Extremum Seeking with Plant Dynamics
and Parameter Tracking

Plant with Dynamics
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Parameter Tracking
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Example
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Plant : Fi(s)zﬁ,g(s):ﬁ,f(e):f*+(e_e*)2
f =0.0lu(t—7),0" =0.01""", 7 =10 sec
Design :
1
s+5°

w = 5rad/ sec,a =0.05,C,(s) = $=0.7955,C,(s)= s — 4

k =107.7



Simulation Results

0.06

0.04-

0.02}-

0

-0.02

_0.04 I I I I I I I I I
0

30 40 50 60 70 80 90 100

t (sec)

A Singular Perturbation Argument

LetH (s)=k S8 £ ()

Ff(s) ’

strictly proper partand H (s) =1+H,, (s) denotes the biproper part.
Let k be chosen such that linol H,, (s)=1.

H,, (s)H obp (s), where H osp (s) denotes the

Assumption:
Let the smallestin absolute value among the real parts of all the
polesof H, | (s)be denoted by a. Let the largest among the
moduli of all the poles of F,(s)and H obp (s) be denoted by b. The

ratio M = a/b is sufficiently large.



Fast ‘Output’ Dynamics: An Example
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Single Parameter Stability Theorem...

Outputerrory = y—F, (s)lf (z )J achieveslocal exponential

convergence to an O(a2+ o’ ) neighbourhood of the

origin, where 6 =1/w+1/M providedn=0and :

1. Perturbation frequency @is sufficiently large

compared to dynamicsin H,, (s)and F,(s), and

obp
+ jwis not a zero of F(s).

2. Zerosof T, (s) that are not asymptotically stable
are also zeros of C,(s).

3. Polesof T, (s) that are not asymptotically stable

are not zeros of C,(s).



...Single Parameter Stability Theorem

1
4. C (s)and ——— are asymptotically stable, where
,(s)and— L) e asymp y

1)=LRele E (ol s),
and H,(5)=C, (0, (5 Fs)

Governing Equations
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0 = F,(s)a sin o1 _(c)i ()T, (s)e]]
E = sin(oot—¢)r‘;(s)[)’+”]

Definitions:
0, = F.(s)asinor]
b =07(t)-0+06,
A N0
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Outline of Proof...
Key steps:
e Linearization
e Singular perturbation reduction of strictly proper

part of output dynamics
e Averaging of time varying terms

B=0°()+H, (S)[sin(wt_(P)Ho(S){f *(t)+f7”(e _O*(tﬂ }

:9*@_'_Hi(S){sin((ot—@)Ho(s){f*(t)+%(90 -5)2ﬂ
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Reduction via Singular Perturbation

Using properties of the Laplace transform, we get
6:9*(t)+ Hi(s)[sin(cot—@)H()(s){f?%}het }
+H, (s){sin((ot—(p)Hmp (s)(1+Hj’b’p (s){f?gz —f"eoﬁ} }

Using 131301 H,, (s)=1, and the fact that its dynamics

are sufficiently fast

0=0"(c)+H. (s){sin(cot - (P)(l +H, (s){f?eg} +&t }
+H, (s){sin(mt—@)(1+Hj§p (s){f?gz — fnﬁoé} }
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Averaging

Using the fact @ is sufficiently fast relative to the rest of the dynamics,
averaging analysis yields
1 .t

o B
1 Rele (o) ()

which is the required stability test.
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Compensator Design

1. Select the perturbation frequency w sufficiently large. Also,
w should not equal any frequency in noise or any imaginary
axis zero of Fys).

2. Set perturbation amplitude a small so as to obtain small
steady state error Y.

3. Design C,s) asymptotically stable, with zeros of T'(s) that

ar? not asymptotically stable as its zeros, and such that
C€.(s) is proper.
r, (s)

4. Design C(s) by any linear SISO design technique such that
it does not include poles of T'(s) that are not asymptotically
stable as its zeros, C,(s)[(s) is proper, and ﬁus) is

asymptotically stable.
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Design of C;(s) for Robustness

1. Design C,(s) to minimize

K

H,

1+P

A

f/l

which maximizes the allowable Af "=

I+P

H,

under which the system s still asymptotically stable,

where P(s)= %L(s), A= f"—F".
2. Uncertaintiesin F,(s):

Several methods availablein standard texts
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