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Backstepping (nonadaptive)

1 = z2+o(z1)'0, ©(0) =0
To = u
where 6 is parameter vector and ¢(xzq1) is smooth nonlinear

function.
Goal: stabilize the equilibrium 21 =0, 2o = —(0) T = 0.

virtual control for the xi-equation:

a1(z1) = —cizy —o(x1) 0, c1 >0

<1

zo = zp—ai(xy),

L1



System in error coordinates:

i1 = 1=2+ ¢ 0=zmtar+e 0= —ciz1 + 2
. . . 8041. 8041 T

Zo = In—Q]=u——x1=u——— (x 0) .
2 2 — Qa1 9y L 6x1(2+90 )

Need to design u = as(x1,x) to stabilize z1 = 20 = 0.

Choose Lyapunov function

1o, 15
V(zy,22) = 5#1 T 5%
we have
: oo
V. = z1(—c1z1 4+ 22) + 22 [u -t (332 + SOTQ)]
o0x1
oo
= —clz% + 2o [u + z1 — -1 <£U2 -+ QOTQ)]
| ox1 J
=—co2o

=V = —clz% — czzg



z = 0 is globally asymptotically stable

invertible change of coordinates

Y

x = 0 is globally asymptotically stable

T he closed-loop system in z-coordinates is linear:

Bl




Tuning Functions Design

Introductory examples:

A B C
i1 =u+¢@1)0 1 =204+ ¢p(x1)"0 i1 =20+ p(z1)"0
To = U To = x3
r3 = u
where 0 is parameter vector and ¢(0) = 0.

Degin A. Let 6 be the estimate of 6 and 6 = 0 — 0,
Using

T/\
u = —cix1 — p(x1) 0
gives

71 = —c121 + o(21) 10



To find update law for 8(t), choose

_ 1 1 1
Vi(z,0) = 5x%+§91—|— 19

then

Vi, = —01:1:% + a:lgo(a;l)—rg —9'r—1g

= —clx% +9'rt (I_go(:pl):vl — §)
=0

Update law:

0 =T T, o(x1)—
gives

Vi = —clx% < 0.

By Lasalle’'s invariance theorem, 1 = O,§= 6 is stable and

lim z1(¢) =0
t—00



Design B. replace 0 by 6 in the nonadaptive design:

zp = wo — ay(x1,0), ay(z1,0) = —c121 —¢ ' 0
and strengthen the control law by (to be designed)
- oo R
u=as(z1,20,0) = —cpzp — 21 + (562 + SOTQ) +
0x1

error system

41 = zmtaite' 0=—crz1tz2te'0
p— —_ pr— _— 9 - -~ 9
Zo To — Q] U o1 (332 —+ ) 59
8041 T 8a >~
= —2z1 — — ¢ 0§ — —=0 :
Z1 — €222 (%190 Y +

or

z1 | _ | —c1 1 Z1
A=l = la]e

remaining: design adaptive law.



Choose
_ 1 1 1 1.+~ <.
VQ(xla L2, 9) =W + EZ% — Z% + 523 + EQTF 19

2
we have
- > > LI IO
Vo = —c12] — 225+ 21, 22] | 00y T |00 T770
Oz, ¥
- 2 2 AT r-—1 Doy 21 | _ 4
= —c121—c225+0'[ (I— [g&, 8:10190} [ 2 ] 9) :
The choice
. 71
) — D) — day Z1 | _ ~~ Oaq
0 = I'ro(z,0) = r[% —8—9[;190} [22] = I‘<<pzl —8—3319022>
N . ,
(71, ™ are called tuning functions)
makes

S > >
Vo = —c127] — 225,

thus z=0, 6 =0 is GS and z(t) — 0 as t — oo.
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The closed-loop adaptive system



Design C.
We have one more integrator, so we define the third error coordinate
and replace 8 in design B by potential update law,

z3 = z3— apx(zy,70,0)

~ day .
vo(x1,20,0) = 55 Mmo(x1,20,0).

Now the z1, zo-system is
z1 —c1 1 Z1

and
) )
—C12] — €225 + 2223 + 22

o7

80{1 T
0z, ¥

O
[ 23+ 22 (I — 0)

~

0 +

Oap

5 (Fro —0) + 0" (o — T 19).

V2

10



zz-equation is given by

. 80&2 T
= - —= ) — ——x7 — —=0
BT T 6 2+ 76) Oz 2 90
8042 TA 80&2 8042;\ (9052 TA
= - —= ) — —=x2——=0— —=p'0
“ ox1 <x2 T ) 0x»o 3 06 8$190
Choose
—~ 1 2 1 2 1 2 1 2 1~T 1~
we have
. aal =~
V3 = —c127 —coz5 + 20 29 (Fm —0)
Oao TA Oa O =
- —= ) — —=x7 — —=0
t23 [ZQ T o (22+70) dzo 2 00

_I_é’T (7‘2 — gazgozg — F_1§> :
1

T

11



Pick update law

. . Oao o ) “1
0 =Tr3(x1,20,23,0) = ( To — 8—9023) r [90, T P> a%fs&} 22
1 | 23
and control law
_ Oao
u=a3(a:1,:c2,a:'3,9) — _Z2_63Z3+—(x2+90 ) —I——.CC3—|—
oxrq 0xo
results in
. 30& >~
V3 = —clz% — czz% — 032:.23 + + 23 ( — (’90?9) :
Notice
dao
=0 — 73 — I_igp
o0x1
we have
: 8042 8042
V=—c,22—cz2—cz2 z z :
3 121 — €225 — €323 + 3( 89 89 83:1902)

\ 7

Stability and regulation of x to zero follows.

12
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Further insight:

21
20
23

21
22
23

{ ﬁ

<1
V)
z3

|

|

—1
0

—c1
—1
0

- - - i T i
1 0 Z1 892 T
1
—c2 1 22 |+ | "o, ¥
—1 — 8042 T
31 L*3. | 8:1:190 |
dao
U@—I_TQ—H—I_T:g—I_—a 23
1 O 21 I SOT
—co 1+ aalrao” Zo | + —%SOT
—1 —C3 <3 g_gfsp
| seletion of v3
1 0 ]
—co 14 8&1 I—aaggp
daq 0an B
—1- 00 I_axlgo C3 ]

<1
z2
<3

8041

v

V3 —

(I_T —9)

Oap
06

0

0]

oo

o5 73
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General Recursive Design Procedure

parametric strict-feedback system:

zo + ¢1(x1) "0

r] =
io = x3+ po(x1,72) "0
. _ TQ
Tn-1 = Tn+en-1(T1,---,Tp_1)
in = Blx)u+ en(z)'6
Yy — I

where 3 and ¢; are smooth.

Objective: asymptotically track reference output w,(t), with
y?@)(t)’i = 1,---,n known, bounded and piecewise continuous.

14



: ) . . A A JAN
Tuning functions design for tracking (zg =0, ag =0, 79 = 0)
zp = xi—yfi_l)—ai_l
1—1
. _ dovi_ foJe%
0i(Z,0,5 V) = —za-cm—w 0+ ( S+ (Zk 1) (k>) i
axk ayr
k=1
9 — 0
—(i-1)y __ Q-1 S
vi(Z;, 0,7, ) = + Y I_Tz-I—Z Y M w; 2
(7,0, 58 ) = i1 4wz
i—1
(i Oaj—
wz(fvz; ( 2)) - $i— g 1(10]4
Ty
k=1
1 =1, ,n
E = (331, xl)? gng) - (yrayl’a ey Yy ))
Adaptive control law:
1 (n-1) (n)
u=—— |an(z,¥, ) +
5 | }

Parameter update law:

0=rr(z, 0,5 ) =Wz

15




Closed-loop system

A(2,0,)z+W(z,0,¢)'0

z =
g = TW(z,0,t)z,
where
i —cCq 1 0
—1 —Co 14093
Az(z,g,t) = O —1-—o0923
i 0 —02n —1 - On—1,n
. Oa;i_1
O']k(a?,e) —_— — a‘% I’wk

This structure ensures that the Lyapunov function

1 T 1~T _1~
V, = — —0' -0
n 2,2 z—|—2
has derivative

n
Vb = — Z ckz,%.
k=1

1+

16



Modular Design

Motivation: Controller can be combined with different identifiers.
(No flexibility for update law in tuning function design)

Naive idea: connect a good identifier and a good controller.

Example: error system

t = —x+ p(z)d
suppose 0(¢t) = e~ and o(z) = x3, we have
r = —x -+ et
But, when |xg| > \/3
z(t) - 00 as t— %In 2 f83/2

Conclusion: Need stronger controller.

17



Controller Design.
u=—x— p(x)f — x
closed-loop system
i = —x—o(x)°z+ o(2)0.
With V = 222, we have
V o= —z°— p(x)?z2° + zo(x)0

2 lp(@) 1é‘]2+1§2
= —z°— |p(x)r — = -
’ > 4

IA

1

2 N2

—x< + —6~-.
x 7

bounded 6(t) = bounded z(t)

18



For higher order system

zo + (1) 16
U

T
T2

set
al(xl,g) = —c1T1 — go(:cl)TQA— , c¢1,k1 >0
and define
20 = x5 — a1 (w1, 0)

error system

21 = —c1z1 — k1lelfe @ 04 20

. . . 3041 T oaq =
— — = u—-—  — 0) — —0 .

22 T2 mor =g (fvz + ¥ ) 29



Consider

1, 1
Vo=V + 22 ==
> 1-|-222 2|Z|

we have
Vo < —c127+ —|9| + 2120 + 25 [u — % (:CQ + ) 859\1 .A]
Oap
< —c1z1+—|0| -|-22[u-|-21——($2-|—90 0)— ( + )] .

0x1

controller

oo
U= —z1 —Cp22 — — +87i(372+90 )
achieves

: 1 1 ~ 1 -
Vo < —c12f — 025 + + 0% + —10)?
4Kq 4Ko 4qgo

bounded #, bounded d(or € £5) = bounded z(t)

20



JAN JAN
Controller design in the modular approach (zg =0, ag = 0)

zi = X — yfi_l) — o1
i—1
— A —(i— ~ 8Ck¢_1 804@-_1
ai(@, 0,50 ) = —zi1—ciz—w 0+ ( B hHl + (kl)ygk)) — SiZi
k=1 o Oy
i—1 8
— A _(i=2 a;—1
Tk
k=1
1 =1, M
fi: (xla"'ax’i)7 gng) = (yr,yr,---,yy))
Adaptive control law:
1 5 —(n—1) (n)
u=——|an(z,?0,

Controller module guarantees: .
If0eLoand e Loor Loo then z€ Lo

21




Requirement for identifier

error system
S =

where

qu(Zaé;t)

W(z,8,t)"

A(2,0,)2 +W(2,0,) "0+ Q(2,0,t) 70

—C1 — 51

Y

1 0
—co> — s> 1
1
0
Q(z,0,0)" =

dan_1

22



Since

1
Oay

W(z0,t)T =| 991

_ Oap_1
ox1

Identifier properties:

Oouy—1

Oxp_1

(i) 6 €L and = Lo or Loo,
(i) if x € Loo then F(z(t))Td(t) — 0 and 8(¢) — O.

()T 2 Nz 0.0)F ()T .

23



Passive identifier

Identifier Design

t=f+F'0

D)

Y

= (Ag—AFTFP)@—a)+f+FT0

P

24



F Pe

r
S

€ = [Ao —\F(z,u) " F(z, u)P} e+ F(x,u)'0
update law
0 = F(x,u)Pe, r=r'’>o.
Use Lyapunov function
Vv=0"r"1¢ -+ e Pe

its derivative satisfies

A
A(M)2
Thus, whenever z is bounded, F(z(¢))Td(t) — 0 and §(t) — O.
(e(t) — O because [§°€é(T)dT = —e(0) exists, Barbalat’s lemma...)

V< —ele— |9A|2

25



Swapping identifier

i=f+F'To

Q= (Ao —AFTFP) (20 —z)+ f

Q= (Ag—AFTFP)Q+F

Q0 + €
\D

Qb
) Q

14+v|Q2 |

26



define €2 z + Qo — QT0,
& = [AO —AF(z,u) T F(a, u)P} :.
Choose
V= %'e‘Tr—l'é+ ePe

we have
T
V< 3 € € ,
414 0utr{QTQ}
proves identifier properties.

27



Output Feedback Adaptive Designs

T = Aa:—l—(b(y)—l—cb(y)a—l—[(;]a(y)u, r e R"
Yy — 6;'_—%,
A = O In—1 ’
0 -0
©0.1(y) 011(y) o wg1(y) ]
¢(y) = i , P(y) = 5 : ,
- won(y) | e10(y) o gn(y) |

unknown constant parameters:

a=1la1,...,aq]", b=I[bm,...,bo]".

28



State estimation

filters
Filters:
§ = Ao+ ky+ o(y)
= = A=+ P(y)
A = Agh+ enc(y)u
v, = A%)\, 7=0,...,m
QT — [’Um,...,’U]_,’UO, E]

29



Parameter-dependent state estimate

T=£¢4Q'70
The vector k = [ky,...,kn] " chosen so that the matrix
Ao = A — ke{

iIs Hurwitz, that is,

PAg+AdP=-1I, P=P"T >0

T he state estimation error

satisfies

30



Parametric model for adaptation:

g = woFw'0+eo
= bmvmao+wo+o'0+en,
where
wo = 0,1 +&2
= [vm,2,vm—-1,2;---,v0,2, P(1) +E(2)]T
& = [0,vm-12,---,v02, P1y+ )]

31



Since the states zo,...,xn are not measured, the backstepping design
IS applied to the system

b2 +wo + &' 0+ €2

g =
Um,i = YUm,i+1 — KiVm,1, i =2,...,p—1
Um,p = o(y)u+ Um,p+1 — KpUm,1 -

The order of this system is equal to the relative degree of the plant.

32



Extensions

Pure-feedback systems.

i = w41+ i@, 2i41) 0, 1=1,...,n—1
in = (Bo(x)+B(&)T0)u+ po(z) + ¢n()T0,
where ¢(0) =0, ¥1(0) =+ = ¢(0) =0, Bo(0) # 0.

Because of the dependence of ¢; on x;4, the regulation or tracking

for pure-feedback systems is, in general, not global, even when 0 is
known.

33



Unknown virtual control coefficients.

T; = bz-:ci_|_1—|—goz-(a:1,...,:ci)—r9, i=1,....n—1

in = bpB(x)u+ on(x1,...,2n) 10,
where, in addition to the unknown vector 6, the constant coefficients
b; are also unknown.

The unknown b;-coefficients are frequent in applications ranging from
electric motors to flight dynamics. The signs of b;, + = 1,...,n, are
assumed to be known. In the tuning functions design, in addition to
estimating b;, we also estimate its inverse go; = 1/b;. In the modular
design we assume that in addition to sgnb;, a positive constant g; is
known such that |b;| > ¢;. Then, instead of estimating o; = 1/b;, we
use the inverse of the estimate b;, i.e., 1/b;, where b;(t) is kept away
from zero by using parameter projection.

34



Multi-input systems.
X; = Bi(X)X;41+ Pi(X) 0, i=1,...,n—1
Xn = Bp(X)u+d(X)T0,

i < T T T
where X, is a y;-vector, v1 < vp < -+ < vp, X; = [X >---»X7;]

X = X;, and the matrices B;(X;) have full rank for all X; € R2j=1"i.
The input v is a vp-vector.

The matrices B; can be allowed to be unknown provided they are
constant and positive definite.

35



Block strict-feedback systems.

x.i — $i+l_I_Soi(xlw"7£U’L'7C17"'7<i)—r97 7':177:0_1
x.P — 6('r7<)u+90/0(x7<)—r9
(i = Dio(@G) + (7, G) T, i=1,...,p
_ T
with the following notation: z; = [xl,...,:vi]T, G = [Cf,...,gﬂ

Each (;-subsystem is assumed to be bounded-input bounded-state
(BIBS) stable with respect to the input (z;,{;_1). For this class of sys-
tems it is quite simple to modify the procedure in the tables. Because
of the dependence of ¢, on (;, the stabilizing function «; is augmented
by the term —I—Zz 11 agé 1<1>,\C 0. and the regressor w; is augmented by

T
—1 Oaj_1
— Xg=1 P ( ¢ )

36



Partial state-feedback systems. In many physical systems there are
unmeasured states as in the output-feedback form, but there are also
states other than the output y = x7 that are measured. An example
of such a system is

2o+ p1(x1) 1 6

] =

ir = x3+ pa(x1,22) "0
3 = x4+ ¢3(z1,22)'0
4 = x5+ pa(xy,22) "6
5 = u+ ps(z1,22,25) 6.

The states 3 and x4 are assumed not to be measured. To apply the
adaptive backstepping designs presented in this chapter, we combine
the state-feedback techniques with the output-feedback techniques.
The subsystem (xzo,x3,x4) is in the output-feedback form with x» as a
measured output, so we employ a state estimator for (x5, x3, x4) using
the filters introduced in the section on output feedback.

37



Example of Adaptive Stabilization in the Presence of a
Stochastic Disturbance

dxr = udt + xdw

w: Wiener process with E{de} = dt, no a priori bound for

Control laws:

Disturbance Attenuation: U

|

|

S
|

=

[
|
S
|
D
]
)
[
8
N

Adaptive Stabilization: U
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Disturbance Attenuation

D)

Adaptive Stabilization

1 L L
0.5 1 t 1.5 2

25
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Major Applications of Adaptive Nonlinear Control

e Electric Motors Actuating Robotic Loads
Nonlinear Control of Electric Machinery, Dawson, Hu, Burg, 1998.

e Marine Vehicles (ships, UUVs; dynamic positioning, way point
tracking, maneuvering)
Marine Control Systems, Fossen, 2002

e Automotive Vehicles (lateral and longitudinal control, trac-

tion, overall dynamics)
The groups of Tomizuka and Kanellakopoulos.

Dozens of other occasional applications, including: aircraft wing rock,
compressor stall and surge, satellite attitude control.
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Other Books on Adaptive NL Control Theory Inspired by KKK

1.

Marino and Tomei (1995),
Nonlinear Control Design: Geometric, Adaptive, and Robust

. Freeman and Kokotovic (1996),

Robust Nonlinear Control Design: State Space and Lyapunov Techniques

. Qu (1998),

Robust Control of Nonlinear Uncertain Systems

Krstic and Deng (1998),
Stabilization of Nonlinear Uncertain Systems

. Ge, Hang, Lee, Zhang (2001),

Stable Adaptive Neural Network Control

. Spooner, Maggiore, Ordonez, and Passino (2002),

Stable Adaptive Control and Estimation for Nonlinear Systems: Neural and
Fuzzy Approximation Techniques

. French, Szepesvari, Rogers (2003),

Performance of Nonlinear Approximate Adaptive Controllers
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Adaptive NL Control/Backstepping Coverage in Major Texts

1. Khalil (1995/2002),
Nonlinear Systems

2. Isidori (1995),
Nonlinear Control Systems

3. Sastry (1999),
Nonlinear Systems: Analysis, Stability, and Control

4. Astrom and Wittenmark (1995),
Adaptive Control
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