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Modern vehicles are computerized machines …

• Computers control practically everything:

– engine, transmission

– braking (ABS), traction

– air-bags,  power-windows, …

•    Engine computer control enabled

–   very low emissions by accurate of air/fuel control

–   optimized performance and fuel economy via addition of new devices.

•   Optimization task different (more difficult) than set point regulation 

–   obtaining accurate models expensive/time-consuming

–   complexity increases exponentially with each additional device.
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A sample of emission regulations since 1991

at 100/120 K miles.

Regulated tailpipe emissions (EPA

and CARB)

• NMOG (HC)

• NOx

• CO

• particulates

Steps to achieve high standards:

•  large/multiple catalytic converters

•  control AF ratio at stoichiometry

•  special cold start strategies to speed

up catalyst light-off.



Fuel economy

Automakers must satisfy CAFE standard for fleet fuel economy:

•   cars  –  27.5 mpg 
•   light trucks  –  20.7 mpg    increasing to 22.2 mpg (model year 2007)

Customer benefit  !  average vehicle, driven 120K miles, at $2/gallon gas:

$100 per 1% FE improvement

New technologies slide the base-point 

along the benefit line.
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Design for fuel economy

• Conventional SI (gasoline) engine

– throttle controls air (torque)

– fuel controlled to stoichiometric AF ratio (14.6)

– spark for best fuel economy (MBT spark) ! 1 DoF optimization

•    New devices added/combined to improve FE:

–  Camless  –   5 DoF:

•  intake and exhaust valve opening and closing times, spark timing.

–  Lean burn  –   3 DoF:

•  air-fuel ratio, variable cam timing (VCT), spark timing

–  Dual-independent VCT  –   3 DoF : 

•  intake VCT, exhaust VCT, spark timing

•  test platform for this work.



Dual-independent VCT engine

Intake and exhaust cam timing change

independently based on operating

conditions.

(Leone et al, SAE 960584

 Jankovic, Magner, IFAC Congress, 2002)

VCT Actuator

Dual-independent VCT – high overlap regime

FE improvement through

- higher dilution

- higher compression 



BSFC vs IVO and EVC at MBT spark (1500 RPM)
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Powertrain control system – hardware configuration



Engine control system – control theoretic viewpoint

•  Disturbances are measured/known

•  Performance outputs are not measured

•  Resulting control system relies

    on feedforward component

Optimization vs set point regulation (di-VCT)

• performance output (cost) may be

unmeasured

• (even if it is measured) set-points not

available – the smaller the better.

spark = MBT

EVC = 30 deg.

•    At the optimum, gain is 0

–  deviation on either side increases cost

•    On an active constraint actuation becomes

unidirectional.

•    Instead of feedback regulation one can

search for the optimum.



On-line search for the optimum

Several approaches to search for the optimum

based on real-time measurements:

• Extremum seeking (sinusoidal perturbation)

(Ariyur & Krstic, Wiley, 2004)
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•    Gradient search / stochastic approximation

(Spall, Wiley Encyclopedia of EE, Volume 20, 1999

 Teel, CDC 2000, Sydney)
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•    Direct search methods (e.g. Nealder-Mead)

(Wright, Numerical Analysis 1995, Addison-Wesley

 Kolda et al, SIAM Review, 2003)

Gradient Search Methods

• Several GS methods experimentally tested on di-VCT engine

– Modified Box-Wilson method   (Box, Wilson, J. Royal Stat. Soc., 1951)

– Simultaneously Perturbed Stochastic Approximation

– Persistently Exciting Finite Differences
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SPSA/PEFD algorithm

• Iteratively adjust parameters (ivo, evc, spark) to minimize a cost f (!) (i.e. BSFC):

1. Pick  randomly or periodically one direction in R3 among:

      v1= [ 1   1   1], v2= [ -1   1 1], v3= [1 -1 1] , v
4
= [1 1  –1] 

2. Assign ! = !k+" vk,  measure  f(!k+" vk) 

3. Assign ! = !k-" vk , measure  f(!k-" vk) 

4. Calculate the next estimate: 



Experimental results (SPSA algorithm results shown)

Testing at 1500 RPM, 63 Nm torque.

"Initial point: ( 0, 10, 30) "Initial point: (-15, 10, 30)

(Popovic et al, ACC 2003)

Gradient search optimization – summary

• 15 minutes for GS to find the optimal point with 3 DoF

• 20 seconds just to find MBT spark  (Dorey & Stewart, CCA, 1994)

• Not fast enough for on-the-road optimization.

Federal drive cycle prescribes

the vehicle speed profile.

This constrains engine speed

and torque as shown.

Prolonged speed/torque steady

state found only in idle.



Cycle optimization (off-line)

• FE optimization subject to emissions (and cycle RPM/torque) constraints

limitemissions      subject to

nconsumptio fuelmin

cycle
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•  Point-wise FE optimization

–  if separate emissions (~first 30s) and FE modes are established.

•  Cycle-gradient optimization (Dohner, SAE 780286)

–  Alternates OL gradient computation & scheduled implementation –  f(N, tq)

(Auiler et al. SAE 770076

Cohen at al. SAE 840544

Kolmanovsky et al. ACC 2002)
•  Dynamic programming 

–  Engine and after-treatment models required

Point-wise optimization

• At each speed/torque find the best combination of the optimization parameters

– Note that this is not sufficient for transients operation
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Scheduling:

dynamic_parameters= f(constrained_variables)

instantaneous_parameters = f(constrained_variables, dynamic_parameters)



Full factorial optimization – cam and spark scheduling

• Full factorial map:

     N      load     cam timing (IVO, EVC) in deg. ATDC
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•  FE benefit depends on the accuracy of the following ECU schedules

•   35-fold increase over conventional (fixed cam) – would take 15 months to complete.

Engine mapping and optimization – improving efficiency

• Industry standard – Design of Experiments (DOE)

– (D- or V-) optimal designs

• use only a fraction of FF points

– Regressions generate “surfaces”

• Polynomial

• Radial basis function

– The regressed surfaces used to find optimal parameter

schedules.

– “Black-box” approach, accuracy/complexity tradeoff

 (Montgomery, Wiley NY, 2001

  NIST/SEMATECH e-Handbook of Statistical Methods)

Box-Behnken Design for 

Three Factors



4D V-optimal design

Approach 1

• V-optimal DOE in 4 dimensions (speed, torque, ivo, evc)

– spark sweep at each selected point

• Matlab’s Model Based Calibration tool generates mapping matrix

• di-VCT data regressed with a 3rd order polynomials in 4 variables:

• Used 100 spark sweeps for 35 coefficients.

A V-optimal design for

three factors
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2D Quadratic CCD (QCCD)

Approach 2

• At each speed/torque the “response surfaces” assumed quadratic in IVO, EVC

      Thus, ai = ai (N,load) (full factorial in N, load)

• At each speed/load map spark at 9 ivo/evc

      pairs (“central composite design – CCD”)
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Fuel economy comparisons (our data for di-VCT)

Each gray dot is a 0.1 second

operation over the US75 cycle.

The numbers show % steady

state FE improvement over the

fixed base timing.

Drive cycle FE improvement

prediction

               3.11%

(assuming no FE improvement

outside the rectangle)

FE penalty compared to full-factorial as a benchmark

183.11%Fixed cam at base timing       (-

10,10) deg ATDC

1620.64%Quadratic CCD

1.01%

            FE penalty

100

Number of spark sweeps*

4D V-optimal DOE

* For optimization over the rectangle (1000 to 2000 RPM x 16 to 167 Nm)

•  20% to 30% FE loss from the benefit potential

" lower accuracy at the edges where the optimal

points tend to be.

•  Difficult to avoid in a DOE approach.

Information function (variance-1)

 for 2-D QCCD 

6300%Full-factorial



Feature based guided mapping

Advantages

• higher accuracy on mapped features

• compatible with DOE

No point outside these features is mapped

(what happens in transients?)

•  Basic idea –  selectively map region(s) based on

• a-priori knowledge

• on-line optimization tests (e.g. gradient search)
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• More than 90% of optimal points fall on two lines 

" Dual-equal line

" Intake-only line

" + OP and D points (for special conditions)

Steady-state FE penalty and mapping effort
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Inverse distance interpolation for transients

• Nonparametric (kernel) methods  (Hardle, Cambridge University Press, 1989)

• Given data [Xi , Yi] and a function K(u) (kernel)

– Less efficient than parametric (e.g.  polynomial) methods

– Predictable in data poor regions

– Calibration is local
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(Jankovic & Magner, ACC 2004)

•    Inverse-distance kernel K(u)=1/(||u||2+#)

•    Replaced points (X,Y) with (line) features

Comparison of MBT spark response surfaces

Surface generated by inv-dist from 

values at mapped features
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Full factorial surface



Transient spark scheduling accuracy (40 sec. of the drive cycle)

Vehicle data:

Full factorial (post-processed)

2-line inverse-distance

(vehicle ECU)

FE penalty (transient)

for 2-line ID    !   0.04%

Vehicle tests

To test the approach in the vehicle we implemented 2-line + inv. dist.

Fuel economy comparison (di-VCT versus fixed base cam timing)

– Drive cycle simulation prediction  !    3.11%

– Vehicle tests (4+4 back to back tests)   !   2.97%

Before After

Our test vehicle with di-VCT engine

If you are not convinced yet …



Conclusion

• “It is difficult to specify and impossible to implement a general multivariable

function even if the function is known” – Ho

• For modeling/mapping, curse of dimensionality strikes early.

• ES, direct, or gradient search too slow for on-the-road application.

•      “All models are wrong, but some are useful,” – Box

•     full-factorial approach costly to map

•     explored mapping with reduced measurement set

•     DOE and guided (2-line) mapping compared.

•      “The minimum is the result of the omission of the inessentials” – Powson

•      inverse-distance interpolation implemented, tested in-vehicle.


