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Introduction

• The plant model and compensator structure are the same as in the continuous-time extremum

seeking.

• We do not have the frequency property of continuous time systems.

• Stability and ultimate bounds on error signals are established using two-time scale averaging

theory (Bai, Fu & Sastry, 1988)
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Discrete-Time Extremum Seeking Control
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f(θ)

Plant

θ(k)
Fo(z)Fi(z)

y(k)

α cos(ωk)

ξ(k)

β cos(wk − φ)

θ̂(k)

f∗θ∗

−γ
z−1

z−1
z+h

• Fi(z) and Fo(z) are assumed to be exponentially stable.

• Without loss of generality, the static nonlinear block f(θ) is assumed to have a minimum at

θ = θ∗, and to be of the form

f(θ) = f∗ + (θ − θ∗)2.

• The extremum seeking scheme consists of a modulation signal α cos(ωk), a demodulation signal

β cos(ωk − φ), a high-pass filter z−1
z+h (0 < h < 1), and an integrator −γ

z−1 .
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System Description

• Governing equations:

y(k) = Fo(z)
[
f∗ + (θ(k) − θ∗)2

]
,

θ(k) = Fi(z)
[
α cos(ωk) − γ

z − 1
[ξ(k)]

]
,

ξ(k) = β cos(ωk − φ)
z − 1
z + h

[y(k)].

• For the convenience of analysis, the following terms are defined:

θ0(k) = Fi(z)[α cos(ωk)],

θ̃(k) = θ∗ − θ(k) + θ0(k),

ỹ(k) = y(k) − Fo(z)[f∗],

where θ̃(k) is the tracking error and ỹ(k) is the output error.
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Closed-Loop System
• Governing equation:

θ̃(k + 1) − θ̃(k) = ε
(
L(z)[θ̃] + Φ1(k) + Φ2(k)

)
+ δ(k),

where

ε = γβ

L(z) = −α

2
Fi(z)

(
ejφM(z, ejω) + e−jφM(z, e−jω)

)
, (linear time invariant)

Φ1(k) = αFi(z)
[
s(2ωk)Im

{
M(z, ejω)[θ̃]

}
− c(2ωk)Re

{
M(z, ejω)[θ̃]

}]
, (linear time varying)

Φ2(k) = Fi(z)
[
c(ωk)

z − 1
z + h

Fo(z)[θ̃2]
]
, (nonlinear time varying)

δ(k) = εFi(z)
[
c(ωk)

z − 1
z + h

Fo(z)[f∗ + θ2
0] + αε−k

]
, (function of time)

M(z, ejω) = Fi(ejω)
ejωz − 1
ejωz + h

Fo(ejωz), s(2ωk) ! sin(2ωk − φ), c(2ωk) ! cos(2ωk − φ).
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Stability Analysis Outline

θ̃(k + 1) − θ̃(k) = ε
(
L(z)[θ̃] + Φ1(k) + Φ2(k)

)
+ δ(k),

δ(k) in the closed loop dynamics satisfies the following:

Lemma 1 δ(k) exponentially converges to an O(εα2) neighborhood of zero:

|δ(k)| ≤ ε−k + κ1εα
2,

where κ1 is a constant.

The bound on δ(k) depends only on modulation signal magnitude α and is independent of ε.

• This permits a two step stability analysis of the closed loop system

• The first step is to analyze the homogeneous system without δ(k). The second step is to derive

bounds on system state and output using the bound on δ(k).
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Stability and Performance Results

• Sufficient condition under which the homogeneous θ̃-error system is locally exponentially stable at

the origin:

Theorem 1 If Fi(1)Re
{

ejφFi(ejω) ejω−1
ejω+hFo(ejω)

}
> 0, then there exists a positive constant ε∗

such that the state-space realization of the θ̃-error system is locally exponentially stable at the

origin for all 0 < ε(= γβ) ≤ ε∗.

• Convergence of θ̃ in the overall system:

Theorem 2 Suppose that the conditions of Theorem 1 are satisfied. Then, for sufficiently small

α, there exists ε∗1, 0 < ε∗1 ≤ ε∗, such that θ̃ in the original system locally exponentially converges

to an O(α2) neighborhood of zero for all 0 < ε ≤ ε∗1.

• Convergence of the output error ỹ(k):

Corollary 1 Under the conditions of Theorem 2, the output error ỹ(k) locally exponentially

converges to an O(α2) neighborhood of zero.
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Stability Analysis for θ̃-error System

• The homogeneous part of the closed-loop system

θ̃(k + 1) − θ̃(k) = ε
(
L(z)[θ̃] + Φ1(k) + Φ2(k)

)
,

is periodic in k. This motivates the use of averaging to prove stability.

• Choose minimal state space realizations of L(z), Φ1(k), and the linear part of Φ2(k) as

(A1, B1, C1, D1), (A2(k), B2(k), C2(k), D2(k)), and (A3(k), B3(k), C3(k), D3(k)), respectively.

• A1, A2(k), and A3(k) are exponentially stable (the last two from Lyapunov analysis).

• The θ̃-error system can now be expressed in the following state space form

x′(k + 1) = A(k)x′(k) + h(k, θ̃(k))

θ̃(k + 1) = θ̃(k) + εf ′(k, θ̃(k), x′(k)),

where A(k) =
[

A1 0 0
0 A2(k) 0
0 0 A3(k)

]
, h(k, θ̃(k)) =

[
BT

1 θ̃ | BT
2 (k)θ̃ | BT

3 (k)θ̃2
]T

, and

f ′(k, θ̃(k), x′(k)) = D1θ̃ + D2θ̃ + D3θ̃2 +
[
C1 | C2(k) | C3(k)

]
x′(k).
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Coordinate Transformation for Averaging

The change of variables

x(k) = x′(k) − w(k, θ̃),

where w(k, θ̃) =
k−1∑
i=0

Ψ(k, i + 1)h(i, θ̃), and Ψ(k, i) =
k−1∏
l=i

A(i + k − 1 − l), transforms the error

system to the following two time scale system:

x(k + 1) = A(k)x(k) + εg(k, θ̃, x)

θ̃(k + 1) = θ̃(k) + εf(k, θ̃, x),

where

g(k, θ̃, x) = −
( ∫ 1

0

∂w

∂θ̃
(k + 1, sθ̃(k + 1) + (1 − s)θ̃(k))ds

)
· f ′(k, θ̃, x + w(k, θ̃))

f(k, θ̃, x) = f ′(k, θ̃(k), x + w(k, θ̃)).

ACC 2005 Workshop on Extremum Seeking 9

!

"

#

$

Averaging

• The averaged system is defined as

θ̃av(k + 1) = θ̃av(k) + εfav(θ̃av(k)),

where fav is calculated by the averaging operator AVG{·} (Bai, Fu & Sastry, 1988) defined by

fav(θ̃) = AVG
{

f(k, θ̃, 0)
}

= lim
T→∞

1
T

s+T∑

k=s+1

f(k, θ̃, 0).

• The resulting averaged system is obtained as

θ̃av(k + 1) = (1 − κ2εα)θ̃av(k),

where κ2 = 1
2Fi(1)Re

{
ejφFi(ejω) ejω−1

ejω+hFo(ejω)
}

= 1
2Fi(1)

∣∣∣Fi(ejω) ejω−1
ejω+hFo(ejω)

∣∣∣ cos(ψM + φ)

and ψM = ∠
(
Fi(ejω) ejω−1

ejω+hFo(ejω)
)
. This yields the sufficient conditions for stability.
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Simulation Study

• Plant parameters θ∗ = 3, f∗ = 2 and plant dynamics:

Fi(z) =
z + 0.4

(z + 0.5)(z + 0.6)
and Fo(z) =

z − 0.2
z + 0.6

.

• Extremum seeking design parameters: h = 0.9, α = 0.05, β = 0.05, and φ = 0.

• Simulation is conducted for ω = π
1.1 and ω = π

1.5 , giving
∣∣∣M(ej π

1.1 )
∣∣∣ = 4.57,

#
(
M(ej π

1.1 )
)

= −0.75 rad,
∣∣∣M(ej π

1.5 )
∣∣∣ = 2.68, #

(
M(ej π

1.5 )
)

= 0.93 rad, and Fi(1) = 0.58,

where M(ejω) = Fi(ejω) ejω−1
ejω+hFo(ejω).

• Since cos
(

#
(
M(ej π

1.1 )
))

> 0, cos
(

#
(
M(ej π

1.5 )
))

> 0, and Fi(1) > 0, the sufficient condition

of Theorem 1 is satisfied for both ω = π
1.1 and π

1.5 .
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Simulation results
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Figure 1: Responses for ω = π
1.1 rad/sample and γ = 0.6
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Simulation results
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Figure 2: Responses for ω = π
1.5 rad/sample and γ = 2.1
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Summary

• The use of two-time scale averaging theory (Bai, Fu & Sastry, 1988), yields a very mild sufficient

condition under which the system output exponentially converges to an O(α2) neighborhood of

the extremum value.

• The sufficient condition is related to positive realness of linear parts of the plant but only at the

modulation frequency ω.
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Unsolved Problems

• Method to improve and analyze the transient performance.

• Practical design guidelines for selecting modulation signal frequency ω, phase shift of

demodulation signal φ, and compensator parameters.

• Tracking of time-varying f∗ and θ∗.
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Notation

• A transfer function in front of a bracketed time function, such as G(z)[u(k)], means a

time-domain signal obtained as an output of G(z) driven by u(k).

• ε−k denotes exponentially decaying terms.
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