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Adaptive Backstepping

• Nonlinear & Adaptive Control Design—1995 (1994)

• adapt. backstepping & strict-fbk systems (1991):

Kanellakopoulos, Kokotovic, Morse

• prescribed performance (2008):

Bechlioulis & Rovithakis
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Robust Adaptive Control:

40+ years since the KEY (unimproved) ideas

Miroslav



Robust Adaptive Control — the Ordeal

• adaptive control stability (MRAC) solved ⇡ 1980

• Rohrs-Athans (1982) unstable simulations (disturbances, unmod. dynamics)

• deadzone: Peterson-Narendra-Annaswamy (1982-1989)

small disturbance, requires PE

• parameter projection must know parameter bound

• 2 -modification:

Ioannou (1983–1996), + Kokotovic, Tsakalis/Tao/Sun/Datta/Polycarpou, etc.

• last 30 years of my editorial observation of adaptive (nonlinear) control:

2 -modification owns 95% of the “robustification market”



“IOANNOU effect”



Effect of 1996 book by Ioannou & Sun

• Systematizes, comprehensively covers, and advances linear (robust) adaptive

control to date (800 pages)

• Deals not only with disturbances but also (multiplicative) unmodeled dynamics,

𝐿 = 𝑀0(𝑁) (1 + ω𝐿 (𝑁)) 𝑂 .

Example of a theorem in [IS’96], roughly expressed:

Theorem 9.3.3. If

min

{
1 +

→ω𝐿 →2
↑𝑀0

𝑃2(𝑁↓+1)
0

,𝑄 + →𝑅ω𝐿 →2
2𝑀0

}
suffic. small

then the tracking error 𝑆 (𝑇) is bounded-in-the-mean, i.e.,

1
𝑈

∫ 𝑂+𝑃

𝑂
𝑆2(𝑉)𝑊𝑉 ↔ 𝑋

(
1
𝑈

+ 𝑄 + →ω𝐿 →2
↑𝑀0

+ →𝑅ω𝐿 →2
2𝑀0

)
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Effect of 1996 book by Ioannou & Sun

Results dishearteningly clear and precise regarding

• the complexity of the robust adaptive problem,

• the technical virtuosity required to keep making progress.



Disturbance-Robustness

under X-Modification



Scalar Example

§� = f� + G + \
Adaptive controller with leakage:

G = �D� � f̂�
§̂f = ��2 �Xf̂

(For simplicity of the analysis, we take � � 1 and D � X > 0.)
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p-IOS and p-OAG

Lyapunov calculation yields practical input-output-stability (p-IOS) w.r.t. disturbance \:

|� (3) |  e�<f/2
⇣
|�0 | +

���f̂0 � f
���⌘ +

p
�

X
k\ k1 + |f |

Additionally, practical output asymptotic gain (p-OAG):

lim sup
f!+1

|� (3) | 
p
�

X
lim sup
f!+1

|\ (3) | + |f |

The p-OAG
p
�/X can be reduced (though not to zero) by increasing leakage X .

But the bias |f | is neither known nor reducible.
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The culprit for the bias |f | is the leakage itself

• The term ��2
in the update

§̂f = ��2 � Xf̂

pumps up f̂ , i.e., pumps error f̃ = f � f̂ to negative/disturbance-attenuating values.

• But in the parameter error system

§̃f = �Xf̃ � ��2 +Xf

the term +Xf counters the work of ��2
.

X-modification’s task CONTRADICTS the task of adaptation. Biologically:

• f̂ is inhibitor of �

• X is inhibitor of f̂ and hence an “activator” of �
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σ REVERSES gain pumping!
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DADS: the Scalar Case

Miroslav Krstic
(DADS = Deadzone-Adapted Disturbance Suppression)



The gist of what you will see:

plant: §� = f� + G + \
controller: G = �� � 2

�
2 + �2� �

gain update: §2 = � max
�
0, �2 � C2 

|               {z               }
deadzone

, � > 0 , 20 > 1

guarantees

• the property

lim sup
f!+1

|� (3) |  C

for arbitrarily small C > 0 independent of supf�0 |\ (3) | and |f |,

• an explicit bound on 2 (3), which depends on supf�0 |\ (3) | and |f |.

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic

Miroslav Krstic



Miroslav Krstic
σ REVERSES gain pumping!
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output oscillation MUCH lower
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gain pumped up and stops
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input oscillation a LITTLE lower
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Intuition behind deadzone

• update “pumps up” the controller dynamic gain 2 to a sufficient size, adapting the

gain to the unknown disturbance \,

• deadzone shuts off further pumping up of the gain once the state is in the

prespecified residual set.

Unlike X-mod, the deadzone’s task does not contradict the adaptation’s task.

Biologically: deadzone does not inhibit 2 (and activate �) but only stops activation of 2
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Innovations behind DADS

In design:

• deadzone is not new

• new uses of completing squares/dynamic nonlinear damping, to obliterate

(“practically,” ultimately) the effects of disturbance and parametric uncertainty

In analysis:

• A new comparison lemma (I call it “Karafyllis lemma”) for an “exterminator-pest”

(e.g., owl-mice) negative (inhibitive) feedback intercommenction with a deadzone.
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Notation for deadzone function (·)+

^+ := max{0, ^} = ReLU(^)

ReLU — notation common in neural networks, representing the “rectifier linear unit”
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deadzone acting on
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s = x  - δ
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Control Design Idea
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Recall the adaptive controller

plant: §� = f� + G + \

controller: G = �� � 2
�
2 + �2� �

gain update: §2 = �
�
�2 � C2�+ , 2 (0) > 1
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What drives this Control Law Design?

Lyapunov function (independent of gain 𝐿)

𝑀 (𝑁) = 𝑁2

2

Control to employ dynamic nonlinear damping and ensure

→𝑀 ↑ ↓2𝑂𝑀 +
𝑃2 +

(
( |𝑄 | ↓ 𝐿)+

)2

4𝑅𝐿

This form of inequality ensures

• ISS w.r.t. 𝑃

• gain 𝐿 (𝑆) ultimately dominates the unknown |𝑄 |; makes 𝑁 (𝑆) ↔ 0 when 𝑃 (𝑆) ↔ 0
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Stability/Convergence Properties



Basic results from Lyapunov inequality

Practical IOS

|𝐿 (𝑀) | → e↑𝐿𝑀 |𝐿0 | +
1

2↓𝑁𝑂 ↔𝑃 ↔↗ + 1
2↓𝑁𝑂

(
|𝑄 | ↑ 1

)+

(Practical) Asymptotic Gain to Disturbance

lim sup
𝑀 ↘ +↗

|𝐿 (𝑀) | → 1
2↓𝑁𝑂

#$
%

lim sup
𝑀 ↘ +↗

|𝑃 (𝑀) | + (|𝑄 | ↑ 𝑅↗)+&'
(



Main Result

Theorem

The DADS closed-loop system satisfies

p-UBIBS no parameter drift
p-IOS assignable gain to 𝐿 , with bias dependent on |𝑀 |

All of these also achieved with 𝑁-mod.
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No Parameter Drift



No Parameter Drift ✁

This is the most novel and complex part of our analysis approach.

Lemma (Comparison lemma on deadzone in “exterminator-pest” feedback)

Consider the differential inequalities

0 → ↑𝐿 → (𝑀 ↓ 𝑁)+ , 𝐿0 > 1
↑𝑀 → ↓𝑀 + 𝑂

𝐿
, 𝑀0 ↔ 0

with 𝑁 > 0, 𝑂 ↔ 0.

Then,

𝐿0 → 𝐿 (𝑃) → max
{
𝐿0,

𝑂

𝑁

}
+
(
𝑀0 ↓ 𝑁 + 𝑂

𝐿0

)+
, ↗𝑃 ↔ 0 .

Pest (𝑀 ) grows then decays. Exterminator (𝐿) grows but bounded.
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Explicit bound on parameter update

Practical uniform bounded-input bounded state (p-UBIBS) property:

20  2 (3)  21  max
✓
20,

B

4C2

◆
+ 1

2

n
�2

0 � C2 + B

420

o+
, 83 � 0

where

B = k\ k2
1 +

�
( |f | � 20)+

�2 .

The bound on 2 (3) is

• increasing in k\ k1 and |�0 |
• non-decreasing in |f |

and

• increasing in 1/C and �

(The tighter the asymptotic regulation C desired, the higher 2 (3) needs to be pumped.)
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Main Result

Theorem

The DADS closed-loop system satisfies

p-UBIBS no parameter drift
p-IOS assignable gain to 𝐿 , with bias dependent on |𝑀 |

All of these also achieved with 𝑁-mod.
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Zero Asymptotic Gain to Disturbance



Practical Regulation for Arbitrary Disturbance

Bound 𝑂→ satisfies the conditions of Barbalat’s lemma for ↑𝑂 (𝑃) = ω
(
𝑄2(𝑃) ↓ 𝑅2)+

, so we

obtain the zero practical asymptotic gain (zero p-OAG) property

lim sup
𝐿↔+→

|𝑄 (𝑃) | ↗ 𝑅

Miroslav Krstic
By the Karafyllis lemma  -  and  - 
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Perfect Regulation

under Asymptotically Vanishing Disturbance

When lim
f!+1

\ (3) = 0 (the disturbance-vanishing case),

and when either |f |  1 or 21 � |f | ,

perfect regulation is achieved,

lim
f!+1

� (3) = 0

To increase the chance of 21 � |f |, increase � .
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 σ prevents convergence of x(t) to 0 
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Perfect Regulation

under Asymptotically Vanishing Disturbance

When lim
f!+1

\ (3) = 0 (the disturbance-vanishing case),

and when either |f |  1 or 21 � |f | ,

perfect regulation is achieved,

lim
f!+1

� (3) = 0

To increase the chance of 21 � |f |, increase � .
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Summary:

MAIN RESULT



Main Result

Theorem

The DADS closed-loop system satisfies

p-UBIBS no parameter drift
p-IOS assignable gain to 𝐿, with bias dependent on |𝑀 |
zero p-OAG residual error indep. of (𝐿, 𝑀 ) and assignably small
𝑄 (𝑃) ↔ 0 when 𝐿 (𝑃) ↔ 0 and 𝑂→ large
IOS w/ small |𝑀 | IOS gain & asymptotic gain to 𝐿 are assignable

The properties in BLUE are NOT guaranteed with 𝑁-mod.
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BACKSTEPPING

for Strict-Feedback Systems



DADS Backstepping for Strict-Feedback Systems H

Theorem

Consider the strict-feedback system

§�C = �C+1 + + 0
C (�1, . . . , �C)f + ~ 0

C (�1 . . . , �C)\ @ = 1, . . . ,Y , �C+1 = G

Explicit backstepping design guarantees, globally, the p-OAG, p-IOS, p-UBIBS properties

lim sup
f!+1

|�1(3) |  `

|�1(3) |2  2e�220fi@ (�0, U0) +
k\ k2

1 +
�
(kf k1 � 1 � e80)+

�2

4D080 (1 + e80)

|� (3) |  = (�0, U0, k\ k1 , kf k1)

U0  U (3)  lim
=!+1

U (^)  = (�0, U0, k\ k1 , kf k1)
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Explicit DADS Backstepping H

Z8 = G8 � :8�1 (Ḡ8�1, I) , 8 = 1, . . . ,=

+8 (Ḡ8 , I) =
1
2

8’
9=1

Z 2
8

c 08 (Ḡ8 , I) = i 08 �
8�1’
9=1

m:8�1
mG 9

i 09 =: ?08 (Ḡ8 , I)Z̄8 , d08 (Ḡ8 , I) = U 08 �
8�1’
9=1

m:8�1
mG 9

U 09

:8 (Ḡ8 , I) = � [28 + A8 (Ḡ8 , I)] Z8 � Z8�1 +
8�1’
9=1

m:8�1
mG 9

G 9+1 , 28 >
=’
9=8

1 9 +
8�1’
9=2

W 9 + =68

A8 (Ḡ8 , I) = (1 + exp(I))
✓
V8 |d8 |2 + V8 |c8 |2 + 1

418
|?8 |2

◆

+
�2

4
exp(�2I)

266664
8�1’
9=2

1
4W 9

Z 2
9

✓
m: 9�1

mI

◆2
+
✓
m:8�1
mI

◆2 8’
9=1

1
46 9

Z 2
9

377775
Adaptive controller: D = := (F , I) §I = � exp(�I)

⇣
+= � Y2

2

⌘+
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Aircraft Wing Rock

Limit cycle at high angle-of-attack

roll angle ⇡X1 = X2

roll rate ⇡X2 = �T(X1, X2)f + X3 + G2

aileron angle ⇡X3 = \ + G3

� (roll-angle, roll-rate) = aerodynamic forces vector

disturbance vector G (D) = taken sinusoidal for simulations
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Aircraft Wing Rock
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But what about robustness to NOISE?

plant: →𝐿 = 𝑀𝐿 + 𝑁
output: 𝑂 = 𝐿 + 𝑃(𝑄)
controller: 𝑁 = ↑𝑂 ↑ 𝑅

(
2 + 𝑂2) 𝑂

gain update: →𝑅 = ω
(
𝑂2 ↑ 𝑆2)+

lim sup
𝐿↓+↔

|𝐿 (𝑄) | ↗ 𝑆 + lim sup
𝐿↓+↔

|𝑃(𝑄) |

𝑅0 ↗ 𝑅 (𝑄) ↗ 𝑅↔ ↗ max
{
𝑅0,

𝑇

4𝑆2

}
+ 1

2

(
↘𝑃↘2

↔ ↑ 𝑆2 + 𝑇

4𝑅0

)+

𝑇 =
''''d𝑃

d𝑄

''''
2

↔
+ |𝑀 |↘𝑃↘2

↔ +
(
( |𝑀 | ↑ 𝑅0)+

)2



Future Work

• tracking — treats reference as a disturbance (brute force), due to state reference

trajectory being affected by unknown parameters

• output feedback — adaptive observer error likely to manifest itself as a disturbance

and be tractable

• unmodeled dynamics, ISS/small-gain

• can zero p-OAG be achieved with other design approaches?
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Recap

Adaptive control can achieve arbitrarily good regulation

• for arbitrarily large disturbances

• without PE

No "fundamental limitation," NO "CURSE OF UNCERTAINTY"!
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