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Otto J. M. Smith (1917–)

(Professor at UC Berkeley, 1947–1988)

“A controller to overcome dead time,” ISA, vol. 6, pp. 28–33, 1959.



Applications of Delay Systems

• chemical process control

• combustion engines

• rolling mills

• control over communication networks/Internet and MPEG video transmission

• telesurgery

• machine tool “chatter”

• road traffic systems



Basic Observations

• thousands of papers and dozens of books since the 1940’s (Tsypkin 1946)

• ”golden era” = 1970s and early 1980s
(Kalman, Sontag, Morse, Mitter, Artstein, Khargonekar, Tannenbaum)

• another ”burst” of research activity after the introduction of LMIs (1990s)

• many basic problems still unsolved, still very active area of research

• delay systems are infinite dimensional

• the state is not a vector but a function (or a vector of functions);
characteristic equation not a polynomial, involves exponentials

• stability analysis requires Krasovskii functionals, rather than Lyapunov functions



Benchmark Delay Systems (Scalar)

Ẋ(t) = X(t −D)+U(t) (easy , cancel or dominate by high gain)

Ẋ(t) = X(t)+U(t −D) (hard , need inf. dim. controller for large D)

Ẋ(t) = X(t −D1)+U(t −D2) , D2 > D1 (even harder , conceptually)
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Outline

• Smith Predictor as a form of infinite-dimensional ‘backstepping’

• Robustness consequences

• Observer design with sensor delay

• Other forms of infinite-dimensional actuator dynamics and delay-PDE cascades

• Delay-adaptive control

• Time-varying delay

• Nonlinear systems



Delay Compensation

Ẋ(t) = AX(t)+BU(t −D)

Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.

A transport PDE representation:

Ẋ(t) = AX(t)+Bu(0, t)

ut(x, t) = ux(x, t)

u(D, t) = U(t)

Note that u(x, t) = U(t +x−D).
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Delay Compensation

Ẋ(t) = AX(t)+BU(t −D)

Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.

Predictor-based control law:

U(t) = K

[

eADX(t)+

Z t

t−D
eA(t−θ)BU(θ)dθ

]

Artstein’s reduction approach (1982) and Manitius and Olbrot’s finite spectrum assign-

ment (1978).

The equivalent of Smith Predictor for unstable systems
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Delay Compensation

Ẋ(t) = AX(t)+BU(t −D)

Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.

Predictor-based control law:

U(t) = K

[

eADX(t)+

Z t

t−D
eA(t−θ)BU(θ)dθ

]

Artstein’s reduction approach (1982) and Manitius and Olbrot’s finite spectrum assign-

ment (1978).

Extension of Smith Predictor to unstable systems.



Example. (Andrey Smyshlyaev)

A =





2 0 1
1 −2 −2
0 1 −1



 , B =





0
0
1



 .

Open-loop unstable (eigenvalues are 2 and −1.5±1.4 j).
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Left: stable nominal LQR controller (Q = I , R= 1) in the absence of delay (dash-dotted);
unstable with nominal LQR controller in the presence of delay (dashed); stable with the
backstepping controller in the presence of the delay (solid).

Right: delayed control input.
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Backstepping transformation and its inverse:

w(x, t) = u(x, t)−
Z x

0
KeA(x−y)Bu(y, t)dy−KeAxX(t)

u(x, t) = w(x, t)+

Z x

0
Ke(A+BK)(x−y)Bw(y, t)dy+Ke(A+BK)xX(t)

Target system

Ẋ(t) = (A+BK)X(t)+Bw(0, t)

wt(x, t) = wx(x, t)

w(D, t) = 0.

Cascade w 7→ X. Each subsystem exponentially stable.

Lyapunov functional

V(t) = X(t)TPX(t)+2
λmax(PBBTP)

λmin(Q)

Z D

0
(1+x)w(x, t)2dx

Theorem 1 Exp. stable in the norm
(

|X(t)|2+
R D
0 u(x, t)2dx

)1/2
.
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.



A Short History of Backstepping

• 1990: nonlinear ODEs

• 2000: parabolic linear PDEs

• 2004: linearized Navier-Stokes PDEs

• 2004: 2nd order hyperbolic PDEs (wave equations and beams)

• 2005: adaptive control for linear parabolic PDEs

• 2005: 1st order hyperbolic PDEs and actuator delays

• 2006–: nonlinear parabolic PDEs
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• Smith Predictor as a form of infinite-dimensional ‘backstepping’

• Robustness consequences

• Observer design with sensor delay

• Other forms of infinite-dimensional actuator dynamics and delay-PDE cascades

• Delay-adaptive control

• Time-varying delay

• Nonlinear systems



Is there any benefit to having a Lyapunov function besides
proving stability?

Inverse optimality and robustness to actuator lag.

Theorem 3 There exists c∗ such that the feedback system with the controller

U(t) =
c

s+c

{

K

[

eADX(t)+

Z t

t−D
eA(t−θ)BU(θ)dθ

]}

,

is exponentially stable in the sense of the norm

N(t) =

(

|X(t)|2+

Z t

t−D
U(θ)2dθ+U(t)2

)1/2

for all c > c∗. Furthermore, there exists c∗∗ > c∗ such that, for any c≥ c∗∗, the feedback

minimizes the cost functional

J =

Z ∞

0

(

Q(t)+U̇(t)2
)

dt ,

where Q(t) ≥ µN(t)2 for some µ(c) > 0, which is such that µ(c) → ∞ as c→ ∞.



With a Lyapunov function, one can even quantify disturbance attenuation

Ẋ(t) = AX(t)+BU(t −D)+Gd(t)

Theorem 4 ∃c∗ s.t. ∀c > c∗, the feedback system is L∞-stable, i.e., ∃ positive constants

β1,β2,γ1 s.t.

N(t) ≤ β1e−β2tN(0)+ γ1 sup
τ∈[0,t]

|d(τ)| .

Furthermore, ∃c∗∗ > c∗ s.t. ∀c≥ c∗∗ the feedback minimizes the cost functional

J = sup
d∈D

lim
t→∞

[

2cV(t)+
Z t

0

(

Q(τ)+U̇(t)2−cγ2d(τ)2
)

dτ
]

for any

γ2 ≥ γ∗∗2 = 8
λmax(PBBTP)

λmin(Q)
,

where Q(t) ≥ µN(t)2 for some µ(c,γ2) > 0, which is such that µ(c,γ2) → ∞ as c → ∞,

and D is the set of linear scalar-valued functions of X.



Robustness to Delay Mismatch

The biggest open question in robustness of predictor feedbacks.

Ẋ = AX+BU(t −D0−∆D)

U(t) = K

[

eAD0X(t)+
Z t

t−D0
eA(t−θ)BU(θ)dθ

]

∆D either positive or negative

Theorem 5 ∃δ > 0 s.t. ∀∆D ∈ (−δ,δ) the closed-loop system is exp. stable in the sense

of the state norm

N2(t) =

(

|X(t)|2+

Z t

t−D̄
U(θ)2dθ

)1/2
,

where D̄ = D0+max{0,∆D}.



Corollary 1 ∃δ > 0 s.t. ∀D0 ∈ [0,δ) the system

Ẋ = AX+BU(t) ,

U(t) = K

[

eAD0X(t)+
Z t

t−D0
eA(t−θ)BU(θ)dθ

]

is exp. stable in the sense of the norm
(

|X(t)|2+
R t
t−D0

U(θ)2dθ
)1/2

.
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Observers for ODE Systems with Sensor Delay

Ẋ(t) = AX(t)+BU(t)

Y(t) = CX(t −D) ,

where (A,C) is an observable pair.

The output equation can be represented through the transport PDE as

ut(x, t) = ux(x, t)

u(D, t) = CX(t)

Y(t) = u(0, t) .



Theorem 6 The observer

˙̂X(t) = AX̂(t)+BU(t)+eADL(Y(t)− û(0, t))

ût(x, t) = ûx(x, t)+CeAxL(Y(t)− û(0, t))

û(D, t) = CX̂(t) ,

where L is chosen such that A−LC is Hurwitz, guarantees that the observer error system

is e.s. in the norm
(

|X(t)− X̂(t)|2+
Z D

0
(u(x, t)− û(x, t))2dx

)1/2
.
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Mostly for Fun

delay
unstable

reaction-diffusion PDE
U(t)

force

actuation

x = 0x = D

dX/dt = AX + Bu



Reaction-diffusion PDE plant with input delay:

ut(x, t) = uxx(x, t)+λu(x, t)

u(0, t) = 0

u(1, t) = U(t −D) .

Controller

U(t) = 2
∞
∑
n=1

Z 1

0
sin(πnξ)λξ

I1

(√

λ
(

1−ξ2
)

)

√

λ
(

1−ξ2
)

dξ
(

I1(·) = Bessel function
)

×
(

−e

(

λ−π2n2
)

D
Z 1

0
sin(πny)u(y, t)dy+πn(−1)n

Z t

t−D
e

(

λ−π2n2
)

(t−θ)
U(θ)dθ

)

Theorem 7 ∃ρ(D,λ) > 0 s.t.

ϒ(t) ≤ ρ(D,λ)ecDϒ(0)e−min{2,c}t , ∀t ≥ 0,

where

ϒ(t) =

Z 1

0
u2(x, t)dx+

Z t

t−D

(

U2(θ)+U̇2(θ)
)

dθ .



PDE-ODE cascade (actuation through a string):

Ẋ(t) = AX(t)+Bu(0, t)

utt(x, t) = uxx(x, t)

ux(0, t) = 0

u(D, t) = U(t)

Controller

U(t) = KΣ(D,c)X(t)+

Z D

0
ϕ(D−y)u(y, t)dy+

Z D

0
ψ(D−y)ut(y, t)dy,

where c > 0 and

Σ(D,c) = M(D)+c
Z D

0
M(y)Ady

ϕ(x) =

Z x

0
KM(ξ)ABdξ+cK(I +M(x))B

ψ(x) =

Z x

0
KM(ξ)Bdξ+c

Z x

0

Z η

0
KM(ξ)ABdξdη−c

M(x) =
[

I 0
]

e

[

0 A2

I 0

]

x[
I
0

]

.



Theorem 8 ∃G,g > 0 s.t.

Γ(t) ≤ Ge−gtΓ(0) , ∀t ≥ 0

where

Γ(t) = |X(t)|2+
Z D

0
ux(x, t)

2dx+
Z D

0
ut(x, t)

2dx.

Furthermore, the closed-loop spectrum is

eig{A+BK}∪
{

−1
2

ln

∣

∣

∣

∣

1+c
1−c

∣

∣

∣

∣

+ j
π
D

{

n+ 1
2 , 0≤ c < 1

n, c > 1

}

where n∈ Z.

Bonus: damping feedback for wave equation with Dirichlet actuation:

U(t) = −c
Z D

0
ut(y, t)dy.
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Delay-Adaptive Control

Ẋ(t) = AX(t)+Bu(0, t)

Dut(x, t) = ux(x, t)

u(1, t) = U(t) ,

Control

U(t) = K

[

eAD̂(t)X(t)+ D̂(t)
Z 1

0
eAD̂(t)(1−y)Bu(y, t)dy

]

Update law

d
dt

D̂(t) = −γ
R 1
0 (1+x)w(x, t)KeAD̂(t)xdx(AX(t)+Bu(0, t))

1+X(t)TPX(t)+b
R 1
0 (1+x)w(x, t)2dx

w(x, t) = u(x, t)− D̂(t)
Z x

0
KeAD̂(t)(x−y)Bu(y, t)dy−KeAD̂(t)xX(t) .



Theorem 9 There exists γ∗ > 0 such that for any γ ∈ (0,γ∗) there exist positive constants

R and ρ (independent of the initial conditions) such that for all initial conditions satisfying

(X0,u0, D̂0) ∈ R
n×L2(0,1)× [0, D̄], the following holds:

ϒ(t) ≤ R
(

eρϒ(0)−1
)

, ∀t ≥ 0,

where

ϒ(t) = |X(t)|2+

Z 1

0
u(x, t)2dx+

(

D− D̂(t)
)2

.

Furthermore,

lim
t→∞

X(t) = 0, lim
t→∞

U(t) = 0.
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0–1 sec The delay precludes any influence of the control on the plant, so X(t) shows an

exponential open-loop growth.

1–3 sec The plant starts responding to the control and its evolution changes qualitatively,

resulting also in a qualitative change of the control signal.

3–4 sec When the estimation of D̂(t) ends at about 3 seconds, the controller structure

becomes linear. However, due to the delay, the plant state X(t) continues to evolve

based on the inputs from 1 second earlier, so, a non-monotonic transient continues

until about 4 seconds.

4 sec and onwards The (X,U) system is linear and the delay is sufficiently well compen-

sated, so the response of X(t) and U(t) shows a monotonically decaying exponential

trend of a first order system.
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Time-Varying Delay

Ẋ(t) = AX(t)+BU(φ(t))

Predictor feedback

U(t) = K

[

e
A
(

φ−1(t)−t
)

X(t)+
Z t

φ(t)
e
A
(

φ−1(t)−φ−1(θ)
)

B
U(θ)

φ′
(

φ−1(θ)
)dθ

]

Transport PDE representation

u(x, t) = U
(

φ
(

t +x
(

φ−1(t)− t
)))

Time-varying backstepping transformation

w(x, t) = u(x, t)−Ke
Ax
(

φ−1(t)−t
)

X(t)−K
Z x

0
e
A(x−y)

(

φ−1(t)−t
)

Bu(y, t)
(

φ−1(t)− t
)

dy



Target system

Ẋ(t) = (A+BK)X(t)+Bw(0, t) ,

wt(x, t) = π(x, t)wx(x, t) ,

w(1, t) = 0,

where the variable speed of propagation is

π(x, t) =

1+x







d
(

φ−1(t)
)

dt
−1







φ−1(t)− t

Theorem 10 Let the delay function δ(t) = t − φ(t) be strictly positive and uniformly

bounded from above. Let the delay rate function δ′(t) be strictly smaller than 1 and uni-

formly bounded from below. There exist positive constants G and g (the latter one being

independent of φ) such that

|X(t)|2+
Z t

φ(t)
U2(θ)dθ ≤ Ge−gt

(

|X0|2+
Z 0

φ(0)
U2(θ)dθ

)

, for all t ≥ 0.
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Nonlinear Systems

• Teel (1998) proved local robustness to sufficiently small delays of asymptotically sta-

bilizing feedback laws for nonlinear systems (by nonlinear ISS small gain theorem and

equivalence to the Razumikhin theorem). No control design or re-design.

• 90% of the results on nonlinear systems with delays are for state delays, not actuator

delays.

• Leading contributors: Jankovic, Mazenc, Pepe, Karafyllis.



Consider the system

Ż(t) = f (Z(t),U(t −D))

and suppose that a function κ(Z) is known such that

Ż = f (Z,κ(Z))

is globally asymptotically stable at the origin.

Predictor-based controller (predictor given implicitly):

U(t) = κ(P(t))

P(t) =

Z t

t−D
f (P(θ),U(θ))dθ+Z(t)

Theorem 11 If Ż = f (Z,U) is forward complete, then ∃β ∈ K L such that

|Z(t)|+‖U‖L∞[t−D,t] ≤ β
(

|Z(0)|+‖U0‖L∞[−D,0], t
)

for all (Z0,U0) ∈ R
n×L∞[−D,0] and for all t ≥ 0.



Example of a system in strict-feedforward form:

Ẋ1(t) = X2(t)+X2
3(t)

Ẋ2(t) = X3(t)+X3(t)U(t −D)

Ẋ3(t) = U(t −D)

Controller

U(t) = −P1(t)−3P2(t)−3P3(t)−
3
8

P2
2(t)

+
3
4

P3(t)

(

−P1(t)−2P2(t)+
1
2

P3(t)+
P2(t)P3(t)

2

+
5
8

P2
3(t)− 1

4
P3

3(t)− 3
8

(

P2(t)−
P2

3(t)

2

)2






where the D-second-ahead predictor of (X1(t),X2(t),X3(t)) is given explicitly by

P1(t) = X1(t)+DX2(t)+
1
2

D2X3(t)+DX2
3(t)+3X3(t)

Z t

t−D
(t −θ)U(θ)dθ

+
1
2

Z t

t−D
(t −θ)2U(θ)dθ+

3
2

Z t

t−D

(

Z θ

t−D
U(σ)dσ

)2

dθ

P2(t) = X2(t)+DX3(t)+X3(t)
Z t

t−D
U(θ)dθ+

Z t

t−D
(t −θ)U(θ)dθ

+
1
2

(

Z t

t−D
U(θ)dθ

)2

P3(t) = X3(t)+

Z t

t−D
U(θ)dθ

Employs nonlinear Volterra operators on the actuator delay state.



A representative example outside of the forward complete class

dZ(t)
dt

= Z(t)2+U(t −D)

Nominal feedback (for D = 0):

U(t) = −Z(t)2−cZ(t) , c > 0.

Theorem 12 For any given D > 0, ∃ initial conditions Z(0)+supθ∈[−D,0]
R θ
−DU(σ)dσ <

1
D, i.e., not causing finite escape before t = D in open loop, for which the solution

escapes to infinity before

t =
3
2

D .



Nonlinear predictor feedback:

U(t) = −P(t)2−cP(t)

P(t) =

Z t

t−D
P(θ)2dθ+Z(t)+

Z t

t−D
U(θ)dθ

Theorem 13 If

Z(0)+ sup
θ∈[−D,0]

Z θ

−D
U(σ)dσ <

1
D

,

then the following holds:

Z(t)2+

Z t

t−D
U(θ)2dθ ≤ ρ

(

Z(0)2+

Z 0

−D
U(θ)2dθ

)

e−t/4 , ∀t ≥ 0,

where

ρ(r) = 8γ(r)+16γ2(r)

γ(r) = 4(1+D) r +16(1+D)3 r2

(1−D
√

r)4 .



Any Moral to the Story?

Numerous open problems in delay and other PDE systems,

even in the linear case.


