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Outline 

  Extremum seeking - the basics 

  Source seeking 

  2D - full actuation 

  2D - nonholonomic vehicle, tuning of speed 

  2D - nonholonomic vehicle, tuning of heading 

  3D 

  Fish locomotion models 

 Stochastic source seeking - bacterial locomotion 



Extremum Seeking - Basics 
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Example of Single-Parameter Maximum Seeking 

f (θ) = f * +
f ''
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θ −θ*( )2
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f * θ* Plant 
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Example of Single-Parameter Maximum Seeking 

f (θ(t))

f *  - unknown!
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History 

•  Leblanc (1922) - electric railways 

•  Early Russian literature (1940’s) - many papers 

•  Drapper and Li (1951) - application to IC engine spark timing tuning 

•  Tsien (1954) - a chapter in his book on Engineering Cybernetics 

•  Feldbaum (1959) - book Computers in Automatic Control Systems 

•  Blackman (1962 chap. in book by Westcott) - nice intuitive 
presentation of ES 

•  Meerkov (1967, 1968) - papers with averaging analysis 

•  Sternby (1980) - survey 

•  Astrom and Wittenmark (1995 book) - rates ES as one of the most 
promising areas for adaptive control 
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Developments Over Last Decade 

•  Krstic and Wang - stability proof   
for single-parameter general 
dynamic nonlinear plants 

•  Krstic, Ariyur, Choi, Wang - 
discrete-time, limit cycle 
minimization, IMC for parameter 
tracking, dynamic compensators, etc. 

•  Rotea; Walsh; Ariyur-Krstic -  
multi-parameter ES 

•  Ariyur, Krstic - slope seeking 

•  Tan, Nesic, Mareels (2005) -    
semi-global stability of ES 



8 

Recent Applications 
•  Compressor instabilities in jet engines 

•  Combustion instabilities and thermoacoustic coolers 

•  Formation flight 

•  Fusion reflected RF power 

•  Beam matching in particle accelerators 

•  Flow control: diffusers, airfoils, “minivan” shaped 
bluff bodies,” cavity flow 

•  Internal combustion (HCCI) engine fuel consumption 
minimization 

•  PID tuning 
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Basic Extremum Seeking - Static Map 

f (θ) = f * +
f ''
2

θ −θ*( )2

asinωt sinωt

−
k
s

s
s + h+ ×

y

ξ

θ

θ̂

f * θ* Plant 

y = output to be minimized
f * = minimum of the map
f " = second derivative (positive - f (θ) has a min.)
θ* = unknown parameter

θ̂ = estimate of θ*

k = adaptation gain (positive) of the integrator 1
s

a = amplitude of the probing signal
ω = frequency of the probing signal

h = cut-off frequency of the "washout filter" s
s + h

+/× = modulation/demodulation
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Stability Analysis by Averaging 

f (θ) = f * +
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θ = θ* − θ̂
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s + h
y[ ]

τ =ωt
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Full nonlinear time-varying model: 
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Stability Analysis by Averaging 
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f ''
2

θ −θ*( )2

asinωt sinωt

−
k
s

s
s + h+ ×

y

ξ

θ

θ̂

f * θ* Plant 

 

θ = θ* − θ̂
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Average system: 

 

θav = 0

eav = −
a2 f "
4

Average equilibrium: 
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Stability Analysis by Averaging 
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Jacobian of the average system: 
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Stability Analysis by Averaging 

f (θ) = f * +
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θ = θ* − θ̂

e = f * −
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s + h
y[ ]

τ =ωt

 

θ2π /ω (t) + e2π /ω (t) −
a2 f "
4

≤O
1
ω

⎛
⎝⎜

⎞
⎠⎟
,→→∀t ≥ 0

Theorem. For sufficiently large w there exists a unique exponentially stable 
periodic solution of period 2p/w and it satisfies 

Speed of convergence proportional to 1/w, a2, k, f "
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Source Seeking - Introduction 

•  Motivation 
–  Control a vehicle to locate the source of measurable signal with 

unknown spatial distribution, without position measurement 

–  Think: pursuit-evasion while blindfolded and left to rely on the nose 
(with one “nostril”) 

•  Related work (only partial autonomy) 
–  Porat and Nehorai - vehicle has position information 
–  Ogren, Fiorelli and Leonard - “group” gradient estim. w/ communication 

–  Justh and Krishnaprasad - w/ distance information 
–  Klein and Morgansen - tracking of slow ground vehicle w/ fast UAV 

–  Marshal, Broucke and Francis - cyclic pursuit problem 



Introductory Example: 
Fully Actuated Point Mass 
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Model - fully actuated point mass 

vx ,vy

Dynamics 

Inputs 

Point Mass 

y

x

vy
vx

=
=
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ES - block diagram 
Point Mass 
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Point Mass 

Simulation Results 
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Simulation Results 
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Force-Actuated Point Mass 



Nonholonomic “Unicycle” 

  Kinematically constrained, underactuated 
  Control only steering or only speed, not both 
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Unicycle Model 

Sensor Dynamics  

Inputs 

Unicycle: non-collocated 

System is linearly uncontrollable (from inputs v, o) 
and unobservable (from the output f(x,y) at its peak) 

ooo

ooos

ooos

dt
d
rvy

rvx

θωθ

θθθ

θθθ

==

+=

−=
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sincos

ov ω,
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Tuning Speed Only; Heading Const. 
Unicycle: collocated 

okωω =
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Simulation Results 
Unicycle: collocated 
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Simulation Results 
Unicycle: collocated 
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Simulation Results - Moving Target 
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Stability Proof by Averaging 
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Stability Proof by Averaging 
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Theorem 

For sufficiently large w there exists a unique exponentially 
stable periodic solution of period 2π/w and it satisfies 

Speed of convergence proportional to 1/ω, a2, c, qx, qy 

Theorem: 
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Tuning the Angular Velocity 
Unicycle: non-collocated 

oθθ =
Applying a change of notation 



32 

The Algorithm 

Linear combination of cosine and sine 
but non-constant coefficients! 

 

θ(t) = aω cos(ωt) + c s
s + h

[J(t)]sin(ωt)
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Simulation Results 
Unicycle: non-collocated 
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Inspired by… 
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Summary 
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Track a Diffusive Source 
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Experimental Results 
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Level Sets 

•  Methods using multipe AUVs: 

–  Kalantar & Zimmer 
–  N. Leonard, Fiorelli, Ogren 
–  Bertozzi 
–  Burian, Singh 
–  Bennett, J. Leonard 
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Level Sets 
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Level Sets 



41 

Level Sets 
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Level Sets 
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Level Sets 
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Mobile Robot Experiments 
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Navigation Through a “Minefield” 
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Stability w/ Stationary Source 
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Stability w/ Stationary Source 

 

rc = Vce
jθ

θ = aω cos(ωt) + sin(ωt) c
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Theorem. The vehicle center locally exponentially converges to 
one of the two (almost periodic) attractors of the form 

where  

Stability w/ Stationary Source 

ρ =
VcJ0 (a)
2cRqrJ1(a)

J0 , J1 = Bessel functions

 

xc
attr (t) = x* − ρ + r±

2π /ω (t)( )cos Vc
ρ
t +α±

2π /ω (t) + γ
⎛
⎝⎜

⎞
⎠⎟

yc
attr (t) = y* ± ρ + r±

2π /ω (t)( )sin Vc
ρ
t +α±

2π /ω (t) + γ
⎛
⎝⎜

⎞
⎠⎟

O
1
ω

⎛
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⎞
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+O a2( )
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Residual “Hovering” Motion 
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“Hovering” Motion 

ρ =
VcJ0 (a)
2cRqrJ1(a)



52 

Effect of Small “Nonlinear Damping” 
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Unstable Trajectories 

•  unstable (repulsive) solutions 
•  head off to infinity 
•  measure zero 
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The Optimal Heading Manifold 

 

θ* = arg r* − rc( )
θ = θ −θ* − asin(ωt)
rc = r* − rc
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The “Average System” 
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VcJ0 (a)
ω

cos θ ave

θ ave = 1
ω
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ave c + 2dqr R
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⎨
⎩

⎫
⎬
⎭

+
1
ω
2dqr

2R2 rc
ave2 J1(2a)sin 2 θ
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The “Average Dynamics” 



Extensions to 3D 
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3D - UUV or UAV 
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Yaw and Pitch Actuated 
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Simulation Results 

Following movies 



61 

Theorem. The vehicle center locally exponentially converges to 
one of the two (almost periodic) attractors of the form 

where  

Stability w/ Stationary Source 

J0 , J1 = Bessel functions
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“Orbits” for different values of c 
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Vehicle with Const Speed & Const Pitch Up Velocity, 
Sensor Off the Vehicle 
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Roll Actuated 
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Simulation Results 

Pollutant  
source moving.  

Our vehicle follows it. 
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3D Boundary Tracing: Yaw+Pitch Actuation 
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3D Boundary Tracing: Roll Actuation 
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Fish Locomotion 

Eva Kanso - Jerry Marsden 
model 

Scott Kelly model 
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Three Links - Two Inputs 

move forward turn in a circle 
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Tuning of the Fish “Body Bending” 

Control: 
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Simulations: Three Link Fish 
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Joukowsky Foil Fish w/ Vortex Model 
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One input, with vortex interaction 

move forward turn in a circle 
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Tuning of the Fish “Body Bending” 

Control: 
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Simulations: Joukowski Foil Fish 
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Bacterial Locomotion/Chemotaxis 

E. Coli motility has two phases, run 
and tumble 
–  During run phase all flagella 

spin counter clockwise and 
bacterium moves forward 

–  During tumble phase some 
flagella spin clockwise and 
bacterium changes orientation 

Emulate as Stochastic Source Seeking 

  
θk+1 = θk + wk + γ wk−1

z −1
z + h

J x θk( ) , y θk( )( )⎡
⎣

⎤
⎦

kθΔ

kv



78 

E. Coli Perform Ext. Seeking 

0.1 mm 

Our simulation with ES 

30 sec single bacterium  
experiment (Berg, Harvard, 2000) 
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Summary 
 Extremum seeking 

 a form of optimization - continuous in the input 

 a form of adaptive control - but not model based 

 Source seeking for nonholonomic vehices - in lieu 
of simultaneously solving 

 motion planning/trajectory generation 

 state and parameter estimation 

 trajectory tracking 

 (subject to an optimality cost) 



Thank You 


