz+uyy)−Ueux−Ue

yV − px

Wt =
1

Re
(Wxx+Wzz+Wyy)−UeWx− pz

Vt =
1

Re
(Vxx+Vzz+Vyy)−UeVx− py

ux+Wz+Vy = 0

uncontrolled wall u
∣
∣
y=0 = V

∣
∣
y=0 = W

∣
∣
y=0 = 0

controlled wall u
∣
∣
y=1 = Uc W

∣
∣
y=1 = Wc V

∣
∣
y=1 = Vc



Fourier Transform

System in wave space:

α2 = 4π2(kx
2+kz

2) β = 16πkxi

ut =
1

Re
(−α2u+uyy)+

β
2

y(y−1)u+4(2y−1)V −2πikxp

Wt =
1

Re
(−α2W+Wyy)+

β
2

y(y−1)W−2πikzp

Vt =
1

Re
(−α2V +Vyy)+

β
2

y(y−1)V − py

2πikxu+2πikzW+Vy = 0

uncontrolled wall u
∣
∣
y=0 = V

∣
∣
y=0 = W

∣
∣
y=0 = 0

controlled wall u
∣
∣
y=1 = Uc W

∣
∣
y=1 = Wc V

∣
∣
y=1 = Vc



Velocity/Vorticity Transformation

2πi(kxu+kzW)+Vy = 0

Y = Vy = −2πi(kxu+kzW)
ω = −2πi(kzu−kxW) vorticity

u =
i

2π
kxY+kzω

k2
x +k2

z

W =
i

2π
kzY−kxω

k2
x +k2

z

V =
Z y

0
Y(η)dη .



Plant Model

Yt =
1
Re

(−α2Y+Yyy)−8πikxy(1−y)Y−8πikx(1−2y)V −α2p

ωt =
1
Re

(−α2ω+ωyy)−8πikxy(1−y)ω−8πikz(1−2y)V

p = β
Z y

0
V(t,η)(2η−1)sinh(α(y−η))dη

+
1

Re
Vyy(0)

cosh(αy)−cosh(α(1−y))
sinh(α)

Vy = −2πiY V(y) = −2πi
Z y

0
Y(η)dη



Pressure

−α2p+ pyy = β(2y−1)V

py(0) =
1
Re

Vyy(0)

py(1) =
1
Re

(−α2Vc+Vyy(1))− (Vc)t

p = β
Z y

0
V(t,η)(2η−1)sinh(α(y−η))dη

+
cosh(αy)
sinh(α)

{

−β
Z 1

0
V(t,η)(2η−1)cosh(α(1−η))dη

+
1
Re

(−α2Vc+Vyy(1))− (Vc)t

}

−cosh(α(1−y))
sinh(α)

1
Re

Vyy(0)



Pressure

p = β
Z y

0
V(t,η)(2η−1)sinh(α(y−η))dη

+
cosh(αy)
sinh(α)

{

−β
Z 1

0
V(t,η)(2η−1)cosh(α(1−η))dη

+
1
Re

(−α2Vc+Vyy(1))− (Vc)t

}

−cosh(α(1−y))
sinh(α)

1
Re

Vyy(0)

• The backstepping method can handle
Z y

0
f (y,η)u(η)dη

• The backstepping method cannot handle
Z 1

0
f (η)u(η)dη)



Pressure

p = β
Z y

0
V(t,η)(2η−1)sinh(α(y−η))dη

+
cosh(αy)
sinh(α)

{

−β
Z 1

0
V(t,η)(2η−1)cosh(α(1−η))dη

+
1
Re

(−α2Vc+Vyy(1))− (Vc)t

}

−cosh(α(1−y))
sinh(α)

1
Re

Vyy(0)

Set Vc as follows

(Vc)t =
1

Re

(

Vyy(1)−Vyy(0)−α2Vc

)

−β
Z 1

0
V(t,η)(2η−1)cosh(α(1−η))dη

• Full state feedback plus low pass filter (LPF)



Pressure

p = β
Z y

0
V(t,η)(2η−1)sinh(α(y−η))dη

919999999999999999999999999999999999999999999

+
cosh(αy)
sinh(α)

1
Re

Vyy(0)

−cosh(α(1−y))
sinh(α)

1
Re

Vyy(0)

Set Vc as follows

Vc =
1

s+ α2

Re

[

Vyy(1)−Vyy(0)

Re

×−β
Z 1

0
V(s,η)(2η−1)cosh(α(1−η))dη

]

• Full state feedback plus low pass filter (LPF)



Plant Model

Yt =
1
Re

(−α2Y+Yyy)−8πikxy(1−y)Y−8πikx(1−2y)V −α2p

ωt =
1
Re

(−α2ω+ωyy)−8πikxy(1−y)ω−8πikz(1−2y)V

p = β
Z y

0
V(t,η)(2η−1)sinh(α(y−η))dη

+
1

Re
Vyy(0)

cosh(αy)−cosh(α(1−y))
sinh(α)

Vy = Y V =

Z y

0
Y(η)dη



Plant Model

Yt =
1

Re
(−α2Y+Yyy)−8πikxy(1−y)Y−8πikx(1−2y)

(
Z y

0
Y(η)dη

)

−α2

{

β
Z y

0

(
Z η

0
Y(σ)dσ

)

(2η−1)sinh(α(y−η))dη

+
1

Re

(

Yy(0)
)cosh(αy)−cosh(α(1−y))

sinh(α)

}

ωt =
1

Re
(−α2ω+ωyy)−8πikxy(1−y)ω−8πikz(1−2y)

(
Z y

0
Y(η)dη

)



Plant Model

ε =
1

Re

φ(y) =
β
2

y(y−1) = 8πikxy(y−1)

f (y,η) = 8i
{

πkx(2y−1)−4π
kx

α
sinh(α(y−η))

−2πkx(2η−1)cosh(α(y−η))
}

g(y) = εα2cosh(α(1−y))−cosh(αy)
sinh(α)

h(y) = −8πkzi(2y−1)



Plant Model

Yt = ε(−α2Y+Yyy)+φ(y)Y +g(y)Yy(t,0)+
Z y

0
f (y,η)Y(t,η)dη

ωt = ε(−α2ω+ωyy)+φ(y)ω+h(y)
Z y

0
Y(η)dη

Y

unstable stable

ω

Two causes of turbulence:

• Linear: Y subsystem unstable for high Re

• Nonlinear: Y feeds ω, large overshoot, nonlinearities kick in, solution pulled into a
strange attractor (the transient growth scenario—Farrell-Ioannou; Trefethen; Bamieh-
Dahleh).



Backstepping

Plant:

Yt = ε(−α2Y+Yyy)+φ(y)Y +g(y)Yy(t,0)+

Z y

0
f (y,η)Y(t,η)dη

ωt = ε(−α2ω+ωyy)+φ(y)ω+h(y)
Z y

0
Y(η)dη

Y(t,0) = ω(t,0) = 0 Y(t,1) = Yc ω(t,1) = ωc

Transformation:

Ψ = Y−
Z y

0
K(kx,kz,y,η)Y(t,kx,kz,η)dη

Ω = ω−
Z y

0
Γ(kx,kz,y,η)Y(t,kx,kz,η)dη

Target:

Ψt = ε(−α2Ψ+Ψyy)+φ(y)Ψ
Ωt = ε(−α2Ω+Ωyy)+φ(y)Ω

Ψ(t,0) = Ψ(t,1) = 0

Ω(t,0) = Ω(t,1) = 0



Kernel PDEs

εKyy = εKηη− f (y,η)+(φ(η)−φ(y))K +

Z y

η
K(y,ξ) f (ξ,η)dξ

εK(y,0) =
Z y

0
K(y,η)g(η)dη−g(y)

εK(y,y) = −g(0)

εΓyy = εΓηη−h(y)+(φ(η)−φ(y))Γ+
Z y

η
Γ(y,σ) f (σ,η)dσ

εΓ(y,0) =

Z y

0
Γ(y,η)g(η)dη

Γ(y,y) = 0



Controllers

Y(1) =

Z 1

0
K(1,η)Y(η)dη

ω(1) =

Z 1

0
Γ(1,η)Y(η)dη

Uc = −2πi

α2

(

kxY(t,1)+kzω(t,1)
)

Wc = −2πi

α2

(

kzY(y,1)−kxω(t,1)
)

Uc =

Z 1

0

4π2

α2

(

kxK(1,η)+kzΓ(1,η)

)(

kxu(t,η)+kzW(t,η)

)

dη

Wc =
Z 1

0

4π2

α2

(

kzK(1,η)−kxΓ(1,η)

)(

kxu(t,η)+kzW(t,η)

)

dη



Result in Wavespace

The controllers

Uc =

Z 1

0

4π2

α2

(

kxK(1,η)+kzΓ(1,η)

)(

kxu(t,η)+kzW(t,η)

)

dη

Wc =

Z 1

0

4π2

α2

(

kzK(1,η)−kxΓ(1,η)

)(

kxu(t,η)+kzW(t,η)

)

dη

(Vc)t =
1

Re

(

Vyy(1)−Vyy(0)−α2Vc

)

−β
Z 1

0
V(t,η)(2η−1)cosh(α(1−η))dη

stabilize

ut =
1

Re
(−α2u+uyy)+

β
2

y(y−1)u+4(2y−1)V −2πikxp

Wt =
1

Re
(−α2W+Wyy)+

β
2

y(y−1)W−2πikzp

Vt =
1

Re
(−α2V +Vyy)+

β
2

y(y−1)V − py

2πi(kxu+kzW)+Vy = 0

at zero.



Result in Physical Space

• Use Parseval’s theorem - energy in wavespace equals energy in physical space

• Actuate limited set of wavenumbers

• For high wavenumbers: system is stable

• For small wavenumbers: explicitly solve for a Taylor series expansion of the kernel

pdes

• For the case kx = 0: derive analytical solutions to the kernel pdes



Special Case kx = 0

• averaged streamwise velocity

• transient growth is the largest — Jovanovic, Bamieh; Bewley; Schmid, Henningson

• analytical solutions to the kernel pdes for K and Γ

κ = α
∣
∣
∣
kx=0

= 2πkz

K(y,η) =
( κ2

ḡ(0)
− ḡ(0)

)

eḡ(0)(y−η)− κ2

ḡ(0)

Γ(y,η) =
κi
ε

{

η(y−η)(3y−η−2)

+A0+A1(y−η)+A2(y−η)2+A3(y−η)3

+B0(y−η)cosh(κ(y−η))

+C0cosh(κ(y−η))+C1sinh(κ(y−η))

+E0eḡ(0)(y−η)
}



Explicit K and Γ

ḡ(y) = κ tanh(κ
2)cosh(κ y)−κ sinh(κ y)

h̄(y) = −4κ
ε

i(2y−1)

Kyy = Kηη

K(y,y) = −ḡ(0)

K(y,0) = −
(

ḡ(y)−
Z y

0
K(y,η)ḡ(η)dη

)

Γyy = Γηη− h̄(y)

Γ(y,y) = 0

Γ(y,0) =
Z y

0
Γ(y,η)ḡ(η)dη



Explicit Solution to K

F(s) = −ḡ(s)+
Z s

0
ḡ(s−σ)F(σ)dσ

ḡ′′ = κ2ḡ

F ′′− ḡ(0)F ′ = 0

F(0) = −ḡ(0)

F ′(0) = κ2− ḡ2(0)

F(s) = A1eḡ(0)s+A2

A1+A2 = −ḡ(0)

ḡ(0)A1 = κ2− ḡ2(0)

K(y,η) =
( κ2

ḡ(0)
− ḡ(0)

)

eḡ(0)(y−η)− κ2

ḡ(0)



Explicit Solution to Γ

Γyy = Γηη− h̄(y)

Γ(y,y) = 0

Γ(y,0) =
Z y

0
Γ(y,η)ḡ(η)dη

ξ = y+η
ζ = y−η

Γ(y,η) = Γ
(

ξ+ζ
2

,
ξ−ζ

2

)

= Σ(ξ,ζ)

Σξζ = −1
4

h̄
(ξ+ζ

2

)

Σ(ξ,0) = 0

Σ(ξ,ξ) =

Z ξ

0
Σ(ξ+ τ,ξ− τ)ḡ(τ)dτ



Explicit Solution to Γ

Σξζ = −1
4

h̄
(ξ+ζ

2

)

Σ(ξ,0) = 0

Σ(ξ,ξ) =

Z ξ

0
Σ(ξ+ τ,ξ− τ)ḡ(τ)dτ

Σ(ξ,ζ) =
κi
2ε

(ξ−ζ)ζ(2ζ+ξ−2)+

Z ζ

0
Σ(ζ+ τ,ζ− τ)ḡ(τ)dτ

Σ(ξ,ζ) =
κi
2ε

(ξ−ζ)ζ(2ζ+ξ−2)+
1
ε

∆(ζ)

∆(ζ) = ϒ(ζ)−
Z ζ

0
∆(σ)ḡ(ζ−σ)dσ

ϒ(ζ) = κi
Z ζ

0
σ(ζ−σ)(3ζ−σ−2)ḡ(σ)dσ



Explicit Solution to Γ

∆ = ϒ(ζ)−
Z ζ

0
∆(σ)ḡ(ζ−σ)dσ

ḡ′′ = κ2ḡ

∆′′− ḡ(0)∆′ = ϒ′′−κ2ϒ
∆(0) = 0

∆′(0) = 0

∆ = A0+A1ζ+A2ζ2+A3ζ3

+B0ζcosh(κζ)+B1ζsinh(κζ)

+C0cosh(κζ)+C1sinh(κζ)

+E0eḡ(0)ζ

Γ(y,η) =
κi
ε

{

η(y−η)(3y−η−2)

+ 4 ḡ(0)
2−2 ḡ(0)

3
+ ḡ(0)α2−α2

ḡ(0)
3α2

+ 2 ḡ(0)−1
ḡ(0)

2 (y−η)− 1+ ḡ(0)
ḡ(0) (y−η)2+(y−η)3

−8 1
α2(y−η)cosh(κ(y−η))

+4 sinh(α)+α
α3 cosh(κ(y−η))+ 4 cosh(α)+3

α3 sinh(κ(y−η))

−2 5 ḡ(0)
2− ḡ(0)

3
+ ḡ(0)α2−α2

ḡ(0)
3(α2− ḡ(0)

2)
eḡ(0)(y−η)

}
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Magnetohydrodynamic (MHD) Flows

• Fluids: Navier-Stokes equations

• Conducting fluids: Navier-Stokes equations + Maxwells equations = MHD equations

Give rise to very complex phenomena : Chaos , Turbulence



MHD: Observer Design

Problem statement : Design an observer to estimate the value of the veloc-
ity/pressure/electromagnetic field at any point.

• Measurements: Pressure, skin friction, current in the boundaries.

• The observer must work for arbitrary Reynolds number.

• The design must be done for the continuum MHD equations. No discretization is
allowed.

• The nonlinearities should be considered, to allow estimation in turbulent regimes of
the flow.



Example Applications

Electrically-Conducting-Fluid Cooling Systems

Use of liquid metals or electrically conducting liquid salts for cooling of computing devices,

plasmas in fusion reactors.

Feedback control can

• Enhance mixing and heat transfer

• Reduce pumping power

Control designs usually full-state. A state estimator is needed.
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Example Applications

Model-based weather forecasting

The absence of effective state estimators modeling turbulent flows is one of the key obsta-

cles in model-based weather forecasting.



The Hartmann Flow

• Conducting fluid moving between paralell plates

• Imposed pressure gradient in streamwise direction

• Imposed magnetic field normal to the walls

• Benchmark model for turbulent MHD flow

Remark : If fluid is nonconducting (or zero magnetic field ) — Navier-Stokes channel flow.



The Hartmann Flow — Inductionless Approximation

Parameters ( mechanical and electrical ):

L: Distance between plates B0: Imposed magnetic field ν: fluid viscosity

ρ: fluid density σ: fluid conductivity U0: reference velocity (maximum velocity)

Nondimensional numbers:

Reynolds number: Re= U0L
ν Magnetic Reynolds number: ReM = νρσU0L

Stuart number: N =
σLB2

0
ρU0

Hartmann number: H =
√

ReN = B0L
√

σ
ρν.

Inductionless approximation: Assume ReM ≪ 1. Then electromagnetic dynamics can

be neglected (more precisely: apply Singular Perturbation theory to magnetic induction

equation, which is obtained from Maxwell’s equations).
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The Hartmann Flow — Nondimensional Equations

Velocity field (U,V,W) equations (Navier-Stokes)

Ut =
△U
Re

−UUx−VUy−WUz−Px+Nφz−NU

Vt =
△V
Re

−UVx−VVy−WVz−Py

Wt =
△W
Re

−UWx−VWy−WWz−Pz−Nφx−NW

Electric potential φ equation

△φ = Uz−Wx

Continuity equation (incompressibility condition)

Ux+Vy+Wz = 0

Velocity boundary conditions (no slip, no penetration)

U(t,x,0,z) = U(t,x,1,z) = W(t,x,0,z) = W(t,x,1,z) = 0, V(t,x,0,z) = V(t,x,1,z) = 0

Electric potential boundary conditions (perfectly conducting wall)

φ(t,x,0,z) = φ(t,x,1,z) = 0



The Hartmann Flow — Nondimensional Equations

Nondimensional current (vector field):

jx(t,x,y,z) = −φx−W

jy(t,x,y,z) = −φy

jz(t,x,y,z) = −φz+U

Remark: if N = 0 (nonconducting fluid or zero magnetic field ), recover the Navier-Stokes

equations (3D Channel Flow)

Ut =
△U
Re

−UUx−VUy−WUz−Px

Vt =
△V
Re

−UVx−VVy−WVz−Py

Wt =
△W
Re

−UWx−VWy−WWz−Pz

Ux+Vy+Wz = 0

U(t,x,0,z) = U(t,x,1,z) = V(t,x,0,z) = V(t,x,1,z) = W(t,x,0,z) = W(t,x,1,z) = 0



The Hartmann Flow — Equilibrium Profile

Look for steady-state solutions: assume only one nonzero nondimensional velocity com-
ponent, Ue(y).

0 =
Ue

yy(y)

Re
−Pe

x −NUe(y)

Solution:

Ue(y) =
sinh(H(1−y))−sinhH +sinh(Hy)

2sinhH/2−sinhH
Ve = We = φe = 0

Pe =
NsinhH

2sinhH/2−sinhH
x

jxe = jye= 0
jze = Ue(y)

Remark : If fluid is nonconducting (or zero magnetic field) then N = H = 0. Taking limit

Ue(y) = 4y(1−y)
Ve = We = φe = jxe= jye= jze= 0

Pe = − 8
Re

x

(Poiseuille profile)



The Hartmann Flow — Equilibrium Profile

Nondimensional equilibrium velocity and velocity gradien t:

0 0.5 1
0

0.5

1

Ue(y)

y

−50 0 50
0

0.5

1

U
y
e(y)

y

• Large magnetic fields “flatten” the equilibrium velocity profile

• Equilibrium velocity gradient (skin friction) at the walls approximately proportional to

H (magnetic field intensity)



Observer

Copy of the plant + Output Injection (Keeping nonlinearities!)

Ût =
△Û
Re

−ÛÛx−V̂Ûy−ŴÛz− P̂x+Nφ̂z−NÛ −QU

V̂t =
△V̂
Re

−ÛV̂x−V̂V̂y−ŴV̂z− P̂y−QV

Ŵt =
△Ŵ
Re

−ÛŴx−V̂Ŵy−ŴŴz− P̂z−Nφ̂x−NŴ−QW

△φ̂ = Ûz−Ŵx

Ûx+V̂y+Ŵz = 0

Boundary conditions:

Û(t,x,0,z) = Ŵ(t,x,0,z) = V̂(t,x,0,z) = Û(t,x,1,z) = Ŵ(t,x,1,z) = V̂(t,x,1,z) = 0

φ̂(t,x,0,z) = φ̂(t,x,1,z) = 0



Output Injection

Output injection terms: Gain times measurement





QU

QV

QW



=

Z ∞

−∞

Z ∞

−∞
L(x−ξ,y,z−ζ)







P(ξ,0,ζ)− P̂(ξ,0,ζ)
Uy(ξ,0,ζ)−V̂y(ξ,0,ζ)
Wy(ξ,0,ζ)−Ŵy(ξ,0,ζ)
φy(ξ,0,ζ)− φ̂y(ξ,0,ζ)







dξdζ

where L is a matrix of (physical space) output injection gains defined

L(x,y,z) =

Z ∞

−∞

Z ∞

−∞
χ(kx,y,kz)R(kx,y,kz)e

2πi(kxx+kzz)dkzdkx

Truncating function:

χ(kx,kz) =

{

1, k2
x +k2

z ≤ M2

0, otherwise.

where M = 1
2π

√
(H+4)Re

2 is a design parameter.
R is a matrix of (Fourier space) output injection gains:

R =





RUP RUU RUW RUφ

RVP RVU RVW RVφ

RWP RWU RWW RWφ







Measurements

• Measurements done on lower wall only

• Mechanical measurements: need pressure P(x,0,z) and Uy(x,0,z), Wy(x,0,z) (pro-

portional to skin friction)

• Electrical measurement: need φy(x,0,z), proportional to current jy(x,0,z) traversing

normal to the wall

Remark: Need to measure (x,z)-valued functions , so distributed sensors must be used



Output Injection Gains

Entries of matrix R

RUP = 2πkxi cosh(αy)

RVP = αsinh(αy)

RWP = 2πkzi cosh(αy)

RUU =
4π2k2

x
αRe

sinh(αy)+Π1(kx,y,kz)

RVU = 2πi(kx+kz)
1−cosh(αy)

Re
−2πi

Z y

0
(kxΠ1(kx,η,kz)+kzΠ2(kx,η,kz))dη

RWU =
4π2kxkz

αRe
sinh(αy)+Π2(kx,y,kz)

RUW =
4π2kxkz

αRe
sinh(αy)+Π3(kx,y,kz)

RVW = 2πi(kx+kz)
1−cosh(αy)

Re
−2πi

Z y

0
(kxΠ3(kx,η,kz)+kzΠ4(kx,η,kz))dη

RWW =
4π2k2

z
αRe

sinh(αy)+Π4(kx,y,kz)



Output Injection Gains

Entries of matrix R (Continued):

RUφ = −N
2πkzi

α
sinh(αy)

RVφ = 0

RWφ = N
2πkxi

α
sinh(αy)

where α2 = 4π2(k2
x +k2

z), and






Π1
Π2
Π3
Π4







= A−1







l(kx,y,0,kz)
0

θ1(kx,y,0,kz)
θ2(kx,y,0,kz)







.

The matrix A is

A = −4π2

α2








k2
x kxkz kxkz k2

z
kxkz k2

z −k2
x −kxkz

kxkz −k2
x k2

z −kxkz
k2
z −kxkz −kxkz k2

x








,

Remark : det(A) = −1, so its inverse is well-defined .



Output Injection Gains

The functions l(kx,y,η,kz), θ1(kx,y,η,kz), and θ2(kx,y,η,kz) are the solution of

εlηη = εlyy− (β(y)−β(η)) l − f +

Z y

η
f (y,ξ)l(ξ,η)dξ

εθ1ηη = εθ1yy− (β(y)−β(η))θ1(y,η)−h1+h1

Z y

η
l(ξ,η)dξ+

Z y

η
h2(y,ξ)θ1(ξ,η)dξ

εθ2ηη = εθ2yy− (β(y)−β(η))θ2−h2+
Z y

η
h2(y,ξ)θ2(ξ,η)dξ

These are hyperbolic partial integro-differential equations in the domain T = {(y,η) : 0≤
y≤ 1,0≤ η ≤ y}, with bounday conditions

l(kx,y,y,kz) = θ1(kx,y,y,kz) = θ2(kx,y,y,kz) = 0,

l(kx,1,η,kz) = θ1(kx,1,η,kz) = θ2(kx,1,η,kz) = 0

Backstepping theory (previous talks) guarantees existence, uniqueness and regularity of

solutions for above equations!



Output Injection Gains

Functions appearing in previous slides

ε =
1

Re
β = 2πikxU

e

f = 4πikx

{
Ue

y

2
+

Z y

η
Ue

y(σ)
sinh(α(y−σ))

α
dσ
}

+Nαsinh(α(y−σ))

h1 = 2πikzU
e
y

h2 = −Nαsinh(α(y−η))



Main Result: Observer Convergence

Define error variables Ũ = U −Û,Ṽ = V −V̂,W̃ = W−Ŵ, P̃= P− P̂, φ̃ = φ− φ̂ and fluc-

tuation variable u = U −Ue.

Consider the observer error variables. There exists positive constants C1 and C2 such

that, if the L2 norms of the initial conditions for Ũ , Ṽ, and W̃ are less than C1, i.e.,

Z ∞

−∞

Z 1

0

Z ∞

−∞

(

Ũ2+Ṽ2+W̃2
)

(0,x,y,z)dxdydz< C1,

and if the turbulent kinetic energy of u, V and W (defined as the L2 norm of the fluctuation

with respect to the equilibrium profile) is less than C2 for all time, i.e., ∀t ≥ 0,
Z ∞

−∞

Z 1

0

Z ∞

−∞

(

u2+V2+W2
)

(t,x,y,z)dxdydz< C2,

then the L2 norms of Ũ , Ṽ, W̃ converge to zero :

lim
t→∞

Z ∞

−∞

Z 1

0

Z ∞

−∞

(

Ũ2+Ṽ2+W̃2
)

(t,x,y,z)dxdydz= 0.



Summary of Observer Features

• Observer structure: Copy of plant + Output Injection

• Nonlinear terms are kept

• Only measurements in the lower wall needed

• Computations of output injection gains requires solving of linear PIDEs. Effective

symbolic or numerical schemes available. No Ricatti equations.

• All other gains explicit.

• Observer theoretical convergence guaranteed when initial estimates close enough to

real estimates and state near equilibrium



Observer Design and Convergence Proof

Main tools:

• Fourier transform (wave number space)

• Separate analysis for large and small wave numbers

• Solution of TPBVP for pressure and electric potential (in terms of strict-feedback inte-

grals and measurements of states)

• Transformation of variables (U,V,W) to (Y,ω)

• Backstepping observer design for unstable (small) wave numbers

• Lyapunov analysis for stable (large) wave numbers



Observer Design and Convergence Proof

Observer error equations:

Ũt =
△Ũ
Re

−Ue(y)Ũx+N U(Ũ ,Ṽ,W̃,u,V,W)−Ue
y(y)Ṽ − P̃x+Nφ̃z−NŨ +QU

Ṽt =
△Ṽ
Re

−Ue(y)Ṽx+N V(Ũ ,Ṽ,W̃,u,V,W)− P̃y+QV

W̃t =
△W̃
Re

−Ue(y)W̃x+N W(Ũ ,Ṽ,W̃,u,V,W)− P̃z−Nφ̃x−NW̃+QW

where we have introduced

N U = ŨŨx−uŨx−Ũux+ṼŨy−VŨy−Ṽuy+W̃Ũz−WŨz−W̃uz,

N V = ŨṼx−uṼx−ŨVx+ṼṼy−VṼy−ṼVy+W̃Ṽz−WṼz−W̃Vz,

N W = ŨW̃x−uW̃x−ŨWx+ṼW̃y−VW̃y−ṼWy+W̃W̃z−WW̃z−W̃Wz,

Assuming:

• (Û ,V̂,Ŵ) close to actual state (U,V,W) (i.e., observer error state close to zero)

• The fluctuation (u,V,W) around the equilibrium state close to zero

Then,NU(Ũ ,Ṽ,W̃,u,V,W) ,NV(Ũ ,Ṽ,W̃,u,V,W) and NW(Ũ ,Ṽ,W̃,u,V,W) are small
and dominated by linear terms in the equations. They can be neglected.



Observer Design and Convergence Proof

Observer error linearized equations

Ũt =
△Ũ
Re

−Ue(y)Ũx−Ue
y(y)Ṽ − P̃x+Nφ̃z−NŨ +QU

Ṽt =
△Ṽ
Re

−Ue(y)Ṽx− P̃y+QV

W̃t =
△W̃
Re

−Ue(y)W̃x− P̃z−Nφ̃x−NW̃+QW.

Since the plant is linear and spatially invariant, we use a Fourier transform in the x and z

coordinates (the spatially invariant directions) defined as

f (kx,y,kz) =

Z ∞

−∞

Z ∞

−∞
f (x,y,z)e−2πi(kxx+kzz)dzdx,

f (x,y,z) =

Z ∞

−∞

Z ∞

−∞
f (kx,y,kz)e

2πi(kxx+kzz)dkzdkx.

Watch out! We use the same symbol f for both Fourier and physical space functions.

kx and kz are known as the “wave numbers” in hydrodynamics.



Observer Design and Convergence Proof

Observer error equations in Fourier space

Ũt =
−α2Ũ +Ũyy

Re
−βŨ −Ue

yṼ −2πkxiP̃+2πkziNφ̃−NŨ

+χ(kx,kz)
{

RUPP0+RUUUy0+RUWWy0+RUφφy0

}

Ṽt =
−α2Ṽ +Ṽyy

Re
−βṼ − P̃y

+χ(kx,kz)
{

RVPP0+RVUUy0+RVWWy0+RVφφy0

}

W̃t =
−α2W̃+Wyy

Re
−βW̃−2πkziP̃−2πkxiNφ̃−NW̃

+χ(kx,kz)
{

RWPP0+RWUUy0+RWWWy0+RWφφy0

}

2πikxŨ +Ṽy+2πkzW̃ = 0

−α2φ̃+ φ̂yy = 2πi
(
kzŨ −kxW̃

)

Measurements: P0 = P̃(kx,0,kz), Uy0 = Ũy(kx,0,kz), Wy0 = W̃y(kx,0,kz), φy0 =

φ̃y(kx,0,kz).



Observer Design and Convergence Proof

The system is uncoupled for each wave number. Therefore different wave numbers can be

studied independently.

• Small wave numbers: k2
x + k2

z ≤ M2 (observed wave number range). Since χ = 1

there is output injection.

• Large wave numbers: k2
x +k2

z > M2 (unobserved wave number range). Since χ = 0

there is no output injection.

Remark: If stability for all wave numbers is established, then stability in physical space

follows. The number M is a design parameter that ensures stability for the unobserved

wave number range.



Observed Wave Numbers

Consider k2
x +k2

z ≤ M2. Then χ = 1, and there is output injection.

Eliminating the pressure and electric potential: From plant equations and continuity

equations, an equation for pressure error can be derived

−α2P̃+ P̃yy = −4πkxiU
e
y(y)Ṽ +NVy

It is a Poisson equation.

Solving in terms of pressure in the lower wall:

P̃ = −4πkxi
α

Z y

0
Ue

y(η)sinh(α(y−η))Ṽ(kx,η,kz)dη+N
Z y

0

sinh(α(y−η))

α
Ṽy(kx,η,kz)dη

+cosh(αy)P0+
sinh(αy)

α
P̃y(kx,0,kz)

Since RVP(kx,0,kz) = RVU(kx,0,kz) = RVW(kx,0,kz) = RVφ(kx,0,kz) = 0, therefore eval-

uating the V equation at y = 0 one finds that

P̃y(kx,0,kz) =
Ṽyy(kx,0,kz)

Re
= −2πi

kxUy0+kzW̃y0

Re



Observed Wave Numbers

Then the pressure can be expressed in terms of a (strict-feedback) integral of the state Ṽ

and measurements

P̃ = −4πkxi
α

Z y

0
Ue

y(η)sinh(α(y−η))Ṽ(kx,η,kz)dη+N
Z y

0

sinh(α(y−η))

α
Ṽy(kx,η,kz)dη

+cosh(αy)P0−2πi
sinh(αy)

Reα
(
kxUy0+kzWy0

)

Equation for the potential

−α2φ̃+ φ̃yy = 2πi
(
kzŨ −kxW̃

)

Solution in terms of strict-feedback integral and measurement

φ̃ =
2πi
α

Z y

0
sinh(α(y−η))

(
kzŨ(kx,η,kz)−kxW̃(kx,η,kz)

)
dη+

sinh(αy)
α

φy0



Observed Wave Numbers

Substituting P and φ, most output injection terms cancel away, leaving

Ũt =
−α2Ũ +Ũyy

Re
−βŨ −Ue

y(y)Ṽ −NŨ − 8πk2
x

α

Z y

0
Ue

y(η)sinh(α(y−η))Ṽ(kx,η,kz)dη

−2πikxN
Z y

0

sinh(α(y−η))

α
Ṽy(kx,η,kz)dη

+Π1Uy0+Π3Wy0−
4π2kzN

α

Z y

0
sinh(α(y−η))

(
kzŨ(kx,η,kz)−kxW̃(kx,η,kz)

)
dη

W̃t =
−α2W̃+Wyy

Re
−βW̃−NW̃+Π2Uy0+Π4Wy0

−8πkxkz

α

Z y

0
Ue

y(η)sinh(α(y−η))Ṽ(kx,η,kz)dη

−2πikzN
Z y

0

sinh(α(y−η))

α
Ṽy(kx,η,kz)dη

+
4π2kxN

α

Z y

0
sinh(α(y−η))

(
kzŨ(kx,η,kz)−kxW̃(kx,η,kz)

)
dη

Remark: There is no equation for Ṽ, since from continuity equation and Ṽ(kx,0,kz) = 0 :

Ṽ = −2πi
Z y

0

(
kxŨ(kx,η,kz)+kzW̃(kx,η,kz)

)
dη



Observed Wave Numbers

Apply the following change of variables

Y = 2πi
(
kxŨ +kzW̃

)

ω = 2πi
(
kzŨ −kxW̃

)

and inverse

U =
2πi

α2 (kxY +kzω)

W =
2πi

α2 (kzY−kxω)

The plant in (Y,ω) variables is

Yt =
−α2Y +Yyy

Re
−βY−NY+ l(kx,y,0,kz)Yy0+

Z y

0
f (kx,y,η,kz)Y(kx,η,kz)dη

ωt =
−α2ω+ωyy

Re
−βω−Nω+θ1(kx,y,0,kz)Yy0+θ2(kx,y,0,kz)ωy0

+h1

Z y

0
Y(kx,η,kz)dη+

Z y

0
h2(y,η)ω(kx,η,kz)dη

where Yy0 = Y(kx,0,kz)and ωy0 = ω(kx,0,kz).



Observed Wave Numbers

Use the backstepping transformation

Y = Ψ−
Z y

0
l(kx,y,η,kz)Ψ(kx,η,kz)dη

ω = Ω−
Z y

0
θ1(kx,y,η,kz)Ψ(kx,η,kz)dη−

Z y

0
θ2(kx,y,η,kz)Ω(kx,η,kz)dη

to map (for each kx, kz in the observed range) the (Y,ω) plant into the target system

Ψt =
−α2Ψ+Ψyy

Re
−βΨ−Nψ

Ωt =
−α2Ω+Ωyy

Re
−βΩ−NΩ

with boundary conditions

Ψ(kx,0,kz) = Ψ(kx,1,kz) = 0

Ω(kx,0,kz) = Ω(kx,1,kz) = 0

Kernel equations deduced from transformation and target system. Output injection gains

computed from kernels.

Stability of observed wave number range guaranteed using backstepping theory!



Unobserved Wave Numbers

When k2
x +k2

z > M2 , χ = 0: No output injection.

Plant in (Y,ω) variables:

Yt =
−α2Y+Yyy

Re
−βY−2πkxiU

e
yṼ +α2P̃−NY

ωt =
−α2ω+ωyy

Re
−βω−2πkziU

e
yṼ −α2Nφ̃−Nω

and a Poisson equation for the potential in terms of ω

−α2φ̃+φyy = ω

Want to do Lyapunov analysis. If stability in (Y,ω) variables is proven for large wave

numbers, stability in (Ũ ,Ṽ,W̃) variables follows.



Unobserved Wave Numbers

Consider the Lyapunov function

Λ =
Z 1

0

|Y|2+ |ω|2+α2|Ṽ|2
2

dy,

Notation:
R 1
0 f =

R 1
0 f (kx,y,kz)dy, f ∗ complex conjugate of f .

Estimation of Λ̇:

Λ̇ = −2α2

Re
Λ− 1

Re

Z 1

0

(

|Yy|2+ |ωy|2+α2|Ṽy|2
)

−N
Z 1

0

(

|Y|2+ |ω|2
)

−α2N
Z 1

0

φ̃∗ω+ φ̃ω∗

2
+

Z 1

0
2πiU e

y(y)
Ṽ∗(kxY +kzω)−Ṽ(kxY∗+kzω∗)

2

+α2
Z 1

0

P∗Y+PY∗−P∗
yṼ −PyṼ∗

2



Unobserved Wave Numbers

Lemma 1

−α2
Z 1

0

φ̃∗ω+ φ̃ω∗

2
≤

Z 1

0
|ω|2.

Lemma 2

|Ue
y(y)| ≤ 4+H.

Integrating by parts and applying Lemma 1

Λ̇ ≤ −2α2

Re
Λ− 1

Re

Z 1

0

(

|Yy|2+ |ωy|2+α2|Ṽy|2
)

+
Z 1

0
2πiU e

y(y)
Ṽ∗(kxY +kzω)−Ṽ(kxY∗+kzω∗)

2
−N

Z 1

0
|Y|2

Using Lemma 2 and applying Young’s and Poincare’s inequalities

Λ̇ ≤ −2
1+α2

Re
Λ−N

Z 1

0
|Y|2dy+2π(4+H)

Z 1

0

(
|Ṽ|(|kx||Y|+ |kz||ω|

)
dy

≤
(

4+H −2
1+α2

Re

)

Λ



Unobserved Wave Numbers

Since

Λ̇ ≤
(

4+H −2
1+α2

Re

)

Λ

if α2 ≥ Re(4+H)
2 , i.e., k2

x +k2
z ≥ M2, then

Λ̇ ≤− 2
Re

Λ,

from where stability in the unobserved wave number range follows.



Adaptive Control of PDEs

Andrey Smyshlyaev

mini-course at UCSB, 2006



Literature on Adaptive Control of PDEs:

• High-gain adaptive feedback (non-identifier based) under a relative degree one

assumption—Logemann and coauthors (Martensson, Ryan, Townley).

• MRAC (with identifiability proofs but with actuation throughout the PDE domain)—

Bentsman, Orlov, Hong; Demetriou, Rosen, and coworkers; Solo and Bamieh.



Approaches to identifier design

• Lyapunov

• Estimation based/Certainty equivalence

– with passive identifier (often called “observer-based” method)

– with swapping identifier (often called the “gradient” method)

Backstepping adaptive controllers for PDEs can be designed using all three major ap-

proaches.

We only present here output feedback design with swapping identifier.



PDE with unknown functional parameter

ut = uxx+λ(x)u

ux(0) = 0

u(1) = control

Measurement : u(0)

Infinite relative degree plant with arbitrarily many (finite) number of unstable poles

Scalar input and output, infinite–dimensional state, infinitely many unknown parameters

Idea: using backstepping transformation change the form of the plant into one with

unknown parameters multiplying the output

vt(x, t) = vxx+θ(x)v(0)

vx(0) = θ1v(0)

v(1) = u(1)



PDE with unknown functional parameter

ut = ε(x)uxx+b(x)ux+λ(x)u+g(x)u(0)+
Z x

0
f (x,y)u(y)dy

ux(0) = −qu(0)

u(1) = control

Measurement : u(0)

Infinite relative degree plant with arbitrarily many (finite) number of unstable poles

Scalar input and output, infinite–dimensional state, infinitely many unknown parameters

Idea: using backstepping transformation change the form of the plant into one with

unknown parameters multiplying the output

vt = vxx+θ(x)v(0)

vx(0) = θ1v(0)

v(1) = u(1)



PDE with unknown functional parameter

ut = uxx+λ(x)u

ux(0) = 0

u(1) = control

Measurement : u(0)

Infinite relative degree plant with arbitrarily many (finite) number of unstable poles

Scalar input and output, infinite–dimensional state, infinitely many unknown parameters

Idea: using backstepping transformation change the form of the plant into one with

unknown parameters multiplying the output:

vt = vxx+θ(x)v(0)

vx(0) = θ1v(0)

v(1) = u(1)



Observer canonical form

vt = vxx+θ(x)v(0)

vx(0) = θ1v(0)

v(1) = u(1)

To put the plant into this form we use the transformation

v(x) = u(x)−
Z x

0
p(x,y)u(y)dy

pxx(x,y) = pyy(x,y)+λ(y)p(x,y)

p(1,y) = 0

p(x,x) =
1
2

Z 1

x
λ(s)ds

θ(x) and θ1 are the new unknown parameters:

θ(x) = −py(x,0) θ1 = −p(0,0)



Observer canonical form

vt = vxx+θ(x)v(0)

vx(0) = θ1v(0)

v(1) = u(1)

We are going to directly estimate θ(x) and θ1 without identifying

the original plant parameter λ(x).

Note:

— v(0) = u(0) and therefore v(0) is measured.

— v(1) = u(1) so that the controller for v-system gives the controller for the original system



Input filter

ψt = ψxx

ψx(0) = 0

ψ(1) = u(1)

Only one filter (the plant has no zeros)



Output filters

Ft = Fxx+δ(x−ξ)u(0) ξ ∈ [0,1]

Fx(0) = 0

F(1) = 0

φt = φxx

φx(0) = u(0)

φ(1) = 0

Algebraic way to represent F(x,ξ) through φ(x):

Fxx(x,ξ) = Fξξ(x,ξ)

F(0,ξ) = −φ(ξ)

Fx(0,ξ) = 0

Fξ(x,0) = F(x,1) = 0



Three forms of the output filter F(x,ξ, t)

Dynamic form

Ft = Fxx+δ(x−ξ)u(0)

Fx(0) = 0

F(1) = 0

Algebraic form

Fxx(x,ξ) = Fξξ(x,ξ)

F(0,ξ) = −φ(ξ)

Fx(0,ξ) = 0

Fξ(x,0) = F(x,1) = 0

Explicit algebraic form

F(x,ξ) = −
∞
∑
n=0

cos
π(2n+1)x

2
cos

π(2n+1)ξ
2

Z 1

0
cos

π(2n+1)s
2

φ(s)ds



Observer error

e(x) = v(x)−
[

ψ(x)+θ1φ(x)+

Z 1

0
θ(ξ)F(x,ξ)dξ

]

is exponentially stable:

et = exx

ex(0) = 0

e(1) = 0

Static parametric model

e(0) = v(0)−
[

ψ(0)+θ1φ(0)−
Z 1

0
θ(ξ)φ(ξ)dξ

]



Update laws (least squares)

θ̂t(x, t) =

R 1
0 γ(x,y, t)φ(y)dy+ γ0(x, t)φ(0)

1+‖φ‖2+φ2(0)

(

v(0)−ψ(0)− θ̂1φ(0)+

Z 1

0
θ̂(ξ)φ(ξ)dξ

)

˙̂θ1 =

R 1
0 γ0(y, t)φ(y)dy+ γ1(t)φ(0)

1+‖φ‖2+φ2(0)

(

v(0)−ψ(0)− θ̂1φ(0)+

Z 1

0
θ̂(ξ)φ(ξ)dξ

)



Riccati adaptation gains

γt(x,y, t) = −
R 1
0 γ(x,s)φ(s)ds

R 1
0 γ(y,s)φ(s)ds+ γ0(x)γ0(y)φ2(0)

1+‖φ‖2+φ2(0)

−φ(0)γ0(y)
R 1
0 γ(x,s)φ(s)ds+φ(0)γ0(x)

R 1
0 γ(y,s)φ(s)ds

1+‖φ‖2+φ2(0)

γ̇0(x) = −

(
R 1
0 γ(x,s)φ(s)ds+ γ0(x)φ(0)

)(
R 1
0 γ0(s)φ(s)ds+ γ1φ(0)

)

1+‖φ‖2+φ2(0)

γ̇1 = −

(
R 1
0 γ0(s)φ(s)ds+ γ1φ(0)

)2

1+‖φ‖2+φ2(0)



Controller

u(1) =

Z 1

0
k̂(1,y)

(

ψ(y)+ θ̂1φ(y)+

Z 1

0
θ̂(ξ)F(y,ξ)dξ

)

dy

with k̂(x,y) given by the PDE

k̂xx− k̂yy = 0

k̂y(x,0) = θ̂1k̂(x,0)+ θ̂(x)−
Z x

0
k̂(x,y)θ̂(y)dy

k̂(x,x) = θ̂1

This PDE can be simplified to the integro-differential equation by setting k̂(x,y) = f (x−y)

f ′(x) = −θ̂1 f (x)− θ̂(x)+
Z x

0
f (x−y)θ̂(y)dy

f (0) = θ̂1

This equation is solved at each time step.



Simulation Example

ut = uxx+b(x)ux+λ(x)u

ux(0) = 0

Reference signal: ur(0, t) = 3sin6t b(x) = 3−2x2 λ(x) = 16+3sin(2πx)

u(x, t)

t
x



Simulation Results

u(0)

tt

u(1)

Control effort Output evolution



Simulation Results (parameter estimates)
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Motion Planning and Trajectory Tracking for PDEs

Miroslav Krstic

mini-course at UCSB, 2006



Introduction

• Initiated by the French school of “differential flatness:” Pierre Rouchon, Nicolas Petit,

Phillippe Martin, Michel Fliess. Since late 1990s.

• Motion planning for arbitrary functions is mainly an analysis exercise, like studies of

controllability. Best pursued with Gevrey functions.

• We focus on trajectories that can be generated as combinations of sinusoids, polyno-

mials, and exponentials—anything that can be produced by an LTI system.



Trajectory Generation

We present the ideas through several examples.

Consider the heat equation

ut = uxx

ux(0) = 0

u(0) = system output

u(1) = system input

The objective is to follow the output trajectory

ur(0, t) = 2− (t −1)2 = 1+2t − t2

The first step is to construct the full state trajectory ur(x, t) which satisfies the PDE. Then

add a feedback law that stabilizes that solution.



We postulate the state trajectory in the form:

ur(x, t) =
∞
∑
k=0

ak(t)
xk

k!
.

This is a Taylor series in x with time varying coefficients ak(t) that will be determined from

the PDE, boundary condition, and desired trajectory.

From the desired trajectory we get

ur(0, t) = a0(t) = 1+2t− t2.

The boundary condition gives

ur
x(0, t) = a1(t) = 0.



Substituting ur(x, t) into the PDE we get:

∞
∑
k=0

ȧk(t)
xk

k!
=

∂2

∂x2

∞
∑
k=0

ak(t)
xk

k!

=
∞
∑
k=2

ak(t)
k(k−1)xk−2

k!

=
∞
∑
k=2

ak(t)
xk−2

(k−2)!

=
∞
∑
k=0

ak+2(t)
xk

k!
.

We get the recursive relationship

ak+2(t) = ȧk(t)



The recursion yields

a0 = 1+2t − t2, a1 = 0
a2 = 2−2t, a3 = 0
a4 = −2, a5 = 0
a6 = 0, ai = 0 for i > 6.

This gives the reference trajectory

ur(x, t) = 1+2t + t2+(1− t)x2− 1
12

x4,

and the input signal

ur(1, t) =
23
12

+ t − t2.

Remark. Perfect trajectory obtained only if the initial condition of the plant agrees with the

initial condition of the trajectory, that is, u(x,0) = 1+x2− 1
12x4.



Example 2. Reaction-diffusion equation

ut = uxx+λu
ux(0) = 0

Desired output reference signal

ur(0, t) = e
αt .

From the boundary condition we have

a1(t) = 0,
and from the PDE

ak+2(t) = ȧk(t)+λak(t).

These conditions give

a2k+1 = 0
a2k+2 = ȧ2k−λa2k

a2 = (α−λ)eαt

a4 = (α−λ)2eαt

a2k = (α−λ)keαt



The state trajectory is

ur(x, t) =
∞
∑
k=0

(α−λ)k
e

αt x
2k

2k!

= e
αt

∞
∑
k=0

(
√

α−λx)2k

2k!

= e
αt
{

cosh(
√

α−λx) α ≥ λ
cos(

√
α−λx) α < λ

The reference input is

ur(1, t) = e
αt cosh(

√

α−λ) .

Useful formulae when calculating trajectories for sinusoidal outputs:

cosh(a) =
∞
∑
k=0

a2k

(2k)!
, sinh(a) =

∞
∑
k=0

a2k+1

(2k+1)!

cosh( ja) = cos(a), sinh( ja) = j sin(a), sin( ja) = j sinh(a).



Example 3.

ut = uxx

ux(0) = 0

ur(0, t) = a0(t) = sin(ωt) = Im{e jωt}

Set λ = 0 and α = jω to get

ur(x, t) = Im
{

cosh
(√

jωx
)

e
jωt
}



Example 4.

ut = uxx

u(0) = 0

ux(1) = output

u(1) = input

As before, we get ai+2 = ȧi and from the BC

a2k = 0

a2k+1 = a
(k)
1 (kth derivative)

The state trajectory becomes

ur(x, t) =
∞
∑
k=0

a
(k)
1 (t)

x2k+1

(2k+1)!

ur
x(x, t) =

∞
∑
k=0

a
(k)
1 (t)

x2k

(2k)!



The output reference is

ur
x(1, t) =

∞
∑
k=0

a
(k)
1 (t)

(2k)!

and we want

ur
x(1, t) = sin(ωt) = Im

{

e
jωt
}

.

Suppose that

a1(t) = Im
{

Ae
jωt
}

,

then

a
(k)
1 (t) = Im

{

A( jω)k
e

jωt
}

.

From the output reference

ur
x(1, t) = Im

{

Ae
jωt

∞
∑
k=0

√
jω2k

(2k)!

}

= Im
{

Ae
jωt cosh

(√

jω
)}

⇒ A =
1

cosh(
√

jω)
.



The state trajectory is now

ur(x, t) = Im

{

A
∞
∑
k=0

( jω)k x2k+1

(2k+1)!
e

jωt

}

= Im

{

A√
jω

∞
∑
k=0

(
√

jωx)2k+1

(2k+1)!
e

jωt

}

= Im

{
sinh(

√
jωx)√

jωcosh(
√

jω)
e

jωt
}

,

which yields the reference input

ur(1, t) = Im

{
tanh(

√
jω)√

jω
e

jωt
}

.



Or if the output reference is exponential

ur
x(1, t) = e

αt, α ∈ R

the input reference is

ur(1, t) =
eαt
√

|α|

{
tanh(

√

|α|), α > 0
tan(

√

|α|), α < 0.



Example 5. Wave equation

utt = uxx

u(0) = 0

ur
x(0, t) = sin(ωt)

From previous examples we see that the PDE and the BCs give

a0 = 0

a1(t) = sin(ωt) = Im{e jωt}
ai+2 = äi(t)

a2k = 0

a2k+1(t) = ( jω)2ka1(t)



State reference

ur(x, t) = Im

{
∞
∑
k=0

a1(t)( jω)2k x2k+1

(2k+1)!

}

= Im

{

e jωt

jω

∞
∑
k=0

( jωx)2k+1

(2k+1)!

}

= Im

{

e jωt

jω
sinh( jωx)

}

= Im

{

e jωt

ω
sin(ωx)

}

=
1
ω

sin(ωx)sin(ωt)

Separable in x and t! Not so for heat equation.

Input reference

ur(1, t) =
sin(ω)

ω
sin(ωt)



Example 6. String with Kelvin-Voigt Damping

εutt = (1+α∂t)uxx

ux(0) = 0

ur(0, t) = sin(ωt)

Without derivation, but following previous examples, the reference state trajectory is

ur(x, t) =
1
2







e

√
εω
√√

1+ω2α2−1
√

2
√

1+ω2α2
x
sin




ω




t +

√
ε
ω
√
√

1+ω2α2−1
√

2
√

1+ω2α2
x











+e

√
εω
√√

1+ω2α2−1
√

2
√

1+ω2α2
x
sin




ω




t −

√
ε
ω
√
√

1+ω2α2−1
√

2
√

1+ω2α2
x

















.

Amplitude and phase are complicated functions of ε,α,ω, and x.



Example 7. Euler Beam

utt +uxxxx= 0

uxx = uxxx= 0 (free end)

4th order PDE → requires two BCs on each end → we are free to impose both ur(0, t)
and ur

x(0, t).

Let

ur(0, t) = sin(ωt) = Im
{

e
jωt
}

ur
x(0, t) = 0.

Using the PDE and the series expansion for the reference we get

ai+4 = −äi

From the BCs we get a2(t) = a3(t) = 0. Thus,

a4k(t) = (−1)ka
(2k)
0 (t)

a4k+1(t) = (−1)ka
(2k)
1 (t)



State reference:

ur(x, t) =
∞
∑
k=0

(−1)ka
(2k)
0

x4k

(4k)!
+

∞
∑
k=0

(−1)ka
(2k)
1

x4k+1

(4k+1)!

However, a1(t) = ur
x(0, t) = 0, so we get

ur(x, t) =
∞
∑
k=0

(−1)ka
(2k)
0

x4k

(4k)!
+

∞
∑
k=0

(−1)ka
(2k)
1

x4k+1

(4k+1)!

= Im

{

e
jωt

∞
∑
k=0

ω2k x4k

(4k)!

}

= Im

{

e
jωt

∞
∑
k=0

(√
ωx
)4k

(4k)!

}

= Im

{

e
jωt 1

2

[
cosh

(√
ωx
)
+cos

(√
ωx
)]
}

ur(x, t) =
1
2

[
cosh

(√
ωx
)
+cos

(√
ωx
)]

sin(ωt)



Input references

ur(1, t) =
1
2

[
cosh

(√
ω
)
+cos

(√
ω
)]

sin(ωt)

ur
x(1, t) =

√
ω

2

[
sinh

(√
ω
)
−sin

(√
ω
)]

sin(ωt)



Example 8. First order hyperbolic PDE

ut = ux+gu(0)

ur(1, t) = control

ur(0, t) = sin(ωt) = Im
{

e
jωt
}

= a0(t)

Since this is a first order PDE, the only boundary condition is the one that is available for

control.

From the PDE we get

a1 = ȧ0−ga0

= Im
{

( jω−g)e jωt
}

ai+1 = ȧi

ak(t) = Im
{

( jω−g)( jω)k−1
e

jωt
}

= Im

{(

1− g
jω

)

( jω)k
e

jωt
}



State reference

ur(x, t) = Im

{[

1+

(

1− g
jω

) ∞
∑
k=1

( jωx)k

k!

]

e
jωt

}

add and subtract
g
jω

= Im

{[
g
jω

+

(

1− g
jω

)

e
jωx
]

e
jωt
}

= Im

{
g
jω

e
jωt +

jω−g
jω

e
jω(t+x)

}

ur(x, t) = −g
ω

[cos(ωt)−cos(ω(t +x))]+sin(ω(t +x))

Input reference

ur(1, t) =
g
ω

[cos(ω(t +1))−cos(ωt)]+sin(ω(t +1)).



Trajectory Tracking

Trajectory Tracking = stabilization of reference trajectory with feedback control.

Consider the previous example

plant: ut = ux+gu(0)
trajectory: ur(x, t) = g

ω[cos(ω(t +x))−cos(ωt)]+sin(ω(t +x))

Stabilizing controller

u(1, t)−ur(1, t) =

Z 1

0
k(1,y)[u(y, t)−ur(y, t)]dy

transformation: w(x, t) = u(x, t)−ur(x, t)−
R x
0 k(x,y)[u(y, t)−ur(y, t)]dy

kernel: k(x,y) = −geg(x−y)

target system: wt = wx (unit delay with zero input)
w(1) = 0



Stabilizing controller

u(1, t)−ur(1, t) =
Z 1

0
k(1,y)[u(y, t)−ur(y, t)]dy

u(1, t) = ur(1, t)+
Z 1

0
k(1,y)[u(y, t)−ur(y, t)]dy

= ur(1, t)−
Z 1

0
k(1,y)ur(y, t)dy

︸ ︷︷ ︸

feedforward (fcn of t)

+

Z 1

0
k(1,y)u(y, t)dy

︸ ︷︷ ︸

feedback

Ffwd =
g
ω

[cos(ω(t +1))−cos(ωt)]+sin(ω(t +1))

+
Z 1

0
ge

g(1−y)
{g

ω
[cos(ω(t +y))−cos(ωt)]+sin(ω(t +x))

}

dy

=
g
ω

[cos(ω(t +1))−cos(ωt)]+sin(ω(t +1))− g
ω

[cos(ω(t +1))−cos(ωt)]

= sin(ω(t +1))

which is ur(0, t) = sin(ωt) advanced by one time unit!

Thus, it suffices to determine the reference trajectory for the target system (rather than for
the complicated original system). This is true in general.



Example 9. String with Kelving-Voigt damping (Example 6)
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D
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t
reference: (1/2)*(sin(πt/2)+sin(sqrt(2)πt/2))
tip displacement: u(0,t)



Open Problems

Miroslav Krstic



Accessible Open Problems

• from beams to plates and shells

• beams with inhomogeneities (due to design or damage)

• Navier-Stokes with thermal convection

• more on delays and 1st order hyperbolic PDEs

• more on tracking

• networks of PDEs

• adaptive control of hyperbolic PDEs

• always good to start from an application



Hard Open Problems

• extensions to 2D and 3D in “odd-shaped” domains

• point actuation in 2D domains; 1D actuation in 3D domains

• control of flows around bluff bodies and airfoils

• nonlinear PDEs

• coupled PDEs with different “diffusion” coefficients or “wave speed” coefficients

• extension to PDEs with in-domain actuation (few actuators)

• compressible flows



Slides downloadable from

http://flyingv.ucsd.edu/pde.pdf

http://flyingv.ucsd.edu/movies.zip




