Backstepping Boundary Controller and Observer Designs
for the Slender Timoshenko Beam

Miroslav Krstic, Antranik Siranosian, and Andrey Smyshlyaev
University of California, San Diego



Literature on Boundary Control of Timoshenko Beams:

e Kim and Renardy (1987); stabilization with classical “boundary damper” feedback
which relates spatial and temporal derivatives at the beam tip.



Literature on Boundary Control of Timoshenko Beams:

e Kim and Renardy (1987); stabilization with classical “boundary damper” feedback
which relates spatial and temporal derivatives at the beam tip.

e Morgul (1992); a more advanced dynamic feedback design which eliminates the need
to measure the tip velocity but retains the requirement to actuate at the tip.



Literature on Boundary Control of Timoshenko Beams:

e Kim and Renardy (1987); stabilization with classical “boundary damper” feedback
which relates spatial and temporal derivatives at the beam tip.

e Morgul (1992); a more advanced dynamic feedback design which eliminates the need
to measure the tip velocity but retains the requirement to actuate at the tip.

e Shi, Hou, and Feng (1998); Timoshenko beam with mass at the tip—uniform stabi-
lization with boundary damping feedback laws applied at both the tip and the base at
the same time.



Literature on Boundary Control of Timoshenko Beams:

e Kim and Renardy (1987); stabilization with classical “boundary damper” feedback
which relates spatial and temporal derivatives at the beam tip.

e Morgul (1992); a more advanced dynamic feedback design which eliminates the need
to measure the tip velocity but retains the requirement to actuate at the tip.

e Shi, Hou, and Feng (1998); Timoshenko beam with mass at the tip—uniform stabi-
lization with boundary damping feedback laws applied at both the tip and the base at
the same time.

e Macchelli and Melchiorri (2004); Timoshenko beam in the framework of distributed
port Hamiltonian systems; unify existing approaches; develop a new controller based
on energy-shaping/Casimir function concepts, with actuation at the tip.



Literature on Boundary Control of Timoshenko Beams:

e Kim and Renardy (1987); stabilization with classical “boundary damper” feedback
which relates spatial and temporal derivatives at the beam tip.

e Morgul (1992); a more advanced dynamic feedback design which eliminates the need
to measure the tip velocity but retains the requirement to actuate at the tip.

e Shi, Hou, and Feng (1998); Timoshenko beam with mass at the tip—uniform stabi-
lization with boundary damping feedback laws applied at both the tip and the base at
the same time.

e Macchelli and Melchiorri (2004); Timoshenko beam in the framework of distributed
port Hamiltonian systems; unify existing approaches; develop a new controller based
on energy-shaping/Casimir function concepts, with actuation at the tip.

e Taylor and Yau (2003); controllability of a beam with spatially varying parameters using
force actuation at the tip and torque at the base.



e Zhang, Dawson, de Queiroz, and Vedagarbha (1997); Timoshenko beam with
mass/inertial dynamics at the free end and design a Lyapunov-based adaptive bound-
ary damping feedback, which they also demonstrate experimentally.



Our Objective

Design controllers with actuation only at the base and sensing only at the tip.
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ewt = (1+doy) (WXX—CW)
wy(0) = O
w(l) = 0,

where ¢ > O is a design gain.

Proposition All the eigenvalues are in the open left-half-plane, have the damping ratios of
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and all of their real parts are no larger than
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At most %E 1-— %ZC— 1 of the eigenvalues are complex, whereas the rest are real.
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Kernel/gain function K(X,Y) needs to satisfy the hyperbolic PDE
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Controller Design

Invertible spatially-causal/lower-triangular/Volterra state transformation

wix) = ux)— [kx y)u(y)dy.

Boundary feedback law

u = [ Ky

Kernel/gain function K(X,Y) needs to satisfy the hyperbolic PDE

kXX — kyy —|— Ck
ky(X, O) — O
C

K(X,X) = —5X

on the triangular domain {0 <y < x < 1}. Explicit solution to this PDE:

()
ol

where |1 is the modified Bessel function of the first kind/first order.

k<X7 y) = —CX
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Observer Design

eyt = (1+doy) [ljxxjL igiglz (\/6)((2_)()) ()= 0(0))]
5(0) = —2(u(0)~0(0)
0(1) = u(1),

where C is a positive design parameter.
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Shear Beam Model

EUt = (1+dat)(UXX—Gx)
0 = (1+ddt)(saxx+a(ux—a))

L= 0 = singular perturbation = “shear beam” model

Free end BCs:

Controlled at the end x = 1 through the boundary conditions u(1,t) and a(1,t).
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EUt = (1+dat)(UXX—Gx)
0 = (1+ddt)(saxx+a(ux—a))

1
a(x) = i‘ﬂ&’? [a(l)—bsinh(b)u(0)+b2 /O cosh(b(1—y))u(y)dy

X

+bsinh(bx)u(0) — b2 /O coshb(x—y))u(y)dy
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Shear Beam Model

Et = (1+dat){uxx+b2u+b3/OXsinh(b(x—y))u(y)dy—bzcosr(bx)u(O)

bsinh(bx)
~ coshb) [
ux(0) = coslr(b) [a(l)—bsinh(b)u(O)erZ/

0

1
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cosf(b(l—y))u(Y)dYI }

cosﬂb(l—y))u(y)dy]

Control

1

a(1) = bsinh(b)u(0) — b? /O coshb(1—y))u(y)dy
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Shear Beam Model

X

EUt = (1+dat){uxx+b2u+b3/

 sinh(b(x—y))u(y)dy— bzcosr(bx)u(O)}
Ux(O) = 0

Control
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(1) = [ “k(Ly)a(y)dy



Shear Beam Model

gt = (1+d6t){uxx+b2u+b3/OXsinh(b(x—y))u(y)dy— bzcosh(bx)u(O)}
Ux(O) = 0

Control

1
u(®) = [ “k(Ly)ary)dy

Gain kernel PDE

kox = kyy+ (c+ b2) k—b3sinh(b(x—y)) + b /y Xk(x, &) sinh(b(& —y))d&

c4 b?
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ky(x,0) = b? (—cosr(bx)Jr /o Xk(x,y)cosr(by)dy)

K(X, X) X — Cg
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Observer

= (14 do) {Oxx+ b%0+ bS/OXSinh(b(x— y))a(y)dy

~b2cost(bX)u(0) — bsinh(bX)ct(0) + py(x,0) (u(0) — (0)) }

= 0(0)+p(0,0) (u(0) - 0(0))
= u(l)
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Stability

Lyapunov functions for observer error state and observer state
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Stability

Lyapunov functions for observer error state and observer state
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By Poincare’s inequality, for sufficiently small 5,8 > 0 there exist My, Mo, My, M > 0 s.t.

where

) .



A long calculation shows that
Vo= 3 (2 + ix|2) — (G- Be ) |12 — ol s |2
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where
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where

and




where

and

Qo(X)
Q1(X)
Q2(X)

Qp(x7 y)

1
QuXW(0) + Qu(X / Qp(Ly)W(y)dy

+P(0.0)0)+ o [ QplLy)iy)dy

py(.0) ~bPcostibx) — [“k(x ) (py(n,0) ~bPcostibn) ) dn
b2
coshb)

—b (sinh(bx) — /Oxk(x,r])sinh(br])dr])
o ((cost(bix—)) - [ costiblx— &) pE.Y)GE )

Q2(X)



Using the Poincare, Agmon, and Cauchy-Schwartz inequalities, it can be shown that
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Using the Poincare, Agmon, and Cauchy-Schwartz inequalities, it can be shown that
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for sufficiently large m.

So,
Vo= -8 (ew?+ s — (e Be) 1| — ol s
Vo< =3 (c W2+ s 2) — (cd—Be) [1iel| 2 — o[Vl 2 — o (Bi(0)2 + e (0)?)
] 2+ e |2+ [ |+ e ) -



Taking a Lyapunov function of the form
V=V+AV,
one can show that there exists a sufficiently large positive /A such that
V < —AV

for some (small) A > O.
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Taking a Lyapunov function of the form
V=V+AV,
one can show that there exists a sufficiently large positive /A such that
V < -V

for some (small) A > O.

It follows that

AN ~

U(t)+U(t) < Me t/M (0(0) +U(0))

for sufficiently large M > 0.

From the invertibility of the transformations, it follows that

ux()1[% + [lue (0 12+ [[0x(t) |2+ (| Ge (t) 2
<

Met/M ((ux(0) 2+ [lu (02 +110(0) |2+ [16(0) )




Extra

The design extends to a beam model destabilized at the tip (AFM).
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In the Works

Design for undamped shear beam with Andras Balogh.



