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Thermoacoustic Cooling
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Thermoacoustic Cooling

* Benefits
— Environmentally benign (inert gases)
— Simple, easy to maintain configuration
* Limitations
— Very hard to model - hard to tune key parameters (driver, stack
location, duct geometry) for best performance
» Existing prototypes
— Acoustic Stirling Heat Engine (Los Alamos National Lab)
Triton 10 kW refrigerator (Penn State)
Space Thermo-acoustic Refrigerator (NASA)
Purdue 300 W standing wave unit
Miniature thermo-acoustic cooler (Rockwell Science Center)



Tunable Thermoacoustic Cooler
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Tuning Variables

Performance and efficiency
sensitive to variations in

— Piston position

— Driver frequency

Control Problem

» Develop an algorithm that tunes the driver
frequency and piston position to maximize the
cooling power autonomously

* Main features
— Mathematical model not available

— Easy to estimate cooling power from mass flow rate
and temperature gradient across cold-side heat
exchanger

— Stable dynamics

» An ideal application for Extremum Seeking
Control (ESC)



Automatic Control of Tunable
Thermoacoustic Cooler
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ESC Parameters

High pass filter (HPF)

Low pass filters (LPF)

Dither frequencies, amplitudes
and phases (w,a,,a,; @,a,a,)
PD gains (4 gains)

(Tuning mechanism)

Motor Control



Design Guidelines

Dither signal parameters
— Distinct frequencies (w, # w)

— Frequencies should be high but below the first corner frequency
of the tuning mechanism dynamics (&}, = 0.1/T,, a3 = 0.1/T))

— Phase angle of dither signal should be close to zero at the output
of tuning mechanism dynamics (< /2 in magnitude)

— Small amplitudes but above noise floor

Filters

— Dither frequencies in the pass-band of the HPF (2" order)
— Dither frequencies in the stop-band of the LPF (2" order)
PD gains

— Initial guess from linear stability analysis

— Need an estimate for the Hessian of the cost function at the
optimum

Further details in Rotea, 2000 ACC

Experiment — Fixed Operating Condition
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Experiment — Varying Operating Condition
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Experiment — Sensitivity to PD Gains

Kox | Kax | Kot | Ko | Q o | Settlingtime | Xs | fs
(Watt) (5%, sec) (inch) | (Hz)

4 0 6 0 54.47 109 8.4 | 1523

4 2 6 3 60.63 58 10.1 | 156

4 4 6 6 58.2 56 10.6 | 157.2

AriFsrs 0

« Adding derivative action improves transient performance
« Large derivative action leads to instability

* The spring plate experienced its fatigue failure process

throughout the test > the optimal system performance

varied from test to test




Conclusion

» Manual tuning of thermoacoustic cooling devices
Is impractical
— Tedious and expensive
— Fixed device cannot deliver optimal performance

when conditions change

» Clever tunable device + ESC = a practical
alternative for autonomous performance
optimization of thermoacoustic coolers

» ESC facilitates thermoacoustic refrigeration
research

— Efficient autonomous exploration of the device
performance map



