Boundary Control for Parabolic PDEs and Turbulent Flows

Miroslav Krstic

(with Andrey Smyshlyaev, Rafael Vazquez, and Ole-Morten Aamo) University of California, San Diego

Stanford University, December 1, 2004

Example of a Flow Control Problem: Cylinder Wake/Vortex Shedding

Boundary Control (Linear)

- Eigenvalue Assignment. Triggiani (1980); Lasiecka and Triggiani (1983). Moving (rather than arbitrarily placing) infinitely many eigenvalues: Russell (1977)
- LQR. Lasiecka and Triggiani book (2000) and various other previous authors. Related optimal control results: Bensoussan, Da Prato, Delfour, Mitter book (1993)
- Boundary Observers/Output Feedback. Nambu (1984)
- Frequency Domain. Surveys by Curtain (1990) and Logemann (1993)
- Abstract Boundary Control Theory: Fattorini (1968)

Example plant
$$u_t = u_{xx} + \lambda_0 u$$
 $x \in (0,1)$

Example plant
$$u_t(t,x) = u_{xx}(t,x) + \lambda_0 u(t,x)$$
 $x \in (0,1)$

Example plant

$$u_t = u_{xx} + \lambda_0 u \qquad x \in (0,1)$$
$$u(x = 0, t) = 0$$

Example plant

$$u_t = u_{xx} + \lambda_0 u \qquad x \in (0,1)$$
$$u(0) = 0$$
$$u(1) = \int_0^1 k(1, y) u(y) dy$$

Control

Example plant

Control

Example plant $u_t = u_{xx} + \lambda_0 u$ $x \in (0,1)$ u(0) = 0Control $u(1) = \int_0^1 k(1, y) u(y) dy$

Transformation

$$w(x) = u(x) - \int_{0}^{x} k(x, y) u(y) dy$$

Target system $w_t = w_{xx}$

Example plant $u_t = u_{xx} + \lambda_0 u$ $x \in (0,1)$ u(0) = 0Control $u(1) = \int_0^1 k(1, y) u(y) dy$

Transformation

$$w(x) = u(x) - \int_{0}^{x} k(x, y) u(y) dy$$

Target system

$$w_t = w_{xx} - c w \qquad c \ge 0$$
$$w(0) = w(1) = 0$$

Kernel PDE

... the Kernel

total gain
$$E = -\int_{0}^{1} k(1, y) dy = I_0(\sqrt{\lambda}) - 1$$

Dependence of the kernel on level of instability

Amount of total gain as a function of λ

Unstable Heat Equation Example

plant

$$u_t(x,t) = u_{xx}(x,t) + \lambda_0 u(x,t)$$
$$u(0,t) = 0$$

controller
$$u(1,t) = -\int_{0}^{1} \lambda \frac{I_1(\sqrt{\lambda(1-y^2)})}{\sqrt{\lambda(1-y^2)}} u(y,t) dy \qquad \lambda = \lambda_0 + c$$

closed-loop solution

$$u(x,t) = \sum_{n=1}^{\infty} e^{-(c+\pi^2 n^2)t} \frac{2\pi n}{\sqrt{\lambda + \pi^2 n^2}} \sin(\sqrt{\lambda + \pi^2 n^2} x)$$

$$\times \int_{0}^{1} \left(\sin(\pi n\xi) - \int_{\xi}^{1} \xi \frac{I_1(\sqrt{\lambda(\eta^2 - \xi^2)})}{\sqrt{\lambda(\eta^2 - \xi^2)}} \sin(\pi n\eta) d\eta \right) u_0(\xi) d\xi$$

Adaptive Control

 $u_t = u_{xx} + \lambda u$ **Plant** $u(1) = -\int_{0}^{1} \hat{\lambda} y \frac{I_1\left(\sqrt{\hat{\lambda}\left(1-y^2\right)}\right)}{\sqrt{\hat{\lambda}\left(1-y^2\right)}} u(y) dy$ Control $w(x) = u(x) + \int_{0}^{x} \hat{\lambda} y \frac{I_1\left(\sqrt{\hat{\lambda}\left(x^2 - y^2\right)}\right)}{\sqrt{\hat{\lambda}\left(x^2 - y^2\right)}} u(y) dy$ **Transformation** "Observer" $\hat{w}_t = \hat{w}_{xx} + \hat{\lambda} \int_{0}^{x} \frac{y}{2} w(y) dy + (w(x) - \hat{w}(x)) \int_{0}^{1} w(y)^2 dy$ **Parameter Update Law** $\dot{\hat{\lambda}} = \int^{1} (w(x) - \hat{w}(x))w(x)dx$

Inverse Optimal Stabilization

Theorem

The control law

$$u_{x}^{*}(1) = -\frac{1}{R} \left(u(1) + \int_{0}^{1} \lambda \frac{I_{1}(\sqrt{\lambda(1-y^{2})})}{\sqrt{\lambda(1-y^{2})}} u(y) dy \right)$$

stabilizes the system in $L_2(0,1)$ and minimizes the cost $J(u) = \int_{0}^{\infty} \left(Q(u(t)) + R u_x(1,t)^2\right) dt$

where R is sufficiently small and

$$Q(u) \ge \int_{0}^{1} w_{x}(u(x))^{2} dx$$

plant $u_t(x,t) = u_{xx}(x,t) + \lambda_0 u(x,t)$ u(0,t) = 0 $u_x(1,t) = U(t)$

$$\lambda = \lambda_0 + c$$

plant $u_t(x,t) = u_{xx}(x,t) + \lambda_0 u(x,t)$ u(0,t) = 0u(1,t) =sensor

 $\lambda = \lambda_0 + c$

plant $u_t(x,t) = u_{xx}(x,t) + \lambda_0 u(x,t)$ u(0,t) = 0u(1,t) =Sensor

observer

$$\hat{u}_t(x,t) = \hat{u}_{xx}(x,t) + \lambda_0 \hat{u}(x,t)$$
 copy of the system $+ L(y - C\hat{x})$ "

plant

$$u_t(x,t) = u_{xx}(x,t) + \lambda_0 u(x,t)$$

 $u(0,t) = 0$
 $u(1,t) =$ sensor

observer

$$\hat{u}_{t}(x,t) = \hat{u}_{xx}(x,t) + \lambda_{0} \hat{u}(x,t) + L(x) \left[\frac{u(1,t)}{u(1,t)} - \hat{u}(1,t) \right] + L(y - C\hat{x})^{"}$$

plant $u_t(x,t) = u_{xx}(x,t) + \lambda_0 u(x,t)$ u(0,t) = 0u(1,t) =Sensor

observer $\hat{u}_{t}(x,t) = \hat{u}_{xx}(x,t) + \lambda_{0} \hat{u}(x,t) + \frac{\lambda x}{1-x^{2}} I_{2}\left(\sqrt{\lambda(1-x^{2})}\right) \begin{bmatrix} u(1,t) - \hat{u}(1,t) \end{bmatrix}$ $\hat{u}(0,t) = 0$ output injection gain function output estimation $\hat{u}_{x}(1,t) = U(t) + \frac{\lambda}{2} \begin{bmatrix} u(1,t) - \hat{u}(1,t) \end{bmatrix}$ **controller** $u_{x}(1,t) = U(t) = -\frac{\lambda}{2} u(1,t) - \int_{0}^{1} \frac{\lambda y}{1-y^{2}} I_{2}\left(\sqrt{\lambda(1-y^{2})}\right) \hat{u}(y,t) dy$ $\int_{0}^{1} \frac{\lambda y}{1-y^{2}} I_{2}\left(\sqrt{\lambda(1-y^{2})}\right) \hat{u}(y,t) dy$ $\int_{0}^{1} \frac{\lambda y}{1-y^{2}} I_{2}\left(\sqrt{\lambda(1-y^{2})}\right) \hat{u}(y,t) dy$

Output Feedback: Explicit Solution

$$u(x,t) = \sum_{n=0}^{\infty} e^{-(c+(\pi n + \pi/2)^2)t} \phi_n(x)$$

$$\times \left(\int_{0}^{1} \psi_n(\xi) u_0(\xi) d\xi - (-1)^n \left(tC_n + \sum_{m=0, m \neq n}^{\infty} \frac{1 - e^{\pi^2(n-m)(n+m+1)t}}{\pi^2(n-m)(n+m+1)} C_m \right) \right)$$

$$\phi_n(x) = \frac{2\pi n + \pi}{\sqrt{\lambda + (\pi n + \pi/2)^2}} \sin\left(\sqrt{\lambda + (\pi n + \pi/2)^2} x \right)$$

$$\psi_n(x) = \sin((\pi n + \pi/2)x) + \int_{x}^{1} \lambda x \frac{I_1\left(\sqrt{\lambda(\xi^2 - x^2)}\right)}{\sqrt{\lambda(\xi^2 - x^2)}} \sin((\pi n + \pi/2)\xi) d\xi$$

$$C_n = \left(\int_{0}^{1} \frac{\lambda \xi}{1 - \xi^2} I_2\left(\sqrt{\lambda(1 - \xi^2)}\right) \psi_n(\xi) d\xi \right) \left(\int_{0}^{1} \phi_n(\xi)(u_0(\xi) - \hat{u}_0(\xi)) d\xi \right)$$

$$\sum_{n=0}^{\infty} \frac{1}{2\cosh(n-1)} \int_{0}^{1} \frac{1}{2\cosh(n-1)} \int_{0$$

Ginzburg-Landau Model of Vortex Shedding

Ginzburg-Landau Model of Vortex Shedding

$$\rho_{t} = a_{R}\rho_{xx} - a_{I}\iota_{xx} + (b_{R}(x) + c_{R}(x)(\rho^{2} + \iota^{2}))\rho$$
$$-(b_{I}(x) + c_{I}(x)(\rho^{2} + \iota^{2}))\iota$$

$$\iota_{t} = a_{I}\rho_{xx} + a_{R}\iota_{xx} + (b_{I}(x) + c_{I}(x) (\rho^{2} + \iota^{2}))\rho + (b_{R}(x) + c_{R}(x) (\rho^{2} + \iota^{2}))\iota$$

for $x \in (0,1)$ with boundary conditions $\rho(0,t) = 0, \quad \iota(0,t) = 0$

$$\begin{split} \hat{\rho}_{t} &= a_{R} \hat{\rho}_{xx} - a_{I} \hat{\iota}_{xx} + \left(b_{R}(x) + c_{R}(x) (\hat{\rho}^{2} + \hat{\iota}^{2}) \right) \hat{\rho} \\ &- \left(b_{I}(x) + c_{I}(x) (\hat{\rho}^{2} + \hat{\iota}^{2}) \right) \hat{\iota} \\ &+ p_{1}(x) \left(\rho(1, t) - \hat{\rho}(1, t) \right) \\ &+ p_{c,1}(x) \left(\iota(1, t) - \hat{\iota}(1, t) \right) \end{split}$$

$$\begin{split} \hat{\imath}_{t} &= a_{I}\hat{\rho}_{xx} + a_{R}\hat{\imath}_{xx} + \left(b_{I}(x) + c_{I}(x)(\hat{\rho}^{2} + \hat{\imath}^{2})\right)\hat{\rho} \\ &+ \left(b_{R}(x) + c_{R}(x)(\hat{\rho}^{2} + \hat{\imath}^{2})\right)\hat{\imath} \\ &- p_{c,1}(x)\left(\rho(1,t) - \hat{\rho}(1,t)\right) \\ &+ p_{1}(x)\left(\iota(1,t) - \hat{\imath}(1,t)\right) \end{split}$$

 $\hat{\rho}(0,t) = 0, \quad \hat{\iota}(0,t) = 0$

CSD Aerospace Engineering

$$\begin{aligned} \hat{\rho}_{t} &= a_{R} \hat{\rho}_{xx} - a_{I} \hat{i}_{xx} + \left(b_{R}(x) + c_{R}(x) (\hat{\rho}^{2} + \hat{\iota}^{2}) \right) \hat{\rho} \\ &- \left(b_{I}(x) + c_{I}(x) (\hat{\rho}^{2} + \hat{\iota}^{2}) \right) \hat{\iota} \\ &+ p_{1}(x) \left(\rho(1,t) - \hat{\rho}(1,t) \right) \\ &+ p_{c,1}(x) \left(\iota(1,t) - \hat{\iota}(1,t) \right) \\ \hat{\iota}_{t} &= a_{I} \hat{\rho}_{xx} + a_{R} \hat{\iota}_{xx} + \left(b_{I}(x) + c_{I}(x) \right) \\ &+ \left(b_{R}(x) + c_{R}(x) (\hat{\rho}^{2} + \hat{\iota}^{2}) \right) \hat{\iota} \\ &- p_{c,1}(x) \left(\rho(1,t) - \hat{\rho}(1,t) \right) \\ &+ p_{1}(x) \left(\iota(1,t) - \hat{\iota}(1,t) \right) \\ &- \hat{\rho}(0,t) = 0, \quad \hat{\iota}(0,t) = 0 \end{aligned}$$

CSD Jacobs Aerospace Engineering

Observer Simulation - No Control

Open-loop

Observer error

Control law

$$\rho_x(1,t) = \int_0^1 \left(k_x(1,y)\hat{\rho}(y,t) + k_{c,x}(1,y)\hat{\iota}(y,t) \right) dy + k(1,1)\rho(1,t) + k_c(1,1)\iota(1,t) \iota_x(1,t) = \int_0^1 \left(-k_{c,x}(1,y)\hat{\rho}(y,t) + k_x(1,y)\hat{\iota}(y,t) \right) dy - k_c(1,1)\rho(1,t) + k(1,1)\iota(1,t)$$

 $\hat{\rho}_x(1,t) = \rho_x(1,t)$ $\hat{\iota}_x(1,t) = \iota_x(1,t)$

CSD Aerospace Engineering

Control law

$$\rho_{x}(1,t) = \int_{0}^{1} \left(k_{x}(1,y)\hat{\rho}(y,t) + k_{c,x}(1,y)\hat{\iota}(y,t) \right) dy$$

$$+ k(1,1)\rho(1,t) + k_{c}(1,1)\iota(1,t)$$

$$\iota_{x}(1,t) = \int_{0}^{1} \left(-k_{c,x}(1,y)\hat{\rho}(y,t) + k_{x}(1,y)\hat{\iota}(y,t) \right) dy$$

$$- k_{c}(1,1)\rho(1,t) + k(1,1)\iota(1,t)$$

$$\int_{0}^{-k_{c}} (1,t) = \iota_{x}(1,t)$$

CSD Aerospace Engineering

Closed loop simulation

Controller transfer functions: from pressure sensing to velocity actuation

Stable, min-phase transfer functions, can be approximated by order 10

2D (Navier-Stokes) View

Control Effort and Lift

Equilibrium Profile Identified by Control

Stabilized flow by feedback control reveals the underlying equilibrium profile and separation point!

Arbitrary spatially-dependent diffusion

$$u_t(x,t) = \frac{\varepsilon(x)u_{xx}(x,t) + \lambda_0 u(x,t)}{u(0,t) = 0}$$

$$\varepsilon(x)k_{xx} - (\varepsilon(y)k)_{yy} = \lambda_0 k$$
$$k(x,0) = 0$$
$$k(x,x) = -\frac{1}{2\sqrt{\varepsilon(x)}} \int_0^x \frac{\lambda_0}{\sqrt{\varepsilon(\xi)}} d\xi$$

Diffusion parametrization $\varepsilon(x) = \varepsilon_0 \left(1 + \theta \left(x - x^*\right)^2\right)^2$

... explicit gain kernel

$$k_{1}(y) = \varepsilon^{1/4}(1)\sqrt{\lambda_{0}+c} \frac{\varphi(y)}{\varepsilon^{3/4}(y)} \frac{I_{1}\left(\sqrt{\varepsilon^{-1}(0)\left(\lambda_{0}+c\right)\left(\varphi(1)^{2}-\varphi(y)^{2}\right)}\right)}{\sqrt{\varphi(1)^{2}-\varphi(y)^{2}}}$$
$$\varphi(\xi) = \frac{1+\theta x^{*2}}{\sqrt{\theta}}\left(\arctan\left(\sqrt{\theta}(\xi-x^{*})\right)+\arctan\left(\sqrt{\theta}x^{*}\right)\right)$$

CSD Jacobs Mechanical and Aerospace Engineering

Chemical Tubular Reactor Example

plant

$$u_t(x,t) = u_{xx}(x,t) + \lambda(x)u(x,t)$$

gain kernel
$$k_1(y) = \alpha e^{\alpha \tanh(\beta(1-y))} (\tanh\beta - \tanh(\beta - \alpha y))$$

Time-dependent reactivity

$$u_{t}(x,t) = u_{xx}(x,t) + \lambda(t)u(x,t)$$
$$u(0,t) = 0$$
$$u(1,t) = \int_{0}^{1} k(1,y,t)u(y,t)dy$$

$$k_{t} = k_{xx} - k_{yy} - \lambda(t)k$$
$$k(x, 0, t) = 0$$
$$k(x, x, t) = -\frac{x}{2}\lambda(t)$$

Solid Rocket Propellant Example

plant

$$u_t(x,t) = u_{xx}(x,t) + g u(0,t)$$

 $u_x(0,t) = 0$

gain kernel
$$k_1(y) = \sqrt{g} \sinh(\sqrt{g}(1-y))$$

.

.

closed-loop solution

$$u(x,t) = 2\sum_{n=0}^{\infty} e^{-\mu_n^2 t} \left(\cos(\mu_n x) - \frac{g}{\mu_n^2 + g} \right)$$

$$\times \int_0^1 \left(\cos(\mu_n \xi) + (-1)^n \frac{\sqrt{g}}{\mu_n} \sinh(\sqrt{g}(1-\xi)) \right) u_0(\xi) d\xi$$

Compensator as a Transfer Function

plant
$$u_t(x,t) = u_{xx}(x,t) + g u(0,t)$$

 $u_x(0,t) = 0$

compensator

$$u(1,s) = \frac{g}{s} \left(1 - \frac{(s-g)\cosh\sqrt{s}\cosh\sqrt{g}}{s\cosh\sqrt{s} - g\cosh\sqrt{g}} \right) u(0,s)$$

$$u(1,s) \approx 60 \frac{s+17}{s^2+25s+320} u(0,s)$$
 (g = 8)

CSD Aerospace Engineering

PDEs w/ destabilizing boundary conditions

plant

$$u_t(x,t) = \mathcal{E}u_{xx}(x,t)$$
$$u_x(0,t) = qu(0,t) \qquad q < 0$$

gain kernel

$$k_{1}(y) = -c \frac{I_{1}(\sqrt{c(1-y^{2})})}{\sqrt{c(1-y^{2})}} + \frac{qc}{\sqrt{c+q^{2}}} \times \frac{1}{\sqrt{c+q^{2}}} \times \int_{0}^{1} e^{-q\eta/2} \sinh\left(\frac{\sqrt{c+q^{2}}}{2}\eta\right) I_{1}(\sqrt{c(1+y)(1-y-\eta)}) d\eta$$

 $c > \varepsilon q^2$

Combining Different Solutions

Thermal Convection Loop (2D)

- Heated at the bottom, cooled at the top.
- Its discretization produces the "Lorenz attractor."

Rafael Vazquez

CODE VIEW OF CONTRACT OF CONTRACT. OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACT. OF CONTRACT OF CONTRACT. OF CONTRACT OF CONTRACT OF CONTRACT OF C

Actuation

 $v(t, R_2) = V(t)$ - rotation of outer boundary

 $T_r(t, R_2, \phi) = U(t, \phi)$ - heating/cooling the outer boundary

Model (linearized around equilibrium profile $T = Kr \sin \theta$)

$$\mathcal{E}v_{t} = v_{rr} + \frac{v_{r}}{r} - \frac{v}{r^{2}} + A_{1} \int_{0}^{2\pi} \tau(r,\phi) \cos\phi d\phi$$

$$\mathcal{Q}_{uasi-steady state eqn: TPBVP in \mathcal{V}(\mathcal{V})}$$

$$\tau_{t} = \tau_{rr} + \frac{v}{r} + \frac{v}{r^{2}} + \frac{v}{\sqrt{2}} v \cos\theta$$

$$\mathcal{E} \text{ small} - \text{singular perturbation form}$$

- v(r,t) nondimensionalized azimuthal component of velocity
- $\tau(r, \phi, t)$ nondimensionalized temperature fluctuation around equilibrium profile
- \mathcal{E} thermal diffusivity/kinematic viscosity
- A_1, A_2 parameters that depend on R_1, R_2 , viscosity, thermal diffusivity, thermal gradient, and the coefficient of thermal expansion

Singular Perturbation Analysis - Quasi-Steady State

Singular Perturbation Analysis - Reduced Model

Control law (outer cylinder):

1

$$\boldsymbol{\tau}_{t} = \boldsymbol{\tau}_{rr} + \frac{\boldsymbol{\tau}_{r}}{r} + \frac{\boldsymbol{\tau}_{\theta\theta}}{r^{2}} - A_{1}A_{2}\int_{R_{1}}^{r} \int_{0}^{2\pi} \frac{r^{2} - s^{2}}{r} \cos \phi \cos \theta \boldsymbol{\tau}(s, \phi) ds d\phi$$
Makes reduced model
strict-feedback
$$\boldsymbol{\tau}_{t} = \boldsymbol{\tau}_{rr} + \frac{\boldsymbol{\tau}_{r}}{r} + \frac{\boldsymbol{\tau}_{\theta\theta}}{r^{2}} - A_{1}A_{2}\int_{R_{1}}^{r} \int_{0}^{2\pi} \frac{r^{2} - s^{2}}{r} \cos \phi \cos \theta \boldsymbol{\tau}(s, \phi) ds d\phi$$

Controller

Control law (outer cylinder):

$$v(t, R_2) = -\frac{A_1}{2} \int_{R_1}^{R_2} \cos\phi \int_0^{2\pi} \frac{R_2^2 - s^2}{R_2} \tau(t, s, \phi) ds d\phi$$

$$Makes reduced model strict-feedback$$

$$t_r(t, R_2, \theta) = q\tau(t, R_2, \theta) - \cos\theta \int_{R_1}^{R_2} \cos\phi \int_0^{2\pi} \sqrt{\frac{s}{R_2}} \left(\left(q + \frac{1}{2R_2}\right) \kappa(R_2, s) - \kappa_r(R_2, s) \right) \tau(t, s, \phi) ds d\phi$$

$$\tau_r(t, R_2, \theta) = q\tau(t, R_2, \theta) - \cos\theta \int_{R_1}^{R_2} \cos\phi \int_0^{2\pi} \sqrt{\frac{s}{R_2}} \left(\left(q + \frac{1}{2R_2}\right) \kappa(R_2, s) - \kappa_r(R_2, s) \right) \tau(t, s, \phi) ds d\phi$$

where
$$q = -1 - \frac{R_2}{4(R_2 - R_1)}$$

CSD Aerospace Engineering

The Kernel *k*(*r*,*s*)

Kernel P(I)DE:

$$\kappa_{rr} - \kappa_{ss} = \frac{3}{4} \left(\frac{1}{r^2} - \frac{1}{s^2} \right) \kappa + A_1 A_2 \pi \int_s^r \frac{\rho^2 - s^2}{\sqrt{\rho s}} \kappa(r, \rho) d\rho - A_1 A_2 \frac{r^2 - s^2}{\sqrt{rs}}$$

$$\kappa_s(r, R_1) = \frac{1}{2R_1} \kappa(r, R_1)$$

$$\kappa(r, r) = 0$$

CSD Jacobs Mechanical and Aerospace Engineering

The Kernel k(r,s)

Kernel P(I)DE:

$$\kappa_{rr} - \kappa_{ss} = \frac{3}{4} \left(\frac{1}{r^2} - \frac{1}{s^2} \right) \kappa + A_1 A_2 \pi \int_{s}^{r} \frac{\rho^2 - s^2}{\sqrt{\rho s}} \kappa(r, \rho) d\rho - A_1 A_2 \frac{r^2 - s^2}{\sqrt{rs}}$$

$$\kappa_s(r, R_1) = \frac{1}{2R_1} \kappa(r, R_1)$$

$$\kappa(r, r) = 0$$

Explicit approximate solution:

$$\kappa \left(\frac{\xi + \eta}{2}, \frac{\xi - \eta}{2}\right) \approx -A_1 A_2 \left[\frac{1}{6} \left(\xi^3 - \eta^3 - \left(\xi^2 - \eta^2\right)^{\frac{3}{2}}\right) + \frac{5}{2} \sqrt{\pi} R_1^3 e^{\left(1 + \frac{\eta}{R_1}\right)} \left(\operatorname{erf}(1) - \operatorname{erf}\left(\sqrt{1 + \frac{\eta}{R_1}}\right)\right) + R_1^3 \left(6e^{\frac{\eta}{R_1}} - \frac{34}{3}\right) - 8R_1^2 \eta - 2R_1 \eta^2 + \frac{5}{3} \sqrt{R_1^2 + R_1 \eta} \left(5R_1^2 + 2R_1 \eta\right)\right]$$

Simulations

Uncontrolled

Controlled

CSD Aerospace Engineering

3D

Plant:
$$u_t = u_{xx} + u_{yy} + u_{zz} + \lambda(x, y, z)u$$

Kernel Equation:

$$k_{xx} + k_{yy} + k_{zz} = k_{\xi\xi} + k_{\eta\eta} + k_{\zeta\zeta} + (\lambda(\xi,\eta,\zeta) - \lambda(x,y,z))k(x,y,z,\xi,\eta,\zeta) - \frac{\|\lambda\|_{\infty} + 2c}{\mu} \int_{0}^{1} \int_{0}^{1} m \left(\frac{y-y'}{\mu}, \frac{z-z'}{\mu}\right)k(x,y',z',\xi,\eta,\zeta)dy'dz' + \frac{\sqrt{c}}{\|\lambda\|_{\infty} + 2c}$$
with B.C.: $k(x,y,z,x,\eta,\zeta) = \frac{\|\lambda\|_{\infty} + 2c}{2\mu} m \left(\frac{y-\eta}{\mu}, \frac{z-\zeta}{\mu}\right)x$
MOIIIfier:
(approx. δ -fcn) $m(y,z) = \begin{cases} 2.25 \exp\left(\frac{1}{y^2+z^2-1}\right), \quad y^2+z^2 < 1 \\ 0, \quad y^2+z^2 \ge 1 \end{cases}$

Summary of Features of Backstepping

- Easier Analysis. Design and existence of solutions analysis accessible with calculus.
- •Numerically More Manageable. Our hyperbolic PDEs for kernels take ~20 times less time than Riccati equations even in 1D.
- Possibility of adaptive design

- Hyperbolic PDEs. Structures, acoustic, traffic models.
- •Nonlinear PDEs. Spatial Volterra series.

Conrol of Turbulence: Channel Flow

CSD Jacobs Mechanical and Aerospace Engineering

Stabilized Channel Flow

Control Law

"L_gV" (Jurdjevic-Quinn) type controller w.r.t.
$$\|\vec{u}\|_{L_2}^2$$
 as Lyap. fcn
 $V_{\text{bottom wall}}(x) = V_{\text{top wall}}(x) = k_P \Big[P_{\text{top wall}}(x) - P_{\text{bottom wall}}(x) \Big]$

Turbulence Enhancement - Mixing

$$V_{\text{bottom wall}}(x) = V_{\text{top wall}}(x) = -k_P \left[P_{\text{top wall}}(x) - P_{\text{bottom wall}}(x) \right]$$

Pipe Flow Mixing Control

Actuation: wall blowing

Sensing: pressure difference (centrally symmetric)

Particle Tracking (Re=2100, *L/R*=3π)

Uncontrolled at t = 0.00

Controlled at t = 0.00

Pressure Field and Controlled Velocity

Control of 2D Jet Flow

Uncontrolled

Controlled - light particles

Controlled - heavy particles

Diffusive mixing

Optimality

Theorem:

The control law maximizes the gain from the (temporal) L_2 norm of the control input to the L_2 norm of *dissipation*.

dissipation = spatial L_2 norm of the gradient of the velocity vector

More in...

Tailored Fuel Injection for Pulsed Detonation Engines

(Aliseda, Ariyur, Lasheras, Krstic, and Williams)

Multivariable PI controller

COMBUSTION INSTABILITY CONTROL via Extremum Seeking

with UTRC

Problem Statement

- Rayleigh criterion-based controllers, which use phaseshifted pressure measurements and fuel modulation, have emerged as prevalent
- The length of the phase needed varies with operating conditions. The **tuning** method must be non-model based.

Impact

- Tuning allows operation with minimum oscillations at lean conditions
- Reduced engine size, fuel consumption and NO_x emissions

AXIAL FLOW COMPRESSOR CONTROL by Extremum Seeking

H.-H. Wang

Problem Statement

- Active controls for rotating stall only reduce the stall oscillations but they do not bring them to zero nor do they maximize pressure rise.
- Extremum seeking to optimize compressor operating point.

Experimental Results

Extremum seeking stabilizes the maximum pressure rise.

Impact

- Smaller, lighter compressors; higher payload in aircraft
- Patent issued (August 2000)

Control of Magnetohydrodynamic Flows

- For drag management in **hypersonic flight** (re-entry vehicles and SCRAMJET propulsion).
- For liquid metal blankets in fusion reactors.
- Control possible using purely **electrical** actuators and sensors (rather than MicroElectroMechanicalSystems).

MHD Governing Equations

Appendix: Analysis of Kernel P(I)DE

$$\varepsilon k_{xx}(x,y) - \varepsilon k_{yy}(x,y) = (\lambda(y) + c)k(x,y) - f(x,y) + \int_{y}^{x} k(x,\tau) f(\tau,y) d\tau$$

$$(x,y) \in T, \quad T = \{x,y: 0 < y < x < 1\}$$

"boundary" conditions

$$k(x,x) = -\frac{1}{2\varepsilon} \int_{0}^{x} (\lambda(y) + c) dy$$

$$\varepsilon k_{y}(x,0) = \varepsilon q k(x,0) + g(x) - \int_{0}^{x} k(x,y) g(y) dy$$

Conversion to Integral Equation

$$\begin{aligned} \xi &= x + y \qquad \eta = x - y \qquad G(\xi, \eta) = k \left(\frac{\xi + \eta}{2}, \frac{\xi - \eta}{2} \right) \qquad 1 \\ f(\xi, \eta) &= -\frac{1}{4\varepsilon} \int_{\eta}^{\varepsilon} d\left(\frac{\tau}{2} \right) d\tau - \frac{1}{2\varepsilon} \int_{0}^{\eta} e^{q(\tau - \eta)} \left[d\left(\frac{\tau}{2} \right) + 2g(\tau) \right] d\tau \qquad 0 \qquad 2 \quad \xi \\ &- \frac{1}{4\varepsilon} \int_{\eta}^{\varepsilon} \int_{0}^{\eta} f\left(\frac{\tau + s}{2}, \frac{\tau - s}{2} \right) ds d\tau - \frac{1}{2\varepsilon} \int_{0}^{\eta} e^{q(\tau - \eta)} \int_{0}^{\eta} f\left(\frac{\tau + s}{2}, \frac{\tau - s}{2} \right) ds d\tau \\ &+ \frac{1}{4\varepsilon} \int_{\eta}^{\varepsilon} \int_{0}^{\eta} d\left(\frac{\tau - s}{2} \right) G(\tau, s) ds d\tau + \frac{1}{4\varepsilon} \int_{\eta}^{\varepsilon} e^{q(\tau - \eta)} \int_{0}^{\eta} d\left(\frac{\tau - s}{2} \right) G(\tau, s) ds d\tau \\ &+ \frac{1}{4\varepsilon} \int_{\eta}^{\varepsilon} \int_{0}^{\eta} \int_{-\mu}^{\mu + \eta - s} f\left(\frac{\tau - s}{2}, \mu - \frac{\tau + s}{2} \right) G(\tau, s) ds d\tau \\ &+ \frac{1}{2\varepsilon} \int_{0}^{\pi} e^{q((\mu - \eta))} \int_{0}^{\mu + \eta - s} f\left(\frac{\tau - s}{2}, \mu - \frac{\tau + s}{2} \right) G(\tau, s) ds d\tau \\ &+ \frac{1}{2\varepsilon} \int_{0}^{\eta} \int_{-s}^{2\eta - s} e^{q((\tau + s)/2 - \eta)} g\left(\frac{\tau - s}{2} \right) G(\tau, s) ds d\tau \end{aligned}$$