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Outline

• Thermoacoustic cooling
– Working principles
– Benefits and limitations

• Tunable thermoacoustic cooler
• Extremum seeking control of tunable 

cooler
• Experimental results
• Conclusions
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Thermoacoustic Cooling

Electric energy Acoustic energy Heat pumping

Standing sound wave creates 
the refrigeration cycle
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Heat Pumping

1-2: adiabatic compression and displacement
2-3: isobaric heat transfer (gas to solid)
3-4: adiabatic expansion and displacement
4-1: isobaric heat transfer (solid to gas)

Solid surface 
(stack plate)

Gas particle in a 
standing wave
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Thermoacoustic Cooling

• Benefits
– Environmentally benign (inert gases)
– Simple, easy to maintain configuration

• Limitations
– Very hard to model � hard to tune key parameters (driver, stack 

location, duct geometry) for best performance

• Existing prototypes
– Acoustic Stirling Heat Engine (Los Alamos National Lab)
– Triton 10 kW refrigerator (Penn State)
– Space Thermo-acoustic Refrigerator (NASA)
– Purdue 300 W standing wave unit
– Miniature thermo-acoustic cooler (Rockwell Science Center)
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Tunable Thermoacoustic Cooler

Moving piston  
(varying resonator’s 
stiffness)

Heat 
exchangers

Helmholtz resonator

Neck (mass) Volume (stiffness)

Electro-dynamic
Driver

Performance and efficiency 
sensitive to variations in 

– Piston position
– Driver frequency

Tuning Variables

Control Problem

• Develop an algorithm that tunes the driver 
frequency and piston position to maximize the 
cooling power autonomously

• Main features
– Mathematical model not available
– Easy to estimate cooling power from mass flow rate 

and temperature gradient across cold-side heat 
exchanger 

– Stable dynamics

• An ideal application for Extremum Seeking 
Control (ESC)
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Automatic Control of Tunable 
Thermoacoustic Cooler
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Extremum Seeking Controller

PDIntegratorLPF
+ +

sin( )x x xa tω α+sin( )xtω

PDIntegratorLPF
+ +

sin( )f f fa tω α+sin( )f tω

HPF

1

1fT s +Tunable
Cooler

Cooling
Power

Calculation
1

1xT s +

POS Command 

FREQ Command 

cQ&

ESC Parameters

– High pass filter (HPF)

– Low pass filters (LPF)
– Dither frequencies, amplitudes 

and phases (ωx,ax,αx; ωx,ax,αx)
– PD gains (4 gains)

(Tuning mechanism)
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Design Guidelines
• Dither signal parameters

– Distinct frequencies (ωx ≠ ωf)
– Frequencies should be high but below the first corner frequency 

of the tuning mechanism dynamics (ωx = 0.1/Tx , ωf = 0.1/Tf)
– Phase angle of dither signal should be close to zero at the output 

of tuning mechanism dynamics (< π/2 in magnitude)
– Small amplitudes but above noise floor

• Filters
– Dither frequencies in the pass-band of the HPF (2nd order)
– Dither frequencies in the stop-band of the LPF (2nd order)

• PD gains
– Initial guess from linear stability analysis
– Need an estimate for the Hessian of the cost function at the 

optimum
• Further details in Rotea, 2000 ACC 
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Experiment – Fixed Operating Condition
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Cooling Performance with ESC

ESC quickly finds optimum operating point 
(41.3W, 147Hz, 6.2in)
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Experiment – Varying Operating Condition
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ESC tracks optimum 
after cold-side flow rate 
is increased

Experiment – Sensitivity to PD Gains

Kpx Kdx Kpf Kdf _c ssQ&  

(Watt) 

Settling time 

(5%, sec) 

xss 

(inch) 

fss 

(Hz) 

4 0 6 0 54.47 109 8.4 152.3 

4 2 6 3 60.63 58 10.1 156 

4 4 6 6 58.2 56 10.6 157.2 

4 20 6 20 UNSTABLE 
 

• Adding derivative action improves transient performance

• Large derivative action leads to instability

• The spring plate experienced its fatigue failure process 
throughout the test � the optimal system performance 
varied from test to test
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Conclusion

• Manual tuning of thermoacoustic cooling devices 
is impractical
– Tedious and expensive
– Fixed device cannot deliver optimal performance 

when conditions change
• Clever tunable device + ESC = a practical 

alternative for autonomous performance 
optimization of thermoacoustic coolers

• ESC facilitates thermoacoustic refrigeration 
research
– Efficient autonomous exploration of the device 

performance map


