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Robust Adaptive Control:
40+ years since the KEY (unimproved) ideas
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Robust Adaptive Control — the Ordeal

® adaptive control stability (MRAC) solved ~ 1980

Rohrs-Athans (1982) unstable simulations (disturbances, unmod. dynamics)

deadzone: Peterson-Narendra-Annaswamy (1982-1989)
small disturbance, requires PE

® parameter projection must know parameter bound

* o-modification:
loannou (1983—-1996), + Kokotovic, Tsakalis/Tao/Sun/Datta/Polycarpou, etc.

last 30 years of my editorial observation of adaptive (nonlinear) control:
o-modification owns 95% of the “robustification market”




“IOANNOU effect”



Effect of 1996 book by loannou & Sun

® Systematizes, comprehensively covers, and advances linear (robust) adaptive
control to date (800 pages)

e Deals not only with disturbances but also (multiplicative) unmodeled dynamics,

y=Go(s) (1+An(s))u.

Example of a theorem in [IS’96], roughly expressed:
Theorem 9.3.3. If

_ 1AmllZ,s, 5 _
min < 1 + W, o+ ||HAm||250 suffic. small
19

0

then the tracking error e(t) is bounded=insthe=mean, i.e.,

1 t+T 5 1 5 )
¥/t e2(r)dr < ¢ (T vo+ | BRI, + ||HA,,,||250)
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Effect of 1996 book by loannou & Sun

Results dishearteningly clear and precise regarding

® the complexity of the robust adaptive problem,
¢ the technical virtuosity required to keep making progress.



Disturbance-Robustness
under o-Modification



Scalar Example

Adaptive controller with leakage:

u = —cx—0x
0 = Tx? —ob
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p-10S and p-OAG

Lyapunov calculation yields practical input-output-stability (p-IOS) w.r.t. disturbance d:

i : VT
k(O] < e (jxol +[do = 6]) + ~~lldll + l0

Additionally, practical output asymptotic gain (p-OAG):

T
limsup |x(t)| < £ limsup [d(t)| + [0]

t—+00 t—+00

The p-OAG . can be reduced (though not to zero) by increasing leakage o.

But the bias |6| is neither known nor reducible.
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The culprit for the bias |0| is the leakage itself

® The term in the update
d=rx?|- b

pumps up 6, i.e., pumps error § = 0 — § to negative/disturbance-attenuating values.

e But in the parameter error system
0=—00-Tx*+00
the term +06 counters the work of I'x?.

o-modification’s task CONTRADICTS the task of adaptation.
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o REVERSES gain pumping!

Fig. 1. (y, 8, w) for closed-loop system with o-mod,
with d(t) = 2sin(nt), 6 = 3,
¢=1,T=10,0 =¢=0.5,

Yo = 0.5,6(0) = 0.
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DADS: the Scalar Case

(DADS = Deadzone-Adapted Disturbance Suppression)
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(DADS = Deadzone-Adapted Disturbance Suppression)


The gist of what you will see:

—x—r<(2+x2)x

I max {O, x2 - 52}

<
Il

=
Il

guarantees

limsup [x(t)] <6

t—+00

for arbitrarily small 5 > 0 independent of sup,. |d(t)| and |0],


Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic


12

1
08
06

02

02
04
06
08

Fig. 1. (y, 0, u) for closed-loop syst.em with o-mod,

i)

output oscillation MUCH lower

o REVERSES gain pumping!

Fig. 2. (y,,u) for DADS closed-loop system,
with d = 2sin (nt), 6 = 3,

with d(t) = 2sin(wt), 6 =

=1T= =q= c¢=1/2,=1/4,I =50,6 = 0.01,
. ;Or: 0{50@?0) =0 o 5 Yo = 0.5, 20 = —In(10).
TENFOLD i 1 disturt <on under

DADS, using the SAME CONTROL EFFORT, relative to
o-modification in Figure 1.
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output oscillation MUCH lower
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gain pumped up and stops
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input oscillation a LITTLE lower
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Intuition behind deadzone

® ypdate “pumps up” the controller dynamic gain « to a sufficient size, adapting the
gain to the unknown disturbance d,

® deadzone shuts off further pumping up of the gain once the state is in the
prespecified residual set.

Unlike o-mod, the deadzone’s task does not contradict the adaptation’s task.
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Innovations behind DADS

In design:
® deadzone is not new

o uses of completing squaresm, to obliterate
practically,” ultimately) the effects of disturbance and parametric uncertainty

In analysis:

° A _ (I call it “Karafyllis lemma”)
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deadzone acting on

Notation for deadzone function (-)* s =x% 52

st o= max{O,s}‘ = ReLU(s)

ReLU — notation common in neural networks, representing the “rectifier linear unit”
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deadzone acting on
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s = x  - δ
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Control Design Idea
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Recall the adaptive controller

plant: x = Ox+u+d

controller: u

—x—K(2+x2)x

gain update: ko= T(x®2-82)", x(0) > 1
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What drives this Control Law Design?

Lyapunov function (independent of gain «)

x2

V(X) = ?

Control to employ dynamic nonlinear damping and ensure

d® + ((16] - 0)*)?

V<=2V +
=T 4qx

This form of inequality ensures
® |SS wrt d
® gain k(t) ultimately dominates the unknown |6|; makes - when d(t) — 0
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Stability/Convergence Properties



Basic results from Lyapunov inequality

Practical '10S

1 1 +
x(1)] < 7 e Ml + = (161 - 1)

=

(Practical) Asymptotic Gain to Disturbance

limsup |x(t)] < limsup |d(t)]

I — +o0 I — 400




Main Result

The DADS closed-loop system satisfies

p-10S assignable gain to d , with bias dependent on || T

(AII of these also achieved with o-mod.)
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No Parameter Drift



No Parameter Drift

This is the most novel and complex part of our analysis approach.

Lemma (Comparison lemma on deadzone in feedback)

Consider the differential inequalities

0 <k < (V-of, Ko > 1
V < —V+ﬁ, Vo =0
K

Then,

-
K()S@ < maX{KO,E}+(VO—e+£) , Vit > 0.
€ K0 Karafyllis

@88 (V) grows then decays. EXISHRIRAS) (<) grows but bounded.
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Explicit bound on parameter update

Practical uniform bounded-input bounded state (p-UBIBS) property:

l +
K()<K(t)<K(X,<maX{K0,4I;2}+2( 52+4LK0) , Vi >0

where
w= (I3 + ((16] = ko))
The bound on k(t) is
® increasing in ||d||. and’|xo|
® non-decreasing in ||
and
® increasingin 1/6

(The tighter the asymptotic regulation & desired, the higher x(t) needs to be pumped.)
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Main Result

The DADS closed-loop system satisfies

p-UBIBS | no parameter drift
p-10S assignable gain to d , with bias dependent on ||

STILL,
All of these also achieved with o-mod.
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Zero Asymptotic Gain to Disturbance



Practical Regulation for Arbitrary Disturbance

By the Karafyllis lemma - and - Barbalat's lemma for #(t) =T (x*(t) - 8%)", we
obtain the zero practical asymptotic gain (zero p-OAG) property

limsup |x(t)] < &

t—+00
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Perfect Regulation
under Asymptotically Vanishing Disturbance

When tlim d(t) = 0 (the disturbance-vanishing case),
—+00

o prevents convergence of x(t) to 0
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 σ prevents convergence of x(t) to 0 
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Perfect Regulation
under Asymptotically Vanishing Disturbance

When tlim d(t) = 0 (the disturbance-vanishing case),
—+00

and when Koo = 0], (similar to switching-o)

perfect regulation is achieved,

lim x(t) =0
t—+oc0
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Summary:
MAIN RESULT



Main Result

The DADS closed-loop system satisfies

zero p-OAG residual error indep. of (d,0) and assignably small

x(t) = 0 when d(t) — 0 and k., large
I0S w/ small |0]| | IOS gain & asymptotic gain to d are assignable

The properties in BLUE are NOT guaranteed with o-mod.
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slow

[ 2|
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BACKSTEPPING
for Strict-Feedback Systems



DADS Backstepping for Strict-Feedback Systems

Theorem
Consider the strict-feedback system UNMATCHED parametric uncertainty
J'Ci:xi+1+(plf(xl,...,x,-)‘+alf(x1...,xl-)d‘ i=1,...,n, Xie] = U

Explicit backstepping design guarantees, globally, the p-OAG, p-10S, p-UBIBS properties

limsup [x1(£)] < ¢
t—+00
2 2z +) 2
) et 1l + (6]l = 1 = e)*)
t < 2e70NY (xo,
) B © albr) 4C0,B0 (1 +e20)
lx(®)] < B(x0, 20, [ldlleo » 10]]0)

20<2(t) < lim 2(5) < B (xo, 20, [l 611)
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Explicit DADS Backstepping

G = xi—ki—1(xi-1,2), i=1,...,n
i BN
Vg = 50
j=1
i-1 ok, B
7[{()'(,-,2) = (P,{ - jZl alTJ(p; =: p;(fi,z)gi,
ki(%1.2) —[ei +ri(%1.2)] & = Ui 1+Z ; Lyl
riFz) = (1+exp(2) (ﬁi|pi|2 +Bilmil? + Ew)
1
2 i-1 1 ok;_y 2
— ) — 2=
+ exp(—2z) 1254}9{]( pe ) +(

i-1

j=

pi(Ei2) = of = ) =L

domination

of adaptation

I

3 /
z =Texp(-z) (Vn -

ﬁ +
2
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Aircraft Wing Rock

Limit cycle at high angle-of-attack

roll angle X1 = X

qu(xl,x2)0 +x3+ds

roll rate X

aileron angle X3 U+ ds

p(roll-angle, roll-rate) = aerodynamic forces vector

disturbance vector d(t) = taken sinusoidal for simulations
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Aircraft Wing Rock
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But what about robustness to NOISE?

plant: X = Ox+u

output: y = x+n(1)
controller: u = —y-x(2+y})y
gain update: ko= T(2-6)"

limsup |x(¢)| < 6 +limsup |n(t)]

t—+o0 t—+00

1 2 _ 2, H "
< Kk(t) € Keo < Ll G i
ko < k(1) < K max{xo 452} 2(||n|| +4K0)
dn 2 2 +\2
p=ly +101Inll% + ((16] = x0)™)




Future Work

e tracking — treats reference as a disturbance (brute force), due to state reference
trajectory being affected by unknown parameters

e output feedback — adaptive observer error likely to manifest itself as a disturbance
and be tractable

* unmodeled dynamics, ISS/small-gain


Miroslav Krstic


Recap

Adaptive control can achieve arbitrarily good regulation
o for arbitrarily large disturbances

e without PE

No "fundamental limitation,” NO "CURSE OF UNCERTAINTY"!
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