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Extremum-seeking control used to optimize performance &
explore beneficial flow structures in separated flows

Outline:
1. Problem motivation:
*  Multi-frequency control creates “beneficial” vortex interactions
*  Need algorithm to automatically select optimal parameters
2. Extremum-seeking control
*  Principle
+  Stability

3. Demonstration of extremum-seeking for optimization of diffuser pressure recovery
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Objective of pressure recovery control
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Pressure recovery as function of diffuser angle (no control)
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*40,000 < Re,; < 140,000
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*Actuation: C, ~ 0.001

*Optimum uncontrolled performance
eInsignificant improvement with control

*Poor uncontrolled performance
«Significant improvement with control
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Two frequency control creates “beneficial” vortex interaction
Control signal is U(t)=A,sin(2r f t)+A, sin(2r 21 t-0)

Construction of control waveform A=A, =const => constant “power”

A,sin(2n f't) Adjustable parameters: { & 0
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Need: control algorithm to optimize performance

Two frequency control law: U(t)=A,*(sin(2*n*f*t) + sin(2*n*2{*t-0))

U =20m/s U =30m/s

w0 Optimal operating point: f=31Hz, 6 =60, C, =0.21 5, Optimal operating point: f=36Hz, 6 =60, C, =0.16
5
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Objective:

*Optimize performance without exhaustive search
Challenges:

*Noisy measurement

*Flow transients % United

*Keeping up with operating condition change e oS



Extremum-Seeking Control: Principle

Measurements

Plant

} Performance Metric
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operation point

/ Search direction
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Extremum-Seeking Control: Options

Classical algorithm

Correlation of variations
determines direction of change
of mean control variable

Periodic variation of
performance variable

W

Current value of the

% control parameter

Sinusoidal variation of
control parameter

Triangular search (Y. Zhang)

New control parameter determined by
subdivision of an interval determined by
previous control parameters

Current poirt \
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Extremum Seeking Control: Stability

Measurements

Plant

Control parameters

Noise
Operating conditions

 Stability guaranteed for time scale separation
— fastest: plant dynamics + noise averaging

— middle: rate of change in control parameters

— slowest: operating conditions

* More challenging if time scales not separated (Aryiur and
Krstic 1998-2002)

Adaptive Algorithm used in flow control experiments (Y. Zhan
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- Wrong direction: flip direction
immediately
(ory = %0)(x) - %) <0

- Right direction: increment step size to
accelerate triangle points location:
(X5 = x4) = k(xy - X3), (03 - X) = k(xy=xg), k> 1

Initialization

case 1

Next point A chosen to
maximize shrinking of interval

Searching

case 4

Adaptation

2 United )
Ref: Youping Zhang, “Stability and Performance Tradeoff with Discrete Time Triangular Technologies
Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000
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Adaptive control used to optimize performance
Filter noise, wait for transient
to settle, adapt parameters to

improve performance
P perfe Measure performance

N
Speaker command U (¢) = Z A sin(2nfit - 06,)

i=1

Adjustable parameters

A,f1.0.,i=1.N

Excite multiple vortices, Cﬂ (l‘ ) = const % United

explore their interactions
Research Center

Automatic Control Parameter Tuning to Optimum Values

On-line optimization of pressure recovery using extremum-seeking algorithm demonstrated.

Technologies

Optimal pressure recovery
Trasient behnor p e »  Dynamics determines
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*Mean pressure recovery, control frequency, and phase in four independent adaptive control experiments.
*The control frequency and phase initialized away from the optimal values. v United
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Automatic Parameter Tuning for Operating Condition Changes

Adaptive algorithm tunes control frequency & phase during abrupt changes in operating conditions.

Optimal pressure recovery Optimal pressure recovery
for lower velocity reached for higher velocity reached
Air velocity decrease events

Air velocity increase events
(overlay from two independent experiments)

(overlay from two independent experiments)
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Mean pressure recovery & control frequency & phase during abrupt changes in air velocity between
20m/sec & 30m/sec in two independent experiments.
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Adaptive Control to Find “Beneficial” Coherent Structures
Extremum-seeking control algorithm with four harmonics to explore multiple vortex interactions

atU, , .= 10m/s

inlet

U(t)=A, sin(2n f t)+A, sin(2n 2f t-0,)+A, sin(2r 3 t-0,)+A, sin(2n 4{t-0,)

04 —— f,A,,A;,A,.0,,0;, 0,are tuned.
/ \ i m( MI‘M W A, is determined from:
| gt BRI oo
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Closed-loop flow control options

Approach Model Sensor bandwidth | Actuator bandwidth
requirements | requirements requirements
Multi-harmonic forcing | Crude Low High
+ extremum-seeking
(low hanging fruit)
High bandwidth control | Accurate High High
(highest pole in tent)
iz United
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Adaptive control used to optimize performance & explore
beneficial flow structures in separated flows

Summary:

Multi-frequency control creates “beneficial” vortex interactions

*  “Benefit” (pressure recovery) depends on control parameters

+ Extremum-seeking: a simple way to automatically tune control parameters

*  Minimum model requirement

«  Stability vs performance tradeoff exist

e  Demonstrated in diffuser flow
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Appendix: Zhang’s triangular search algorithm:

Ref: Youping Zhang, “Stability and Performance Tradeoff
with Discrete Time Triangular Search Minimum Seeking”,
Proc. of American Control Conference, Chicago 2000
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Triangular Search Minimum Seeking

 Discrete time algorithm

 Self-driving switching system: no constant
external perturbation necessary

» Uses the local convexity property of the static
tunable parameter to cost function map to form
triangle locator of the minimum.

iy United
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Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000



Generic Minimum Seeking Problem

z, =T(¢9n,z_1)un +v,

* z,:output at sampling time n

* u, :input at time n, constrained in a compact
region u, €ll

* v, :Zero mean measurement noise

» T(e, o): nonlinear difference operator, asymptotic
stable Vu €, V @ fixed.

T0,=6",2" fu, =u"}—==>T(9, =67,z =1)
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Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000

Data Smoothing I: Low Pass
Filtering

v, = 11_;5_1 (6,27 b, +v,]

* y,: smoothed output

* p€(0,1): a constant determines the bandwidth and
high frequency attenuation. The close pis to 1, the
narrower the bandwidth (and hence slower
response) and larger the high frequency
attenuation.
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Data Smoothing II: Down-sampling
Vi = Vi

Uy Uy = Uy = = Uy

_ l-p < . o 1-p

Vi ngp T<9Nk—n92 )’7k +mvm

* u,,y, are the input, output in the down-sampled
domain, N is the number of down samples.

I United
Ref: Youping Zhang, “Stability and Performance Tradeoff with Discrete Time Triangular ::E!::R!:g'es
Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000

Input-Output Model in Down-
sampled Domain

A
l-p & l-p & o = 1=p
+1—pNnZ=:§p Ainuk+1_pN;p A,y + ~ Vi
B C D

* .
0, = arg min max sup
% 0<n<N uel

l_p z n=0

o St

0
Uy United

Ref: Youping Zhang, “Stability and Performance Tradeoff with Discrete Time Triangular Iifﬂ::g!ggies
Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000



Analysis of Perturbation Terms

R O Vo a1 L () A
Aterm: [ o), o e o
B term: decreases with A% , (difference due to
plant time variation) and grows with N.

>0

« Cterm: |A u/<pBa""",VO<n<NueU—2=L1s
lI-p & — (1_,0)13 N-1 Oor N
nAZ < p—>00r N> )0
l—pN nzop k,n"k l—pN IO
* D term: _TSD(ja))da)zz(l_p)ﬁ 10
.S, (jo) 1+p
. nited

Ref: Youping Zhang, “Stability and Performance Tradeoff with Discrete Time Triangular ::E!::R!:gies
Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000

Data Smoothing: Summary

* Bandwidth parameter p:
— closer to 1 for maximum noise attenuation
— closer to 0 for maximum filter transient and plant
dynamics suppression
* Down-samples N:

— large as possible for maximum filter transient and plant
dynamics suppression

— small as possible for minimum plant time variation
effect
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Triangular Search Algorithm

*

Vi = fk(uk)+vk = f(gkﬂuk)+vk
 Assumption: f,(«) has a unique minimum reached
by the “best” control u=u*, /", (u*)=0, and 35>0
such that f” (u*+6,)>0, f"(u™-5,)<0,V 6,€(0, )

(p q ): (uk’pkfl) ifykgypkA
e (pk—l’uk) ifyk>ypk4

Uiy = Pr T My Sgn(pk - Qk)
* y, represents the output y, associated with the
control iput u,=p, ,

* 1., >01s the step size

iz United
Ref: Youping Zhang, “Stability and Performance Tradeoff with Discrete Time Triangular Technologies

Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000 Research Center

Graphical Representation of the
Triangular Search Algorithm

u* interval

_________________ ::,_,33:: 9
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Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000



Convergence 1n the Ideal Case

» Region of attraction: algorithm guarantees
convergence to [u™2u . u™2u |

« Convergence to optimum point (u—u*) with
contracting step size: Once entering the region of
attraction, we shrink the step size as follows:

J5-1

Hior = V- VZT

I United
Ref: Youping Zhang, “Stability and Performance Tradeoff with Discrete Time Triangular Technologies

. . . . . Research Center
Search Minimum Seeking”, Proc. of American Control Conference, Chicago 2000

Full Model

* Assumptions:

.. of
— Bounded variation: ﬁ(ﬁ’)(@ —911 <g,,v4,0,0,€0

— Bounded perturbation: |v,|<¢,,Vk
— Dominance of convexity: the map J is locally convex
around u*eJ, and the noise level and the parameter

variation are small compared to the variation of the map
due to the change in u.

« Region of Attraction (for 2, €[, e ] < (0,%0) )

2g,+¢

D(:umin’lumax’g): {[ul _2/umax9ur +2/umax]f'(x] < - 2 +89 vx € [ul’ur ]}
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Trade-off 1n Step Size

* As u.;, increase, the inner region defined by
[u;,u,] decreases, but the outer ring [u; -2, .,
wlOlu,, u. + 24 . ] increases as g, has to
increase.

* As u .. increase, the convergence rate (to the
region of attraction) is faster, but there is more
oscillation due to the large outer ring.
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Additional Modifications for
Robustness w.r.t. Time Variation

» Slow variation assumption (vs bounded variation):

i-jl<N,

06

* Age test: keep age tag n,, on the point p,. When p;
has been the up-to-current minimum for more than
L, times, we set u;,,= p, and re-evaluate the

corresponding output y;, +1 instead of using the y,,

 Convexity test: suppose (u,,u,) is an interval
covering u*. Then Yue (u,u,), if y(u)> y(u;) or
y(u)> y(ur)a we set /umin>max{| u-u, |9| u-u, |}

I (9)o —a,i <£,,99,6,0,€0,
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Summary

» Triangular search is a simple, intuitive, cheap
algorithm practical for real applications.

« Requires data smoothing prior to applying the
search.

« Guarantees stability, convergence, and robustness
under reasonable assumption.

« Has been used in application such as combustion
instability control (see separate paper).
i United
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