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Literature on Boundary Control of Timoshenko Beams:

• Kim and Renardy (1987); stabilization with classical “boundary damper” feedback

which relates spatial and temporal derivatives at the beam tip.

• Morgul (1992); a more advanced dynamic feedback design which eliminates the need

to measure the tip velocity but retains the requirement to actuate at the tip.

• Shi, Hou, and Feng (1998); Timoshenko beam with mass at the tip—uniform stabi-

lization with boundary damping feedback laws applied at both the tip and the base at

the same time.

• Macchelli and Melchiorri (2004); Timoshenko beam in the framework of distributed

port Hamiltonian systems; unify existing approaches; develop a new controller based

on energy-shaping/Casimir function concepts, with actuation at the tip.

• Taylor and Yau (2003); controllability of a beam with spatially varying parameters using

force actuation at the tip and torque at the base.
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• Zhang, Dawson, de Queiroz, and Vedagarbha (1997); Timoshenko beam with

mass/inertial dynamics at the free end and design a Lyapunov-based adaptive bound-

ary damping feedback, which they also demonstrate experimentally.



Our Objective

Design controllers with actuation only at the base and sensing only at the tip.



An Introductory Example: Wave Equation

εutt = (1+d∂t)uxx

ux(0) = 0 (free end)

u(0) = measured

u(1) = controlled ,

ε = 1/stiffness

d = coefficient of Kelvin-Voigt damping (allowed to be arbitrarily small)
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The Target System

εwtt = (1+d∂t)(wxx−cw)

wx(0) = 0

w(1) = 0,

where c > 0 is a design gain.

Proposition All the eigenvalues are in the open left-half-plane, have the damping ratios of

at least

πd

4
√

ε

√
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4

π2c

and all of their real parts are no larger than
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1
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.

At most 4
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√
1− d2

4εc−1 of the eigenvalues are complex, whereas the rest are real.
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Controller Design

Invertible spatially-causal/lower-triangular/Volterra state transformation

w(x) = u(x)−
Z x

0
k(x,y)u(y)dy.

Boundary feedback law

u(1) =

Z 1

0
k(1,y)u(y)dy.

Kernel/gain function k(x,y) needs to satisfy the hyperbolic PDE

kxx = kyy+ck

ky(x,0) = 0

k(x,x) = −c
2

x

on the triangular domain {0≤ y≤ x≤ 1}. Explicit solution to this PDE:

k(x,y) = −cx
I1

(√
c
(

x2−y2
))

√
c
(

x2−y2
) ,

where I1 is the modified Bessel function of the first kind/first order.
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Observer Design

εûtt = (1+d∂t)

[
ûxx+

c̃(1−x)
x(2−x)

I2
(√

c̃x(2−x)
)

(u(0)− û(0))

]

ûx(0) = − c̃
2
(u(0)− û(0))

û(1) = u(1) ,

where c̃ is a positive design parameter.
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Timoshenko Beam Model

εutt = (1+d∂t)(uxx−αx)

µεαtt = (1+d∂t)(εαxx+a(ux−α))

α(x, t) = angle of rotation due to bending

ε,µ,a = constant parameters

µ small ⇒ “slender beam”
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µ= 0⇒ singular perturbation ⇒ “shear beam” model

Free end BCs:

ux(0) = α(0)

αx(0) = 0

Controlled at the end x = 1 through the boundary conditions u(1, t) and α(1, t).
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Observer

εûtt = (1+d∂t)

{
ûxx+b2û+b3

Z x

0
sinh(b(x−y))û(y)dy

−b2cosh(bx)u(0)−bsinh(bx)α(0)+ py(x,0)(u(0)− û(0))
}

ûx(0) = α(0)+ p(0,0)(u(0)− û(0))

û(1) = u(1)

pyy = pxx+
(

c̃+b2
)

p−b3sinh(b(x−y))+b3
Z x

y
p(ξ,y)sinh(b(x−ξ))dξ

p(x,x) =
c̃+b2

2
(x−1)

p(1,y) = 0



Stability

Lyapunov functions for observer error state and observer state

Ṽ =
1
2

[(
1+ δ̃d

)(
‖w̃x‖2+ c̃‖w̃‖2

)
+ ε‖w̃t‖2+2δ̃ε〈w̃, w̃t〉

]

V̂ =
1
2

[(
1+ δ̂d

)(
‖ŵx‖2+c‖ŵ‖2

)
+ ε‖ŵt‖2+2δ̂ε〈ŵ, ŵt〉

]
+c0

d+ δ̂
2

ŵ(0)2 .

By Poincare’s inequality, for sufficiently small δ̂, δ̃ > 0 there exist m̃1,m̃2,m̂1,m̂2 > 0 s.t.

m̃1Ũ ≤ Ṽ ≤ m̃2Ũ

m̂1Û ≤ V̂ ≤ m̂2Û ,

where

Ũ = ‖w̃x‖2+‖w̃t‖2

Û = ‖ŵx‖2+‖ŵt‖2 .
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m̂1Û ≤ V̂ ≤ m̂2Û ,
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Û = ‖ŵx‖2+‖ŵt‖2 .



A long calculation shows that

˙̃V = −δ̃
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(
c̃d− δ̃ε

)
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δ̂ŵ(0)2+dŵt(0)2
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〈
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〉
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b2
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Z 1

0
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Z x

0
k(x,η)

(
py(η,0)−b2cosh(bη)

)
dη

Q1(x) =
b2

cosh(b)
Q2(x)

Q2(x) = −b

(
sinh(bx)−

Z x

0
k(x,η)sinh(bη)dη

)

Qp(x,y) = b2
(

cosh(b(x−y))−
Z x

y
cosh(b(x−ξ))p(ξ,y)dξ

)
.
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.



Using the Poincare, Agmon, and Cauchy-Schwartz inequalities, it can be shown that

|Ξ| ≤ m̄
(
‖w̃x‖2+‖w̃xt‖2+‖ŵx‖2+‖ŵxt‖2

)

for sufficiently large m̄.



Using the Poincare, Agmon, and Cauchy-Schwartz inequalities, it can be shown that

|Ξ| ≤ m̄
(
‖w̃x‖2+‖w̃xt‖2+‖ŵx‖2+‖ŵxt‖2

)

for sufficiently large m̄.

So,

˙̃V = −δ̃
(

c̃‖w̃‖2+‖w̃x‖2
)
−

(
c̃d− δ̃ε

)
‖w̃t‖2−d‖w̃xt‖2

˙̂V ≤ −δ̂
(

c‖ŵ‖2+‖ŵx‖2
)
−

(
cd− δ̂ε

)
‖ŵt‖2−d‖ŵxt‖2−c0

(
δ̂ŵ(0)2+dŵt(0)2

)

+m̄
(
‖w̃x‖2+‖w̃xt‖2+‖ŵx‖2+‖ŵxt‖2

)
.



Taking a Lyapunov function of the form

V = V̂ +ΛṼ ,

one can show that there exists a sufficiently large positive Λ such that

V̇ ≤−λV

for some (small) λ > 0.

It follows that

Û(t)+Ũ(t) ≤ Me−t/M
(
Û(0)+Ũ(0)

)

for sufficiently large M > 0.

From the invertibility of the transformations, it follows that

‖ux(t)‖2+‖ut(t)‖2+‖ûx(t)‖2+‖ût(t)‖2

≤
M̄e−t/M̄

(
‖ux(0)‖2+‖ut(0)‖2+‖ûx(0)‖2+‖ût(0)‖2

)
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Extra

The design extends to a beam model destabilized at the tip (AFM).
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Design for undamped shear beam with Andras Balogh.


