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Example of Single-Parameter Maximum Seeking
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Example of Single-Parameter Maximum Seeking

f (θ(t))

f *  - unknown!
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Topics - Theory
•History

•Single parameter ES, how it works, and stability analysis by
averaging

•Multi-parameter ES

•ES in discrete time

•ES with plant dynamics and compensators for performance
improvement

• Internal model principle for tracking parameter changes

•Slope seeking

•Limit cycle minimization via ES
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Topics - Applications

•PID tuning

• Internal combustion (HCCI) engine fuel consumption minimization

•Compressor instabilities in jet engines

•Combustion instabilities

•Formation flight

•Fusion reflected RF power

•Thermoacoustic coolers

•Beam matching in particle accelerators

•Flow separation control in diffusers

•Autonomous vehicles without position sensing
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History
• Leblanc (1922) - electric railways

• Early Russian literature (1940’s) - many papers

• Drapper and Li (1951) - application to IC engine spark timing tuning

• Tsien (1954) - a chapter in his book on Engineering Cybernetics

• Feldbaum (1959) - book Computers in Automatic Control Systems

• Blackman (1962 chap. in book by Westcott) - nice intuitive presentation of ES

• Wilde (1964) - a book

• Chinaev (1969) - a handbook on self-tuning systems

• Papers by[Morosanov], [Ostrovskii], [Pervozvanskii], [Kazakevich], [Frey, Deem,
and Altpeter], [Jacobs and Shering], [Korovin and Utkin] - late 50s - early 70’s

• Meerkov (1967, 1968) - papers with averaging analysis

• Sternby (1980) - survey

• Astrom and Wittenmark (1995 book) - rates ES as one of the most promising
areas for adaptive control
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Recent Developments

• Krstic and Wang (2000, Automatica) - stability proof for single-parameter
general dynamic nonlinear plants

• Choi, Ariyur, Wang, Krstic - discrete-time, limit cycle minimization, IMC for
parameter tracking, etc.

• Rotea; Walsh; Ariyur - multi-parameter ES

• Ariyur - slope seeking

• Tan, Nesic, Mareels (2005) - semi-global stability of ES

• Other approaches: Guay, Dochain, Titica, and coworkers; Zak, Ozguner, and
coworkers; Banavar, Chichka, Speyer; Popovic, Teel; etc.

• Applications not presented in this workshop:
o Electromechanical valve actuator (Peterson and Stephanopoulou)
o Artificial heart (Antaki and Paden)
o Exercise machine (Zhang and Dawson)
o Shape optimization for magnetic head in hard disk drives (UCSD)
o Shape optimization of airfoils and automotive vehicles (King, UT Berlin)
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ES Book
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Tutorial Topics Covered in the Book

• Introduction, history, single-parameter stability analysis
• Plant dynamics, compensators, and IMC for tracking parameter changes
• Limit cycle minimization via ES
• Multi-parameter ES
• ES in discrete time
• Slope seeking
• Compressor instabilities in jet engines
• Combustion instabilities
• Formation flight
• Anti-skid braking
• Bioreactor
• Thermoacoustic coolers
• Internal combustion engines
• Flow separation control in diffusers
• Beam matching in particle accelerators
• PID tuning
• Autonomous vehicles without position sensing
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Basic Extremum Seeking - Static Map

f (θ) = f * +
f ''
2

θ −θ*( )2

asinωt sinωt
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ξ
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θ̂

f * θ* Plant

y = output to be minimized
f * = minimum of the map
f " = second derivative (positive - f (θ) has a min.)
θ* = unknown parameter

θ̂ = estimate of θ*

k = adaptation gain (positive) of the integrator 1
s

a = amplitude of the probing signal
ω = frequency of the probing signal

h = cut-off frequency of the "washout filter" s
s + h

+/× = modulation/demodulation
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How Does It Work?

f (θ) = f * +
f ''
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θ −θ*( )2
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Estimation error:  
%θ = θ* − θ̂

 
y = f * +

a2 f "
4

+
f "
2

%θ 2 − af " %θ sinωt + a
2 f "
4
cos2ωt

 
y ≈ f * +

a2 f "
4

+
f "
2

%θ 2 − af " %θ sinωt + a
2 f "
4
cos2ωt

Loc. Analysis - neglect 
quadratic terms:
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How Does It Work?
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y ≈ f * +

a2 f "
4

− af " %θ sinωt + a
2 f "
4
cos2ωt

 

s
s + h
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2 f "
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How Does It Work?

f (θ) = f * +
f ''
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ξ = sinωt s

s + h
[y] ≈ −af " %θ sin2ωt + a

2 f "
4
cos2ωt sinωt

Demodulation:

 
ξ ≈ −

a2 f "
4

%θ +
a2 f "
4

%θ cos2ωt + a
2 f "
8

sinωt − sin 3ωt( )
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How Does It Work?
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%&θ = − &̂θthen

Since  
%θ = θ* − θ̂
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How Does It Work?

f (θ) = f * +
f ''
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%θ ≈
k
s

−
a2 f "
4

%θ +
a2 f "
4

%θ cos2ωt + a
2 f "
8

sinωt − sin 3ωt( )⎡

⎣
⎢

⎤

⎦
⎥

high frequency terms - attenuated by integrator
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How Does It Work?

f (θ) = f * +
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%&θ ≈ −
ka2 f "
4

%θ

Stable because k,a, f " > 0
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Stability Proof by Averaging

f (θ) = f * +
f ''
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θ −θ*( )2
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%θ = θ* − θ̂

e = f * −
h

s + h
y[ ]

τ =ωt

 

d
dτ

%θ =
k
ω

f "
2

%θ − asinτ( )2 − e⎛
⎝⎜

⎞
⎠⎟
sinτ

d
dτ

e =
h
ω

−e −
f "
2

%θ − asinτ( )2⎛
⎝⎜

⎞
⎠⎟

Full nonlinear time-varying model:
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Stability Proof by Averaging
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%θ = θ* − θ̂

e = f * −
h

s + h
y[ ]

τ =ωt

 

d
dτ

%θav = −
kaf "
2ω

%θav

d
dτ

eav =
h
ω

−eav −
f "
2

%θ 2av +
a2

2
⎛
⎝⎜

⎞
⎠⎟

⎛
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⎞

⎠⎟

Average system:

 

%θav = 0

eav = −
a2 f "
4

Average equilibrium:
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Stability Proof by Averaging
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%θ = θ* − θ̂
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⎢
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Jacobian of the average system:
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Stability Proof by Averaging
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%θ = θ* − θ̂

e = f * −
h

s + h
y[ ]

τ =ωt

 

%θ2π /ω (t) + e2π /ω (t) −
a2 f "
4

≤O
1
ω

⎛
⎝⎜

⎞
⎠⎟
,→→∀t ≥ 0

Theorem. For sufficiently large ω there exists a unique exponentially stable
periodic solution of period 2π/ω and it satisfies

Speed of convergence proportional to 1/ω, a2, k, f "
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Stability Proof by Averaging
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%θ = θ* − θ̂

e = f * −
h

s + h
y[ ]

τ =ωt

y − f * → f "O 1
ω 2 + a

2⎛
⎝⎜

⎞
⎠⎟

Output performance:



PID Tuning Using ES

Based on contributions by: Nick Killingsworth
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Proportional-Integral-Derivative (PID) Control

• Consists of the sum of three control terms

- Proportional term:

- Integral term:

- Derivative term:

• Often poorly tuned (Astrom [1995], etc.)

Background & Motivation

e(t) = r(t) – y(t)
r(t) reference signal
y(t) measured output

dt
tdeKTtu DD
)()( =

)()( tKetuP =

∫=
t

I
I dsse

T
Ktu )()(



23

Background – PID

We use a two degree of freedom controller
The derivative term only acts on y(t)

• This avoids large control effort when there is a step change in 
the reference signal
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Tuning Scheme

   Step
function

+
-

θk Extremum
Seeking

Algorithm

( )krC θ

( )kyC θ

G
y(t)+r(t) J(θk)u(t)

Continuous Time

Discrete Time
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Extremum Seeking

Simple - three lines of code

)(ky

hz
z
+
−1×+

)(θJ

)cos( kωα )cos( kωα

)(kθ

1−
−
z
γ
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Extremum Seeking Tuning Scheme

Implementation
1. Run Step response

experiment with ZN PID
parameters

2. Calculate J

∫−
=

T

t
kk dte

tT
J

0

2

0

)(1)( θθ
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Extremum Seeking Tuning Scheme

Implementation
1. Run Step response

experiment with ZN PID
parameters

2. Calculate J
3. Calculate next set of PID

parameters using discrete
ES tuning method

[ ]
))1(cos()1(ˆ)1(

)()1()()cos()(ˆ)1(ˆ
)1()1()(

+−+=+

+−−=+

−+−−=

kkk

khkJkkk

kJkhk

iiii

iiiii

ωαθθ

ξωαγθθ

ξξ
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Extremum Seeking Tuning Scheme

Implementation
1. Run Step response

experiment with ZN PID
parameters

2. Calculate J
3. Calculate next set of PID

parameters using discrete
ES tuning method

4. Run another step
response experiment with
new PID parameters
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Extremum Seeking Tuning Scheme

Implementation
1. Run Step response

experiment with ZN PID
parameters

2. Calculate J
3. Calculate next set of PID

parameters using discrete ES
tuning method

4. Run another step response
experiment with new PID
parameters

5. Repeat 2-4 set number of
times or until J falls below a
set value

Repeat
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Implementation – Cost Function

Cost Function J(θk)

Used to quantify the controller’s performance

Constructed from the output error of the plant and the control effort
during a step response experiment

Has discrete values at the completion of each step response
experiment

where T is the total sample time of each step response
experiment

   θ is a vector containing the PID parameters:

∫−
=

T

t
kk dte

tT
J

0

2

0

)(1)( θθ

[ ]DI TTK ,,=θ
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Implementation – Cost Function

Cost Function J(θk)

t0 is the time up until which zero weightings are placed on the error.

This shifts the emphasis of the PID controller from the transient
phase of the response to that of minimizing the tracking error
after the initial transient portion of the response

∫−
=

T

t
kk dte

tT
J

0

2

0

)(1)( θθ

to
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1. Time delay

2. Large time delay

3. Single pole of order eight

4. Unstable zero

Example Plants

Four systems with dynamics typical of some industrial
plants have been used to test the ES PID tuning method
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Results

• Ziegler-Nichols values used as initial conditions in
the ES tuning algorithm

• Results compared to three other popular PID
tuning methods:

- Ziegler-Nichols (ZN)
-  Internal model control (IMC)
-  Iterative feedback tuning (IFT, Gevers, ‘94, ‘98)
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Results - se
s
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c) Step Response of output

b) Evolution of PID Parameters

d) Step Response of controller

a) Evolution of Cost Function
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Results -

c) Step Response of output

b) Evolution of PID Parameters

d) Step Response of controller

a) Evolution of Cost Function
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Results -

c) Step Response of output

b) Evolution of PID Parameters

d) Step Response of controller

a) Evolution of Cost Function
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Results -

c) Step Response of output

b) Evolution of PID Parameters

d) Step Response of controller

a) Evolution of Cost Function

)201)(101(
51)(4 ss
ssG
++

−=



38

Results – Cost Function Comparison

Step Response of output

∫=
T

k dte
T

ISE
0

2)(1 θ

The following cost functions
were minimized using ES:
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Results – Cost Function Comparison

Step Response of output

∫=
T

k dte
T

ISE
0

2)(1 θ

∫=
T

k dtte
T

ITSE
0

2)(1 θ

The following cost functions
were minimized using ES:
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Results – Cost Function Comparison

Step Response of output
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The following cost functions
were minimized using ES:
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Results – Cost Function Comparison

Step Response of output
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The following cost functions
were minimized using ES:
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Results – Cost Function Comparison

Step Response of output

∫=
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The following cost functions
were minimized using ES:
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Actuator Saturation

Saturation of 1.6 applied to control signal for plant G1

ES and IMC compared with and without the addition of an anti
windup scheme
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Tracking anti-windup scheme
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Actuator Saturation
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Effects of Noise

Band-limited white noise has been added to output
Power spectral density = 0.0025
Correlation time = 0.2
Independent noise signal for each iteration

Simulations on plant G1
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Effects of Noise

c) Step Response of output

b) Evolution of PID Parameters

d) Step Response of controller

a) Evolution of Cost Function
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Selecting Parameters of ES Scheme

Must select
α, perturbation step size

γ, adaptation gain

ω, perturbation frequency

h, high-pass filter cut-off frequency

Looks like have more parameters to pick than we started out with!
However, ES tuning is less sensitive to parameters than PID controller.
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+
−1×+

)(θJ

)cos( kωα

)(kθ

1−
−
z
γ)(ˆ kθ )(kξ

)(kJ

hz
z
+
−1×+

)(θJ

)cos( kωα

)(kθ

1−
−
z
γ)(ˆ kθ )(kξ

)(kJ

hz
z
+
−1×+

)(θJ

)cos( kωα

)(kiθ

1−
−
z

iγ)(ˆ kiθ )(kξ



48

Selecting Parameters of ES Scheme
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Selecting Parameters of ES Scheme

Need to select an adaptation gain γ and perturbation
amplitude α for EACH parameter to be estimated

In the case of a PID controller, θ = [K, Ti, Td], so we need
three of each.

The modulation frequency is determined by:

where 0 < a < 1
The highpass filter (z-1)/(z+h) is designed with 0<h<1

with the cutoff frequency well below the modulation
frequency     .

Convergence rate is directly affected by choice of α and γ,
as well as by cost function shape near minimizer.

πω *ii a=

iω
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Example of ES-PID tuner GUI
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Punch Line

ES yields performance as good as the best of the other
popular tuning methods

Can handle some nonlinearities and noise.

 The cost function can be modified such that different
performance attributes are emphasized



Control of HCCI Engines

Based on contributions by: Nick Killingsworth (UCSD),
Dan Flowers and Sal Aceves (Livermore Lab),

and Mrdjan Jankovic (Ford)
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HCCI = ?

HCCI = Homogeneous Charge Compression Ignition

Low NOx emissions like spark-ignition engines

High efficiency like Diesel engines

More promising in near term than fuel cell/hydrogen engines
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HCCI Engine Applications

Distributed power generation

Automotive hybrid powertrain



What is the difference
between Spark Ignition,

Diesel, and HCCI engines?
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Categories of Engines

Diesel

HCCI

Compression
Ignition

Direct injection
engine

Inhomogeneous
charge

Spark ignition
engine

Homogeneous
charge

Spark ignition
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Basic engine thermodynamics: engine efficiency increases as the
compression ratio and γ=cp/cv (ratio of specific heats) increase

Spark Ignition Engine

γ = 1.4 for air

γ = 1.35 for fuel and air mixture

1
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Highly efficient because they compress only air (γ is high) and are
not restricted by knock (compression ratio is high)

Diesel Engine

γ = 1.4 for air

γ = 1.35 for fuel and air mixture

1
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Engine Efficiency
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Compression ratio not restricted by “knock” (autoignition of gas ahead
of flame in spark ignition engines)  efficiency comparable to Diesel

HCCI Engine

Diesel and
HCCI engines

γ = 1.4 for air

γ = 1.35 for fuel and air mixture

1
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HCCI Engine

Potential for high efficiency (Diesel-like)
Low NOx and PM (unlike Diesel)

BUT, no direct trigger for ignition - requires feedback
to control the timing of ignition!
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Experiment at Livermore Lab

Caterpillar 3406 natural
gas spark ignited engine
converted to HCCI

Set up for stationary
power generation (not
automotive)
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Cold Manifold

Hot Manifold

Valve Actuators

Actuators

Heated
Intake Air

Cooled
Intake Air

Mixing “Tees”(x 6)

Controlled Intake Temperature
to Individual Cylinders

Combustion timing (output)
is very sensitive to

intake temperature (input)
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Real-Time Controller
PC running Labview RT OS

Overall Architecture: Sensors and Software

Cylinder Pressure

Crank Angle Position

Valve Position

User interface
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ES used to MINIMIZE FUEL CONSUMPTIONMINIMIZE FUEL CONSUMPTION of HCCI engine
by tuning combustion timing setpoint

HCCI
Engine

e CA50

CA50 SP

-
Tintake

CA50
+

Σ PI

Extremum 
Seeking

mfuel
.
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ES delays the combustion timing 6 crank angle
degrees,  reducing fuel consumption by > 10%
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Larger adaptive gain: ES finds same minimizer,
but much more quickly
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Axial Flow (Jet Engine-Like) Compressor Control

Problem Statement
• Active controls for

rotating stall only reduce
the stall oscillations but
they do not bring them to
zero nor do they
maximize pressure rise.

• Extremum seeking to
optimize compressor
operating point.

Caltech
COMPRESSOR

Air Injection
Stall Controller

Pressure rise

s
1 washout

filter

sin ωt

EXTREMUM
SEEKER

bleed valve

Smaller, lighter
compressors;
higher payload in
aircraft

Motivation

time
Pr

es
su

re
 R

is
e

Experimental Results
Extremum seeking stabilizes the maximum pressure rise.



Combustion Instability Control

EXTREMUM SEEKER

• Rayleigh criterion-based
controllers, which use phase-
shifted pressure
measurements and fuel
modulation, have emerged as
prevalent

• The length of the phase
needed varies with operating
conditions. The tuning method
must be non-model based.

ph
as

e

sin ωt

Pressure

s
1− washout

filter

COMBUSTOR

Phase-Shifting
Controller

Frequency/
amplitude
observer

fuel

Problem Statement

• Tuning allows operation
with minimum
oscillations at lean
conditions

• Reduced engine size,
fuel consumption and NOx
emissions

Motivation

time

ext. seeking suppresses oscillations

Experiment on UTRC 4MW combustor
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Formation Flight Engine Output Minimization

Tune reference inputs yref and zref to the autopilot
of the wingman to maximize its downward pitch
angle or to minimize its engine output
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Simulation of C-5 Galaxy transport airplane
for a brief encounter of “clear air turbulence”
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Thermoacoustic Cooler (M. Rotea)

Electric energy Acoustic energy Heat pumping

Standing sound wave creates
the refrigeration cycle

Resonance tube
StackHot-end heat

exchangers

Electro-dynamic
driver

Cold-end heat
exchangers

Pressurized He-Ar mixture

3
2

Heat Pumping

 1-2: adiabatic compression and displacement
 2-3: isobaric heat transfer (gas to solid)
 3-4: adiabatic expansion and displacement
 4-1: isobaric heat transfer (solid to gas)

Solid surface
(stack plate)

Gas particle in a
standing wave

1

4

QLQH
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Thermoacoustic Cooler

Moving piston
(varying resonator’s
stiffness)

Heat
exchangers

Helmholtz resonator

Neck (mass) Volume (stiffness)

Electro-dynamic
Driver

• Piston position (acoustic impedance)
• Driver frequency

Tuning Variables
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ES with PD compensator

PDIntegratorLPF + +

sin()xxxatωα+sin()xtω

PDIntegratorLPF + +

sin()fffatωα+sin()ftω

HPF

11fTs+

Tunable
Cooler

Cooling
Power

Calculation
11xTs+

POS Command 

FREQ Command 

cQ&
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ESC quickly finds optimum operating point
(41.3W, 147Hz, 6.2in)
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Experiment – Varying Operating Condition
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ES for the Plasma Control in the
Frascati Fusion Reactor

Contribution by Luca Zaccarian (U. Rome, Tor Vergata)



Optimize coupling between
the Lower Hybrid antenna
and tha plasma, during the
LH  pulse

Additional Radio Frequency
heating injected in the
plasma by way of Lower
Hybrid (LH) antennas:
plasma reflects some power

Framework:

Goal:

Optimization Objective



1. Move the antenna
    (too slow!)
2. Move the plasma
    (viable – adopted here)

Convex fcn of edge density
Convex fcn of edge position

Reflected power:

Possible approaches to optimize:

Reflected Power Map



Knob

Extracted
Input sinusoid

Extracted
Output sinusoid

Probing not Allowed - Modified ES Scheme



K = 300

Safety
saturation
limits
performance

Control action
is quite
aggressive.

Experimental results with medium gain



K = 200
(Antenna has
been moved)

Graceful
convergence
to the
minimum
reflected
power

Experimental results with lower gain



K = 350

Instability

Gain is
too large

Gain too high - instability



Input/output plane representation:
K = 300: saturation prevents reaching the minimum
K = 200: graceful convergence to minimum (slight overshoot)
K = 350: gain too high – all the curve is explored

Experiments - Summary
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Extremum Seeking with Plant Dynamics
and Parameter Tracking
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Plant with Dynamics
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Parameter Tracking
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Example
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Simulation Results
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Slope Seeking
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Why Slope Seeking?

• Extremum of plant reference-to-output map 
susceptible to destabilization:
– Compressor instability 
– Antiskid Braking
– Formation flight

• Need to operate at a particular slope of plant 
operating characteristic
– Nuclear fusion
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Slope Seeking on a Static Map

Stability Test:
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Example
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Simulation

q*, q

f*, y

t (sec)
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Slope seeking: r(f’ref)=0.5 Extremum seeking: r(f’ref)=0
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Generalized Slope Seeking
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Gradient Seeking
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Near-Optimal Compressor 
Operation via Slope Seeking
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The Moore-Greitzer Model
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Notation in the Moore-Greitzer Model
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The ε-MG3 Parametrization
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Equilibria and Bifurcation Diagrams
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PROBLEM - BEAM MATCHING CHANNEL
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SOLUTION – EXTREMUM SEEKING
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Objective of pressure recovery control

Control effortPerformance
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Experimental Setup

θ ≈ 14
o

θ ≈ 18
o

Pressure recovery as function of diffuser angle (no control)

θ

no stall

•Optimum uncontrolled performance

•Insignificant improvement with control

fully-developed

2D stall jet flow

unsteady 

stall

•Poor uncontrolled performance

•Significant improvement with control

)(tC
p

UTRC diffuser rig

•fully turbulent BL

•40,000 < Re
H

< 140,000

•Reθe
> 300; M < 0.1

•Actuation: Cµ ~ 0.001



Two frequency control creates “beneficial” vortex interaction

Control signal is U(t)=A
1
sin(2π f t)+A

2
sin(2π 2f t-θ)
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Construction of control waveform A
1
=A

2
=const  => constant “power”

Adjustable parameters: f & θ

with appropriate choice of control phase 

one can suppress or enhance vortex 

interaction

unsteady SL structures strong

enough for flow re-attachment

enhancement

phase

unsteady structures not strong

enough to re-direct mean flow

suppression 

phase



Need: control algorithm to optimize performance
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Optimal operating point: f=31Hz, θ =60, Cp =0.21 Optimal operating point: f=36Hz, θ =60, Cp =0.16

U = 30m/sU = 20m/s

Objective:

•Optimize performance without exhaustive search

Challenges:

•Noisy measurement

•Flow transients

•Keeping up with operating condition change

Two frequency control law: U(t)=A
1
*(sin(2*π*f*t) + sin(2*π*2f*t-θ))



Adaptive control used to optimize performance

Speaker command

Pressure recovery

calculation

Pressure recovery

calculation

Multi-frequency 
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Automatic Control Parameter Tuning to Optimum Values

On-line optimization of pressure recovery using extremum-seeking algorithm demonstrated.  
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•Mean pressure recovery, control frequency, and phase in four independent adaptive control experiments. 

•The control frequency and phase initialized away from the optimal  values. 

Transient behavior
Optimal pressure recovery 

reached & held
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Automatic Parameter Tuning for Operating Condition Changes

Adaptive algorithm tunes control frequency & phase during abrupt changes in operating conditions.  

Optimal pressure recovery 

for higher velocity reached
Optimal pressure recovery 

for lower velocity reached
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Mean pressure recovery & control frequency & phase during abrupt changes in air velocity between 

20m/sec & 30m/sec in two independent experiments.
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recovery 



Source Seeking
Without Position Measurement

Based on contributions by: Jennie Cochran, Dan Arnold, Nima
Ghods, Chunlei Zhang, Antranik Siranosian, and Chris Manzie
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Introduction

• Motivation
• Control a vehicle to locate the source of an unknown signal

• Previous Work
• Porat and Nehorai - vehicle has position information

• Ogren, Fiorelli and Leonard - “group” gradient estimation

• Justh and Krishnaprasad - convergent vehicle formation

• Klein and Morgansen - trajectory tracking

• Marshal, Broucke and Francis - cyclic pursuit problem



Introductory Example:
Point Mass
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Model

vx ,vy

Dynamics

Inputs

Point Mass

y
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vy
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Block Diagram
Point Mass
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Point Mass
Simulation Results
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Simulation Results
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Simulation Results
Point Mass







Nonholonomic Vehicle:
Unicycle Model
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2D Model - “Unicycle”

• Nonholonomic (kinematically constrained,
underactuated) mobile robot

• Constant forward velocity, controlled
angular velocity

• Or vice versa
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Model

Sensor Dynamics

Inputs

Unicycle: non-collocated

System is linearly uncontrollable (from inputs v, ωo)
and unobservable (from the output f(x,y) at its peak)
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Tuning the Forward Velocity
Unicycle: collocated

okωω =



15

Simulation Results
Unicycle: collocated
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Simulation Results
Unicycle: collocated
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Simulation Results
Unicycle: collocated
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Simulation Results
Unicycle: collocated



Stability Proof by Averaging
Tuning of Forward Velocity
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Stability Proof by Averaging
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Stability Proof by Averaging
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Stability Proof by Averaging
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Equilibrium of Average System

The equilibrium of the average model is:
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Stability Proof by Averaging

( )
0       ),1(

4

~

~

22

2

2

≥∀≤

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++

tO

qqae

y

x

yx

ω
ω
π

ω
π
ω
π

Theorem

For sufficiently large _ there exists a unique exponentially stable periodic
solution of period 2!/_ and it satisfies

Speed of convergence proportional to 1/_, a2, c, qx, qy
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Tuning the Angular Velocity
Unicycle: non-collocated

oθθ =
Applying a change of notation
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Extremum Seeking Algorithm

• Linear combination of cosine and
sine but non-constant coefficients!

• Two actions:
– continuous periodic perturbation
– estimate of optimal input
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Simulation Results
Unicycle: non-collocated
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Simulation Results
Unicycle: non-collocated



28

Biologically Inspired
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Simulation Results
Unicycle: non-collocated
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Summary
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Simulation Results
Unicycle: non-collocated
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Track a Diffusive Source
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Level Sets

• Several methods using multipe AUVs have been
proposed
– Kalantar & Zimmer
– N. Leonard, Fiorelli, Ogren
– Bertozzi
– Burian, Singh
– Bennett, J. Leonard

• Neutrally buoyant drifters
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Level Sets
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Level Sets
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Level Sets
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Level Sets
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Level Sets
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Navigation Through a Minefield
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Multi-Vehicle Pursuit
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Experimental Results
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2D- Stability and Convergence
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The Optimal Heading Manifold
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The “Average System”
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The “Average Dynamics”
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3D - UUV or UAV
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Yaw and Pitch Actuated
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Vehicle with Const Fwd Velocity and Const
Pitch Up Velocity, Sensor Off the Vehicle
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Roll Actuated
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3D Vehicle Design
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3D Movies



52

3D Boundary Tracing: Yaw+Pitch Actuation
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3D Boundary Tracing: Roll Actuation
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Food-Seeking “Fish”
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Mimicking E Coli

• E Coli motility has two phases,
run and tumble
– During run phase all flagella

spin counter clockwise and
particle moves forward

– During tumble phase some
flagella spin clockwise and
bacterium changes orientation

• E Coli reacts to spatial gradients
• Change in direction during

tumbles is biased in forward
direction
– mean direction change is +/-680

(Berg and Brown, 1972)

• SIMULATION
– Run durations constant, tumble

angle θ controlled by discrete-
time ES

– Measurement of local nutrient
concentration at end of run

  
θk+1 = θk + wk + γ wk−1

z −1
z + h

J x θk( ) , y θk( )( )⎡
⎣

⎤
⎦

kθΔ

kv
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Zooming In

• 30 sec trace for
individual bacterium,
illustrating run and
tumble phases

• Berg (2000)

0.1 mm

Our simulation
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3D E Coli




