Robust Adaptive Control and the **Greeks** who Made it Possible

Miroslav Krstic

joint work with lasson Karafyllis

• European Control Conference Thessaloniki, 2025 •

2025 (SIAM)

lasson Karafyllis • Miroslav Krstic

Advances in Design and Control

Adaptive Backstepping

Nonlinear and Adaptive Control Design

Miroslav Krstić Ioannis Kanellakopoulos Petar Kokotović

A Volume in the Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications, and Control

imon Haykin, Series Editor

- Nonlinear & Adaptive Control Design—1995
- adapt. backstepping & strict-fbk systems (1991): Kanellakopoulos, Kokotovic, Morse
- prescribed performance (2008): Bechlioulis & Rovithakis

Robust Adaptive Control:

40+ years since the KEY (unimproved) ideas

Robust Adaptive Control — the Ordeal

- adaptive control stability (MRAC) solved \approx 1980
- Rohrs-Athans (1982) unstable simulations (disturbances, unmod. dynamics)
- deadzone: Peterson-Narendra-Annaswamy (1982-1989)

small disturbance, requires PE

parameter projection

must know parameter bound

• *σ*-modification:

Ioannou (1983–1996), + Kokotovic, Tsakalis/Tao/Sun/Datta/Polycarpou, etc.

last 30 years of my editorial observation of adaptive (nonlinear) control:
 σ-modification owns 95% of the "robustification market"

"IOANNOU effect"

Effect of 1996 book by loannou & Sun

- Systematizes, comprehensively covers, and advances linear (robust) adaptive control to date (800 pages)
- · Deals not only with disturbances but also (multiplicative) unmodeled dynamics,

$$y = G_0(s) \left(1 + \Delta_m(s)\right) u \,.$$

Example of a theorem in [IS'96], roughly expressed: **Theorem 9.3.3.** If

$$\min\left\{1 + \frac{\|\Delta_m\|_{\infty\delta_0}^2}{\delta_0^{2(n^*+1)}}, \sigma + \|H\Delta_m\|_{2\delta_0}^2\right\} \quad \text{suffic. small}$$

then the tracking error e(t) is bounded-in-the-mean, i.e.,

$$\frac{1}{T}\int_{t}^{t+T}e^{2}(\tau)d\tau \leq c\left(\frac{1}{T}+\sigma+\|\Delta_{m}\|_{\infty\delta_{0}}^{2}+\|H\Delta_{m}\|_{2\delta_{0}}^{2}\right)$$

Results dishearteningly clear and precise regarding

- the complexity of the robust adaptive problem,
- the technical virtuosity required to keep making progress.

Disturbance-Robustness under σ -Modification

$$\dot{x} = \theta x + u + d$$

Adaptive controller with leakage:

$$u = -cx - \hat{\theta}x$$
$$\dot{\hat{\theta}} = \Gamma x^2 - \sigma \hat{\theta}$$

p-IOS and p-OAG

Lyapunov calculation yields practical input-output-stability (p-IOS) w.r.t. disturbance d:

$$|x(t)| \leq e^{-\sigma t/2} \left(|x_0| + \left| \hat{\theta}_0 - \theta \right| \right) + \frac{\sqrt{\Gamma}}{\sigma} ||d||_{\infty} + |\theta|$$

Additionally, practical output asymptotic gain (p-OAG):

$$\limsup_{t \to +\infty} |x(t)| \le \frac{\sqrt{\Gamma}}{\sigma} \limsup_{t \to +\infty} |d(t)| + |\theta|$$

The p-OAG $\sqrt{\Gamma/\sigma}$ can be reduced (though not to zero) by increasing leakage σ . But the bias $|\theta|$ is neither known nor reducible.

The culprit for the bias $|\theta|$ is the leakage itself

• The term $|\Gamma x^2|$ in the update

$$\dot{\hat{\theta}} = \boxed{\Gamma x^2} - \sigma \hat{\theta}$$

pumps up $\hat{\theta}$, i.e., pumps error $\tilde{\theta} = \theta - \hat{\theta}$ to *negative*/disturbance-attenuating values.

• But in the parameter error system

$$\dot{\tilde{\theta}} = -\sigma\tilde{\theta} - \Gamma x^2 + \sigma\theta$$

the term $+\sigma\theta$ counters the work of Γx^2 .

 σ -modification's task CONTRADICTS the task of adaptation.

 $\begin{array}{l} \mbox{Fig. 1. } (y, \hat{\theta}, u) \mbox{ for closed-loop system with } \pmb{\sigma}\mbox{-mod}, \\ & \mbox{ with } d(t) = 2 \sin(\pi t), \ \theta = 3, \\ & \ c = 1, \ \Gamma = 10, \ \sigma = q = 0.5, \\ & \ y_0 = 0.5, \ \hat{\theta}(0) = 0. \end{array}$

DADS: the Scalar Case

(DADS = Deadzone-Adapted Disturbance Suppression)

The gist of what you will see:

$$\dot{x} = \theta x + u + d$$

$$u = -x - \kappa (2 + x^2) x$$

$$\dot{\kappa} = \Gamma \max \{0, x^2 - \delta^2\}$$

guarantees

$$\limsup_{t \to +\infty} |x(t)| \le \delta$$

for arbitrarily small $\delta > 0$ independent of $\sup_{t>0} |d(t)|$ and $|\theta|$,

Fig. 1. $(y, \hat{\theta}, u)$ for closed-loop system with σ -mod, with $d(t) = 2\sin(\pi t), \theta = 3$, $c = 1, \Gamma = 10, \sigma = q = 0.5$, $y_0 = 0.5, \hat{\theta}(0) = 0$. Fig. 2. $(y, \hat{\theta}, u)$ for DADS closed-loop system, with $d = 2 \sin(\pi t)$, $\theta = 3$, c = 1/2, q = 1/4, $\Gamma = 50$, $\delta = 0.01$, $y_0 = 0.5$, $z_0 = -\ln(10)$.

TENFOLD improved disturbance suppression under DADS, using the SAME CONTROL EFFORT, relative to σ -modification in Figure 1.

- <u>update</u> "pumps up" the controller dynamic gain κ to a sufficient size, adapting the gain to the unknown disturbance d,
- deadzone shuts off further pumping up of the gain once the state is in the prespecified residual set.

Unlike σ -mod, the <u>deadzone</u>'s task <u>does not contradict</u> the <u>adaptation</u>'s task.

In design:

- deadzone is not new
- new uses of completing squares (dynamic nonlinear damping, to obliterate ("practically," ultimately) the effects of disturbance and parametric uncertainty

In analysis:

• A new comparison lemma (I call it "Karafyllis lemma")

Notation for deadzone function $(\cdot)^+$

$$s^+ := \max\{0, s\}$$
 = ReLU(s)

deadzone acting on

 $s = x^2 - \delta^2$

ReLU — notation common in neural networks, representing the "rectifier linear unit"

Control Design Idea

Recall the adaptive controller

What drives this Control Law Design?

Lyapunov function (independent of gain κ)

$$V(x) = \frac{x^2}{2}$$

Control to employ dynamic nonlinear damping and ensure

$$\dot{V} \leq -2cV + \frac{d^2 + \left(\left(|\theta| - \kappa \right)^+ \right)^2}{4q\kappa}$$

This form of inequality ensures

- ISS w.r.t. d
- gain $\kappa(t)$ ultimately dominates the unknown $|\theta|$; makes $x(t) \rightarrow 0$ when $d(t) \rightarrow 0$

Stability/Convergence Properties

Basic results from Lyapunov inequality

Practical IOS
$$|x(t)| \le e^{-ct} |x_0| + \frac{1}{2\sqrt{cq}} ||d||_{\infty} + \frac{1}{2\sqrt{cq}} \left(\frac{|\theta|}{|\theta|} - 1 \right)^+$$

(Practical) Asymptotic Gain to Disturbance

$$\limsup_{t \to +\infty} |x(t)| \le \frac{1}{2\sqrt{cq}} \left(\limsup_{t \to +\infty} |d(t)| + (|\theta| - \kappa_{\infty})^{+}\right)$$

Theorem

The DADS closed-loop system satisfies

assignable gain to d, with bias dependent on $|\theta|$

All of these also achieved with σ -mod.

No Parameter Drift

No Parameter Drift

This is the most novel and complex part of our analysis approach.

Lemma (Comparison lemma on deadzone in "exterminator-pest" feedback)

Consider the differential inequalities

$$0 \leq \dot{\kappa} \leq (V - \varepsilon)^{+}, \quad \kappa_{0} > 1$$

$$\dot{V} \leq -V + \frac{\mu}{\kappa}, \quad V_{0} \geq 0$$

Then,

$$\kappa_0 \leq \kappa(t) \leq \max\left\{\kappa_0, \frac{\mu}{\varepsilon}\right\} + \left(V_0 - \varepsilon + \frac{\mu}{\kappa_0}\right)^+, \quad \forall t \geq 0.$$
 Karafyllis

Pest (V) grows then decays.

Exterminator (κ) grows but bounded.

Explicit bound on parameter update

Practical uniform bounded-input bounded state (p-UBIBS) property:

$$\kappa_0 \leq \kappa(t) \leq \kappa_{\infty} \leq \max\left\{\kappa_0, \frac{\mu}{4\delta^2}\right\} + \frac{1}{2}\left(x_0^2 - \delta^2 + \frac{\mu}{4\kappa_0}\right)^+, \quad \forall t \geq 0$$

where
$$\mu = ||d||_{\infty}^2 + \left((|\theta| - \kappa_0)^+\right)^2.$$
The bound on $\kappa(t)$ is
• increasing in $||d||_{\infty}$ and $|x_0|$
• non-decreasing in $|\theta|$
and
• increasing in $1/\delta$

(The tighter the asymptotic regulation δ desired, the higher $\kappa(t)$ needs to be pumped.)

Theorem

The DADS closed-loop system satisfies

p-UBIBS	no parameter drift		
p-IOS	assignable gain to a	l, with	bias dependent on $ \theta $

All of these also achieved with σ -mod.

Zero Asymptotic Gain to Disturbance

Practical Regulation for Arbitrary Disturbance

By the Karafyllis lemma - and - Barbalat's lemma for $\dot{\kappa}(t) = \Gamma (x^2(t) - \delta^2)^+$, we obtain the zero practical asymptotic gain (zero p-OAG) property

$$\limsup_{t \to +\infty} |x(t)| \le \frac{\delta}{\delta}$$

Perfect Regulation

under Asymptotically Vanishing Disturbance

When $\lim_{t\to+\infty} d(t) = 0$ (the disturbance-vanishing case),

σ prevents convergence of x(t) to 0

periect regulation is achieved,

$$\lim_{t\to+\infty} x(t) = 0$$

To increase the *chance* of $\kappa_{\infty} \geq |\theta|$, increase Γ

Perfect Regulation under Asymptotically Vanishing Disturbance

When $\lim_{t\to+\infty} d(t) = 0$ (the disturbance-vanishing case),

and when either $|\theta| \leq 1$ or $\kappa_{\infty} \geq |\theta|$,

(similar to switching-σ)

perfect regulation is achieved,

$$\lim_{t \to +\infty} x(t) = 0$$

To increase the *chance* of $\kappa_{\infty} \geq |\theta|$, increase Γ .

Summary: MAIN RESULT

Theorem

The DADS closed-loop system satisfies

p-UBIBS	no parameter drift				
p-IOS	assignable gain to d , with bias dependent on $ \theta $				
zero p-OAG	residual error indep. of (d, θ) and assignably small				
$x(t) \rightarrow 0$	when $d(t) \rightarrow 0$ and κ_{∞} large				
IOS w/ small $ \theta $	IOS gain & asymptotic gain to d are assignable				

The properties in BLUE are NOT guaranteed with σ -mod.

BACKSTEPPING for Strict-Feedback Systems

DADS Backstepping for Strict-Feedback Systems 🔸

Theorem

Consider the strict-feedback system

UNMATCHED parametric uncertainty

$$\dot{x}_i = x_{i+1} + \varphi'_i(x_1, ..., x_i)\theta + \alpha'_i(x_1, ..., x_i)d$$
 $i = 1, ..., n, \quad x_{i+1} = u$

Explicit backstepping design guarantees, globally, the p-OAG, p-IOS, p-UBIBS properties

$$\begin{split} \limsup_{t \to +\infty} |x_1(t)| &\leq \varepsilon \\ |x_1(t)|^2 &\leq 2e^{-2c_0 t} V_n(x_0, z_0) + \frac{\|d\|_{\infty}^2 + \left((\|\theta\|_{\infty} - 1 - e^{z_0})^+ \right)^2}{4c_0 \beta_0 (1 + e^{z_0})} \\ |x(t)| &\leq B(x_0, z_0, \|d\|_{\infty}, \|\theta\|_{\infty}) \\ z_0 &\leq z(t) &\leq \lim_{s \to +\infty} z(s) \leq B(x_0, z_0, \|d\|_{\infty}, \|\theta\|_{\infty}) \end{split}$$

Explicit DADS Backstepping

Limit cycle at high angle-of-attack

roll angle	$\dot{x}_1 = x_2$
roll rate	$\dot{x}_2 = \varphi^{\mathrm{T}}(x_1, x_2)\theta + x_3 + d_2$
aileron angle	$\dot{x}_3 = u + d_3$

 $\varphi(\text{roll-angle, roll-rate}) = \text{aerodynamic forces vector}$

disturbance vector d(t) = taken sinusoidal for simulations

Aircraft Wing Rock

But what about robustness to NOISE?

plant:	x	=	$\theta x + u$
output:	y	=	x + n(t)
controller:	и	=	$-y-\kappa\left(2+y^2\right)y$
gain update:	Ķ	=	$\Gamma \left(\boldsymbol{y^2} - \delta^2 \right)^+$

$$\limsup_{t \to +\infty} |x(t)| \le \frac{\delta}{t} + \limsup_{t \to +\infty} |n(t)|$$

$$\kappa_0 \le \kappa(t) \le \kappa_\infty \le \max\left\{\kappa_0, \frac{\mu}{4\delta^2}\right\} + \frac{1}{2}\left(\|\boldsymbol{n}\|_{\infty}^2 - \delta^2 + \frac{\mu}{4\kappa_0}\right)^+$$
$$\mu = \left\|\frac{\mathrm{d}\boldsymbol{n}}{\mathrm{d}t}\right\|_{\infty}^2 + |\boldsymbol{\theta}|\|\boldsymbol{n}\|_{\infty}^2 + \left((|\boldsymbol{\theta}| - \kappa_0)^+\right)^2$$

- tracking treats reference as a disturbance (brute force), due to state reference trajectory being affected by unknown parameters
- output feedback adaptive observer error likely to manifest itself as a disturbance and be tractable
- unmodeled dynamics, ISS/small-gain

Adaptive control can achieve arbitrarily good regulation

- for arbitrarily large disturbances
- without PE

No "fundamental limitation," NO "CURSE OF UNCERTAINTY"!