Extremum Seeking for Discrete-Time Systems
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Introduction
e The plant model and compensator structure are the same as in the continuous-time extremum
seeking.
e We do not have the frequency property of continuous time systems.

e Stability and ultimate bounds on error signals are established using two-time scale averaging

theory (Bai, Fu & Sastry, 1988)
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Discrete-Time Extremum Seeking Control
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e Fi(z) and F,(z) are assumed to be exponentially stable.

e Without loss of generality, the static nonlinear block f(6) is assumed to have a minimum at
0 = 0*, and to be of the form
FO)=f*+(0 -0

e The extremum seeking scheme consists of a modulation signal «cos(wk), a demodulation signal

(B cos(wk — ¢), a high-pass filter Z}L (0 < h < 1), and an integrator .
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System Description

e Governing equations:
y(k) = Fo(=) £+ (0(k) )7,

6(k) = Fi(=) [evcos(wk) — L [€(k)]].

z—1
z+h

&(k) = Beos(wk — ¢) [y (K)]-
e For the convenience of analysis, the following terms are defined:
Oo(k) = Fi(2)[orcos(wk)],
O(k) = 0% — 0(k) + 0o (k),
g(k) = y(k) = Fo(2)[f7],

where 0(k) is the tracking error and (k) is the output error.
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Closed-Loop System
e Governing equation:

Gk + 1) — 6(k) = E<L(z)[§} By (k) + @Q(k)) +6(k),
where
€=
L(z) = —%Fi(z) (ewM(z., i) 4 eI M (2, e*jw)) (linear time invariant)

Oy (k) = aF;i(2) {S(Zwk)lm{]ﬂ(z, ej“’)[é]} — C(ka)Re{]\/[(z, ej”)[é]}} , (linear time varying)

Dy (k) = Fi(2) [c(wk) j jr ;Fo(z)[(p]} , (nonlinear time varying)
d(k) = eF;(2) {c(wk)%Fn(z)[f* + 03] + asfk} , (function of time)
y JwY — . (adw vz —1 jw ) A . . A ng .
M(z,e’%) = F;(e! )ejwz h F,(e7Y2), s(2wk) = sin(2wk — ¢), c¢(2wk) = cos(2wk — ¢).
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Stability Analysis Outline

0k +1) = O(k) = e(L(2)[0] + @1 (k) + @ (k) ) +(k),
d(k) in the closed loop dynamics satisfies the following:
Lemma 1 §(k) exponentially converges to an O(ea) neighborhood of zero:
[6(k)| < ™% + w1ea?,
where k1 Is a constant.
The bound on §(k) depends only on modulation signal magnitude o and is independent of €.
e This permits a two step stability analysis of the closed loop system

e The first step is to analyze the homogeneous system without §(k). The second step is to derive

bounds on system state and output using the bound on §(k).

o /

ACC 2005 Workshop on Extremum Seeking 6




4 N

Stability and Performance Results

e Sufficient condition under which the homogeneous G-error system is locally exponentially stable at

the origin:

Theorem 1 lfFi(l)Re{ej‘z’E(ej”):j::}L Fo(ej“)} > 0, then there exists a positive constant €*

such that the state-space realization of the O-error system is locally exponentially stable at the
origin for all 0 < e(= () < €*.
e Convergence of 6 in the overall system:

Theorem 2 Suppose that the conditions of Theorem 1 are satisfied. Then, for sufficiently small
«, there exists €], 0 < €] < €, such that 0 in the original system locally exponentially converges
to an O(a?) neighborhood of zero for all 0 < e < €.

e Convergence of the output error g(k):

Corollary 1 Under the conditions of Theorem 2, the output error §(k) locally exponentially

converges to an O(a?) neighborhood of zero.
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Stability Analysis for f-error System
e The homogeneous part of the closed-loop system
(k1) — B(k) = e L()18) + B (K) + Da(B)),
is periodic in k. This motivates the use of averaging to prove stability.

e Choose minimal state space realizations of L(z), ®;(k), and the linear part of ®5(k) as
(A17 Bl: Cl-, Dl), (Az(k), Bg(k‘) Cg(k), Dz(k)), and (A3(k'), Bg(k), Cg(k), D3(l€)), respectively.

e Ay, As(k), and As(k) are exponentially stable (the last two from Lyapunov analysis).

e The 6-error system can now be expressed in the following state space form

2 (k+1) = A(k)z' (k) + h(k,0(k))
O(k +1) = 0(k) + ef'(k,0(k), 2’ (k)),

Ay 0 0 - - - . 1T
here A(k) =] 0 Az2(k) © h(k,0(k)) = |BT6 | BT (k)0 | BT (k)6?| |, and
where A() = | ¥ st 0|, (k. 0) = [BI0 | BY 10 | BT w03#]

f'(k,0(k),2'(k)) = D10 + Dy + D36 + [Cl | Co(k) | Cg(k)]z’(k:).
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Coordinate Transformation for Averaging

The change of variables

x(k) = 2’ (k) — w(k, ),

~ k-1 - k—1
where w(k,0) = > W(k,i+ 1)h(:,0), and ¥(k,i) = [] A(¢ +k — 1 —1), transforms the error
i=0 =i

system to the following two time scale system:
a(k+1) = A(R)a(k) + cg(k, 6, 2)

O(k +1) = 0(k) + ef (k,0,z),

where
N L dw N ~ ~ ~
g(k,0,2) = 7</ —(k+1,s0(k+1)+(1— s)@(k))ds) f (k0,2 +w(k,0))
o 00
flk,0,2) = f'(k,0(k), 2 +w(k,0)).
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Averaging

e The averaged system is defined as
ém;(k + 1) = é{w(k) + Efmz(éam(k'))y

where f,, is calculated by the averaging operator AVG{-} (Bai, Fu & Sastry, 1988) defined by

s+T
fol) = AVG{ S0 00} = i 7 3 $108.0)

e The resulting averaged system is obtained as

Oav(k+1) = (1 — Koea)ba,(k),

where k= L Fi(1)Re{ e/ Fy(e) 221 By ()} = LR(1)

Fi(e7°) Sam Fo(e)| cos(¥nr + ¢)

and ¥y = A(Fi(ew) o1 Fo(ej“’)>. This yields the sufficient conditions for stability.

el“+h
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Simulation Study

e Plant parameters 0* = 3, f* = 2 and plant dynamics:

2404 z—0.2
—————————and F,(z) = .
(z+0.5)(z + 0.6) 2+ 0.6

FL'(Z) =

e Extremum seeking design parameters: h = 0.9, o = 0.05, 5 = 0.05, and ¢ = 0.

=4.57,

e Simulation is conducted for w = {5 and w = {=, giving ’]\ff(ojﬁ)

£(M(e7)) = ~0.75 rad, ’A[(ejﬁ)

= 2.68, A(M(ejf.’—s)> = 0.93 rad, and Fy(1) = 0.58,

where M (e7%) = F,(e1%) S Fo(e*).

e Since cos (4«{ (M(ejﬁ)>> >0, cos (K (Al(ejﬁ)>> > 0, and Fj(1) > 0, the sufficient condition

i
1.1

™

and {°

of Theorem 1 is satisfied for both w =

ot
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Simulation results
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Figure 1: Responses for w = {7 rad/sample and v = 0.6
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Simulation results
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Figure 2. Responses for w = {%¢ rad/sample and v = 2.1
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Summary

e The use of two-time scale averaging theory (Bai, Fu & Sastry, 1988), yields a very mild sufficient
condition under which the system output exponentially converges to an O(a?) neighborhood of

the extremum value.

e The sufficient condition is related to positive realness of linear parts of the plant but only at the

modulation frequency w.
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Unsolved Problems

e Method to improve and analyze the transient performance.

e Practical design guidelines for selecting modulation signal frequency w, phase shift of

demodulation signal ¢, and compensator parameters.

e Tracking of time-varying f* and 6*.
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Notation

e A transfer function in front of a bracketed time function, such as G(z)[u(k)], means a

time-domain signal obtained as an output of G(z) driven by u(k).

e =% denotes exponentially decaying terms.
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