Preface

Inspiration for the book

This book was inspired by a seemingly non-mathematicaltgqresf understand-
ing the biological phenomenon of bacterial chemotaxis,alitds conjectured that
a simple extremum seeking-like algorithm, employing sastit perturbations in-
stead of the conventional sinusoidal probing, enablesbadib move in space to-
wards areas with higher food concentration by estimatimggitadient of the un-
known concentration distribution.

While constructing stochastic algorithms that both mimacterial motions and
are biologically plausible in their simplicity is easy, @eping a mathematical the-
ory that supports such algorithms was far from straightéody The algorithms that
perform stochastic extremum seeking violate one or morenaggons of any of
the available theorems on stochastic averaging. As a regeiltvere compelled to
develop, from the ground up, stochastic averaging andlgyahieorems that consti-
tute significant generalizations of the existing stocluasteraging theory developed
since the 1960s. This book presents the new theorems orastaxhveraging and
then develops the theory and several applications of sstichextremum seeking,
including applications to non-cooperative/Nash gamestamdbotic vehicles. The
new stochastic extremum seeking theory constitutes amatfee to established,
sinusoid-based, deterministic extremum seeking.

Stochastic averaging

The averaging method is a powerful and elegant asymptoélysis technique for
nonlinear time-varying dynamical systems. Its basic id&a loe dated back to the
late 18th century, when in 1788, Lagrange formulated theigtional three-body
problem as a perturbation of the two-body problem. No rigsrproof of its valid-
ity was given until Fatou provided the first proof of the asyatie validity of the
method in 1928. After the systematic research conductedryio¥ Bogoliubov,
and Mitropolsky, in the 1930s, the averaging method grdg@came one of the
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classical methods in analyzing nonlinear oscillationghipast three decades, the
averaging method has been extensively applied to theale¢isearch and engineer-
ing applications on nonlinear random vibrations.

Stochastic averaging method was first proposed in 1963 lagdBiovich based
on physical consideration and later proved mathematitgllithasminskii in 1966.
Since then, extensive research interest has developeadhastic averaging in the
fields of mathematics and mechanical engineering.

Stochastic extremum seeking

Extremum seeking is a real-time optimization tool and alsnethod of adaptive
control, although it is different from the classical adagttontrol in two aspects: (i)
extremum seeking does not fit into the classical paradigmadehreference and
related schemes, which deal with the problem of stabitizedif a known reference
trajectory or set point; (ii) extremum seeking is not modesdd. Extremum seeking
is applicable in situations where there is a nonlinearitihim control problem, and
the nonlinearity has a local minimum or a maximum. The nadiity may be in the
plant, as a physical nonlinearity, possibly manifestisglitthrough an equilibrium
map, or it may be in the control objective, added to the systepugh a cost func-
tional of an optimization problem. Hence, one can use exirarseeking both for
tuning a set point to achieve an optimal value of the outpugituning parameters
of a feedback law.

With many applications of extremum seeking involving metbal systems and
vehicles, which are naturally modeled by nonlinear cortirsitime systems, much
need exists for continuous-time extremum seeking algoistand stability theory.
Unfortunately, existing stochastic averaging theoremsantinuous time are too
restrictive to be applicable to extremum seeking algorghBuch algorithms violate
the global Lipschitz assumptions, do not possess an efuitibat the extremum,
the average system is only locally exponentially stablé,the user’s interest is in
infinite-time behavior (stability) rather than merely inifaztime approximation.

This book develops the framework of stochastic extremurkisgeand its ap-
plications. In the first part of the book we develop the thdoatanalysis tools of
stochastic averaging for general nonlinear systems (€maBtand 4). In the sec-
ond part of the book, we develop stochastic extremum seeltgayithms for static
maps or dynamical nonlinear systems (Chapters 5, 8 andriihelthird part, we
investigate the applications of stochastic extremum see{Chapters 6, 7, 9 and
10).

Organization of the book
Chapter 1 is a basic introduction to the deterministiciséstic averaging theory.

Chapter 2 provides a brief review of developments in extmenseeking in the
last 15 years and presents a basic idea of stochastic extresaeking. Chapter
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3 presents stochastic averaging theory for locally Lipzchystems that maintain
an equilibrium in the presence of a stochastic perturbat@mpter 4 presents
stochastic averaging theory developed to analyze theitliigts where equilibrium
is not preserved and practical stability is achieved. Givaptpresents single-input
stochastic extremum seeking algorithm and its convergenedysis. Chapter 6
presents an application of single-parameter stochadtieraxm seeking to stochas-
tic source seeking by nonholonomic vehicles with tuning.daigvelocity. Chapter 7
presents stochastic source seeking with tuning forwarakcitgl Chapter 8 presents
multi-parameter stochastic extremum seeking and slopa@rspé_hapter 9 presents
the application of multi-parameter stochastic extremuekisg to Nash equilib-
rium seeking for games with general nonlinear payoffs. @rap0 presents some
special cases of Chapter 9: seeking of Nash equilibria fonegawith quadratic
payoffs and applications to oligopoly economic marketstarqlanar multi-vehicle
deployment. 11 introduces a Newton-based stochasticreutreseeking algorithm,
which allows the user to achieve an arbitrary convergerteeesen in multivariable
problems, despite the unknown Hessian of the cost function.
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Chapter 1
Introduction to Averaging

The basic idea of averaging theory—either determinististochastic—is to ap-
proximate the original system (time-varying and periodioyost periodic, or ran-
domly perturbed) by a simpler (average) system (time-iavay deterministic) or
some approximating diffusion system (a stochastic systerpler than the original
one). Starting with considerations driven by applicatidhe averaging method has
been developed as a practical tool in mechanics/dynam#;slfe7, 120, 130, 151,
152] as well as a theoretical too in mathematics [21, 40, B458, 61, 129, 53],
bot for deterministic dynamics [22, 58, 120, 121] and forchimstic dynamics
[40, 61, 81, 145]. Stochastic averaging has been the cdomer®f many control
and optimization methods, such as in stochastic approiomand adaptive algo-
rithms [17, 80, 93, 131, 132].

In this chapter, we introduce some basic results about metestic averaging
and stochastic averaging.

1.1 Averaging for Ordinary Differential Equations

1.1.1 Averaging for globally Lipschitz systems

1.1.1.1 Simple case

Consider the system

B _erzre).  Z=x (111)

whereZf € R", & is a function fromR ; U {0} — R!, ¢ is a small parameter, and
f(xvy) = [fl(xvy)a ER) fn(x7y)]T'

If the functionsfi(x,y),i = 1,...,n do not increase too fast, then the solution
of system (1.1.1) converges &§ = x as & — 0, uniformly on every finite time
interval [0, T]. However, the behavior &° on arbitrarily long time intervals or in-
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finite time intervals is more interesting since as time gaefaoenough, significant
changes—such as exit from the neighborhood of an equitibgasition or of a pe-
riodic trajectory— may take place in system (1.1.1). Usutathe intervals of order
¢~ 1 or of larger order are considered [40].

Let
Xt = Zf/e. (1.1.2)
Then the equation foXf assumes the form
d &
CL=10¢&,  X§=x (113)

Thus the study of this system on a finite time interval is egjeint to the study of
system (1.1.1) on time intervals of order?.
We assume that

e f(X,y) is bounded, continuous kandy, and satisfies a globally Lipschitz con-
dition in x uniformly iny: for anyxy,x, € R", Yy € R!, there exits a constaht
(independent of) such that

[f(x1,Y) — f(x2, )] < K[xg — X2l (1.1.4)

e The following limit holds

T
lim %/0 f(x, &)ds= T(x) (1.1.5)

T—o0

uniformly inx € R".

It can be shown that under the above assumptions, the fun€tig is bounded
and satisfies a globally Lipschitz condition with the samestantK as in (1.1.4).
Condition (1.1.5) can be satisfied &fis periodic or is a sum of periodic functions.

Thus we obtain a simpler system, i.e., theerage systerof the original system
(2.1.1):

— =f(Xy), Xo=x (1.1.6)

Now we consider the error between the solution of the origizatem (1.1.1)

and that of its average system (1.1.6). By (1.1.1), (1.1n6) @.1.4), we have for

vt € [0, T]

0
p— t p— _——

[0 8 e £yl [ 11 E) - TR
t o t o o

< [ 1106 &)~ 1Re B s | [ 11(Ks &) - TRods

X% = | 110 ) - TXaalg
t
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< K/:|X§—75|ds+ ale), (1.1.7)
where
t —_— _
a(e) = sup /[f(x&fs/g)_f(xs)]ds‘- (1.1.8)
0<t<T |/0

By Gronwall’s inequality, from (1.1.7) we obtain that

sup [XF—Xi| < a(e)eT. (1.1.9)
o<t<T
Since
t
a(e)= sup tf /g [f (Xue, &u) — F(Xye)]du| — 0, ase — 0, (1.1.10)
o<t<T 0
we have
lim sup |Xf—X¢|=0. (1.1.11)
SHOOStST

From this we obtain a proof of the fact that the trajectéfyconverges to the solu-
tion of equation (1.1.6), uniformly on every finite time intal ase — 0.

The assertion that the trajectoXy is close taX; is called the averaging principle
[40]. Averaging principle supplies a kind of approximaticglation between the
original system and its average system. In some problenadyzng the solution
property of the original system by that of its average systeaf main interest.

1.1.1.2 General case

Consider the system

).({g = fl(x‘(gvgtg)v X(Jg
Etg = gilfz(xtgvgtg)v Eg

whereXf e R" &€ e R andf; : R" xR — R", f,: R" xR — R'. The velocity
of the motion of the variable&® has order~! ase — 0. Therefore &f is called
the fast variable, an®¢ is called the slow variable. For equation (1.1.3), the réle o
fast motion is played b¥® = & . In this case the velocity of fast motion does not
depend on the slow variable.

We consider the fast motiofi(x) for fixed slow variablex € R™:

dé(x)
dt

X, (1.1.12)
&, (1.1.13)

= (% &(X), &) =&, (1.1.14)
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and assume that

e Functionsf; andf, are bounded and continuous differentiable functions.
e The limit

jim = [ fax &) ds=T1(0 (1.1.15)

exists independently of the initial poigtof the trajectoryé; (x).

The averaging principle for system (1.1.12)—(1.1.13) esdsertion that under
certain assumptions, the trajectory of the slow motion caafproximated by the
trajectory of the average system

% “F,(X), Xo=x (1.1.16)

Although the averaging principle has long been applied tbj@ms of celestial
mechanics, oscillation theory and radiophysics, a mattieally rigorous justifica-
tion remained unavailable for a long time. The brief histofyhe development of
mathematically rigorous theory of averaging is as follod@]{

e The first general and rigorous proof of averaging theory waaioed by N. N.
Bogolyubov [22], who proved that if the limit (1.1.5) exigtaiformly in x, then
the solutionX¢ of equation (1.1.3) converges to the solution of the avesyge
tem (1.1.6), uniformly on every finite time interval.

e In another work [23] (see also [22]), Bogolyubov extendezldbove results to
some cases of systems in the form (1.1.12)—(1.1.13), suskistsms in which
the fast motion is one-dimensional and the equatioréfohas the formé# =
g~ 1,(XE), as well as to some more general systems.

e V. M. Volosov [139] obtained a series of results concerntmg general case of
system (1.1.12)—(1.1.13). Nevertheless, in the case dfdmknsional fast mo-
tions, the requirement of uniform convergence to the limi¢i.1.15), which is
usually imposed, excludes a series of interesting prohlémnexample, prob-
lems arising in perturbations of Hamiltonian systems.

e In [5], it is proved that for everyT > 0 andp > 0, the Lebesgue measure of
the setF; of those initial conditions in problem (1.1.12)—(1.1.18) fwhich
SURi<T |XE —Xt| > p converges to zero with. This result was later sharpened
for systems of a special form [107].

1.1.2 Averaging for locally Lipschitz systems

In Section 1.1.1, the averaging principle is formulateddtmbally Lipschitz sys-
tems. In this section, we introduce averaging results foally Lipschitz systems,
which can be used to analyze the convergence or stabilitieotieterministic ex-
tremum seeking algorithm or control. Details can be founf8) Chapter 10].
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1.1.2.1 Averaging in the periodic case

Consider the system

£
%:ef(t,)(f,s), (1.1.17)
whereXf € R", and f and its partial derivatives with respect to the second and
third argument up to the second order are continuous anddaabfor (t,x, &) €
[0,00) x Dg x [0, &], for every compact seby C D, whereD C R" is a domain.
Moreover,f (t,x, €) is T-periodic int for someT > 0 ande is a positive parameter.
We associate with (1.1.17) an autonomous average system

dXi

= efa(X0), (1.1.18)

where
1 T
falX) = = / £(r,x,0)dr. (1.1.19)
0

The basic problem in the averaging method is to determineniait wense the be-
havior of the autonomous system (1.1.18) approximatesehewior of the nonau-
tonomous system (1.1.17). In fact, via a change of varialfesnonautonomous
system (1.1.17) can be represented as a perturbation ofutbecanous system
(1.1.18). For detalils, the reader is referred to [58].

The main result is given next.

Theorem 1.1.[58, Theorem 10.4] Let (t,x, €) and its partial derivatives with re-
spect to(x,€) up to the second order be continuous and boundedtior €) €
[0,00) x Do x [0, &), for every compact setfa= D, where DC R" is a domain. Sup-
pose f is T-periodic in t for some ¥ 0 and¢ is a positive parameter. Let®Xand
X; denote the solutions of (1.1.17) and (1.1.18), respegtivel

1. If Xie € D, ¥t € [0,b/€] and X§ — Xo = O(¢), then there exists* > 0, such that
forall 0 < € < g%, X¢ is defined and
XE —Xie = O(€) on[0,b/¢], (1.1.20)

2. If the origin x= 0 € D is an exponentially stable equilibrium point of the
average system (1.1.18p C D is a compact subset of its region of attrac-
tion, Xo € Q, and X§ — Xo = O(¢), then there exists* > 0 such that for all
0< e < ¢g*, X is defined and

XE —Xie = O(¢), for allt € [0,), (1.1.22)

3. If the origin x= 0 € D is an exponentially stable equilibrium point of the aver-
age system (1.1.18), then there exist positive cons&irasd k such that, for
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all 0< € < ¢, (1.1.17) has a unique, exponentially stable, T -periodlatimn
%€ with the property|| X" || < ke.

If f(t,0,6) =0 forall (t,€) € [0,) x [0, &)], the origin is an equilibrium point of
(1.1.17). By the uniqueness of tAeperiodic solutionX, it follows that X,

is the trivial solutionx = 0. In this case, the theorem ensures that the origin is an
exponentially stable equilibrium point of (1.1.17).

1.1.2.2 Averaging in the general case

Consider the system

£
%:ef(t,xf,e), (1.1.22)
wheref and its partial derivatives with respect(ta &) up to the second order are
continuous and bounded fot,x, €) € [0,0) x Dg x [0, &, for every compact set
Do C D, whereD C R" is a domain. The parameteis positive.

The average of nonlinear functidit, x, €) is given by the following definition.

Definition 1.1.[58, Definition 10.2] A continuous, bounded functign [0, ) x
D — R"is said to have an averagg,(x) if the limit

1 T
im —/ g(r,x)dr (1.1.23)
t

=1
T-—o00

Gav(X)

exists and

I

T
[ or0dr - ga)| <ko(T), e € [0.0) x Do (11.24)

for every compact sddy C D, wherek is a positive constant (possibly dependent
onDg) ando : [0,0) — [0, ) is a strictly decreasing, continuous, bounded function
such thato(T) — 0 asT — . The functiono is called the convergence function.
By this definition, we obtain the average system of (1.1.22):
% = efay(Xt). (1.1.25)

For the convenience of stating the general averaging theose list some details
of the deduction of the theorem.
Let

h(t,X) = f(t, %, 0) — fay(X) (1.1.26)

and denote
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w(t,x,n) = / h(r,x)e " dr (1.1.27)
Jo

for some positive constant.
It can be shown that there is a clags functiona such that

niwt,x,n)| < ka(n), V(t,x) € [0,0) x Do, (1.1.28)
n HWH <ka(n), V(t,x)e][0,0)x Dg. (1.1.29)

The main result for the general averaging is as follows

Theorem 1.2.[58, Theorem 10.5] Let (t,x, €) and its partial derivatives with re-
spect to(x,€) up to the second order be continuous and boundedtior €) €
[0,00) x Dg x [0, &, for every compact setc D, wheree > 0 and DC R" is

a domain. Suppose(tf,x,0) has the average function,fx) on [0,) x D and the
Jacobian of fft,x) = f(t,x,0) — fav(X) has zero average with the same convergence
function as f. Let X andXg denote the solutions of (1.1.22) and (1.1.25), respec-
tively, anda be the class’#” function appearing in the estimates of (1.1.28) and
(1.1.29).

1. If Xg € D,Vt € [0,b/g] and X5 — Xo = O(a (€)), then there exists* > 0, such
that for all 0 < € < &*, Xf is defined and

XE —Xet = O(a(e)) on[0,b/¢] (1.1.30)

2. If the origin x= 0 € D is an exponentially stable equilibrium point of the av-
erage system (1.1.259 C D is a compact subset of its region of attraction,
Xav(0) € Q, and X§ —Xo = O(a(¢€)), then there exists* > 0 such that for all
0< &< e, Xt ¢)is defined and

XE —Xet =O(a(e)) forallt €[0,0) (1.1.31)

3. If the origin x= 0 € D is an exponentially stable equilibrium point of the aver-
age system (1.1.25) andtf0,&) =0 for all (t,€) € [0,) x [0, &), then there
existe* such that for all0 < € < €*, the origin is an exponentially stable equi-
librium point of the original system (1.1.22).

1.2 Stochastic Averaging

Compared with mature theoretical results for the detestimaveraging principle,
stochastic averaging offers a much broader spectrum oftplitsss for developing
averaging theorems (due to multiple notions of convergandestability, as well as
multiple possibilities for noise processes), which ardifam have been exhausted.
On finite time intervals, in which case one does not studyil#iabut only approxi-
mation accuracy, there have been many averaging theoreaswbak convergence
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[40, 62, 88, 129], convergence in probability [40, 89], airda@st sure convergence
[54, 88]. However, the study of stochastic averaging on iifieite time interval is
not complete compared to complete results for the detestitrdase [58, 121].

1.2.1 Averaging for stochastic perturbation process

Consider the system

XE =X &e), X5 =X, (1.2.32)

whereXf € R", &,t > 0, is a stochastic process with valuediih
We assume that

e The functionf(x,y) satisfies a globally Lipschitz condition: fog € R")y; €
R'i = 1,2, there exist a constaht such that

[T (x1,y1) — T(X2,¥2)| < K(]x1—X2| + |y1 —y2|), (1.2.33)

e The trajectories of the proce&,t > 0) are continuous with probability one or
on every finite time interval they have a finite number of digoauities of the
first kind and there are no discontinuities of the second.kind

Under these assumptions, the solution of equation (1.288)s with probability
one for any initial condition and it is defined uniquely foktal 0 [40].

Compared with the deterministic condition (1.1.5), stetiteaveraging principle
has different types of convergence condition since thezeddferent convergence
notions in stochastic case. In general, if less stringesuragtions is imposed con-
cerning the type of convergence in (1.1.5), then a weakeitrieslds. Here we just
list two cases (convergence with probability one and cayemce in probability):

(i) If condition (1.1.5) is satisfied with probability one ifiormly in x € R", then
the ordinary averaging principle implies that with probi#ypbne, the trajectory
of X& converges to the solution of equation (1.1.6), uniformlyewery finite
interval (f(x) andX; may depend on sample trajectanjin general).

(i) Assume that there exists a vector figitk) in R" such that for any > 0 and
xeR",

) 1 T —
im {7 [ t0xEds— 70

> 5} =0, (1.2.34)

uniformly int > 0. It follows from (1.2.34) thaf (x) satisfies a globally Lipschitz
condition (with the same constant &6x,y)). Therefore, there exists a unique
solution of the problem

— =T(X), Xo=xX. (1.2.35)



1.2 Stochastic Averaging 9

The stochastic proces§” can be considered as a result of stochastic perturba-
tions of the dynamical system (1.2.35), small on the average

Theorem 1.3.[40, Theorem 7.2.1] Suppose that condition (1.2.34) issfiati
andsup E|f(x,&)|? < «. Then for any T> 0andd > 0,

lim P{ sup X —Xi| > 6} =0. (1.2.36)

£—0 0<t<T

1.2.2 Averaging for stochastic differential equations

Consider the system of differential equations

dX® = (X, YE)dt+g(XE, Y )dW, X§ =x, (1.2.37)
dYF = & 'BXE, YO )dt+ e Y2C(XE Y )dW, Y =y, (1.2.38)

whereX® € R", ¥ € R!, f(x,y) = (fi(xY),..., fa(x,¥)), B(xY) = (B1(X.Y),-.,
Bi(x,y)), W is anr-dimensional Wiener process agk,y) = (gij )nxr, C(X,Y) =
(Cij (6 Y)ir-

We introduce a stochastic procegd,x € R",y € R!, which is defined by the
stochastic differential equation

dYY = B(x, Y;Y)dt + C(x, ;) dw, Y3¥ =v. (1.2.39)

The solution of this equation form a Markov proces®Independing ox € R" as
a parameter.
We assume that

e The functionsfi(x,y),Bi(X,y),dij (X,¥),Cij (X,y) are bounded and satisfy a glob-
ally Lipschitz condition.

e There exists a functiofi(x) = (f1(x),..., (X)), x € R", such that for any >
0,xeR"yec R, we have

1 T _
E’?/ F(x,YY)dr — F(x)| < k(T), (1.2.40)
t
wherek (T) — 0 asT — oo.

Theorem 1.4.[40, Theorem 7.9.1] Let the entries ofgy) = g(x) be independent
of y and let condition (1.2.40) be satisfied. Denot&Xby R" the stochastic process
governed by the differential equation

dXy - o — —

e f(Xp)dt+g(Xp)dW, X = x. (1.2.41)

Then forany T> 0,0 > 0,x € R",
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lim P{ sup |Xf—X;| > d}=0. (1.2.42)
€0 “o<t<T

In general, averaging principle on infinite time intervat@nsidered under the
stability condition of average systems or diffusion appmation. The stability of
stochastic system with wide band noise disturbances unffiesidn approximation
conditions is stated in [21]. The stability of dynamic sysgawith Markov perturba-
tions under the stability condition of the average systertudied in [67]. Under a
condition on a diffusion approximation of a dynamical syst@ith Markov pertur-
bations, the problem of stability is solved in [68]. Undenddions of averaging and
diffusion approximation, the stability of dynamic systeimsemi-Markov medium
was studied in [69]. All these results are established uatler almost all of the
following conditions:

e the average system or approximating diffusion system ibajlp exponentially
stable;

e the nonlinear vector field of the original system has boundedvative or is
dominated by some forms of Lyapunov function of the averggéesn;

e the nonlinear vector field of the original system vanishethatorigin for any
value of perturbation process (equilibrium condition);

e the state space of the perturbation process is a compa&.spac

These conditions largely limit the application of existstgchastic averaging theo-
rems.

In Chapters 3 and 4, we remove or weaken several restridticihese existing
results and develop more general averaging for our stachedremum seeking
problems.



Chapter 2
Introduction to Extremum Seeking

In this chapter we review the motivation behind extremunkiseemethodology
and the advances in the field of extremum seeking of the lagteabs. Then we
present a basic introduction to stochastic extremum sgekioluding how it relates
to standard deterministic extremum seeking with perio@idybations and what
ideas are behind the study of stability of the resultingIséstic nonlinear system.

2.1 Motivation and Recent Revival

Extremum seeking is a nhon-model based real-time optinoimapproach for dy-
namic problems where only limited knowledge of a system @lakle, such as, that
the system has a nonlinear equilibrium map which has a logahmm or maxi-
mum. Popular in applications around the middle of the tvethttentury, extremum
seeking was nearly dormant for several decades until thegemee of a proof of
its stability [74], with a subsequent resurgence of inteireextremum seeking for
further theoretical developments and applications.

The increasing complexity of engineering systems, inclgdeedback systems,
has led to many optimization challenges since analytictewrla to optimization
problems for multi-agent, nonlinear, and infinite-dimemsil systems are difficult,
if not impossible, to obtain. This difficulty arises for margasons, including the
presence of competing or adversarial goals, the high-dsioaality of the system,
and the inherent system uncertainty. Moreover, if a modskld solution is obtained
for these complicated optimization problems, it is liketylde conservative due to
modeling deficiencies. Hence, non-model based extremukirngemethods are an
attractive option to solve these problems.

Many works have focused on optimization/learning methadsihknown sys-
tems in a wide variety of fields. In games, most algorithmsghesi to achieve con-
vergence to Nash equilibria require modeling informationthe game and assume
the players can observe the actions of the other playersfidtiteous play strat-
egy is one such strategy (employed in finite games) whereyeiptievises a best

11
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response based on the history of the other players actionlynamic version of
fictitious play and gradient response is developed in [1R6]shown to converge to
a mixed-strategy Nash equilibrium in cases where prewodrsteloped algorithms
did not converge. In [39], regret testing with random stggtswitches is proved to
converge to the Nash equilibrium in finite two-player gamésme each player mea-
sures only its own payoffs. In [150], a synchronous disteduearning algorithm,
where players remember their own actions and utility vaft@s the previous two
times steps, is shown to converge in probability to a setsificted Nash equilibria.
In [8, 128, 50], game with a continuum of traders are analy2efdlitional results
on learning in games can be found in [85, 56, 38, 127, 44, 26].

The extremum seeking (ES) method has seen significant tiedradvances
during the past decade, including the proof of local corereog [6, 27, 119, 140],
PID tuning [63], slope seeking [7], performance improvetad limitations in ES
control [72], extension to semi-global convergence [138yelopment of scalar
Newton-like algorithms [102, 108], inclusion of measurenaoise [136], ex-
tremum seeking with partial modeling information [1, 2, 3%, 51], and learning
in noncooperative games [43, 133].

ES has also been used in many diverse applications with wrkinocertain
systems, such as steering vehicles toward a source in Gi&ddenvironments
[30, 31, 146], active flow control [14, 15, 24, 55, 65, 66],@@opulsion [105, 144],
colling systems [84, 86] wind energy [33], photovoltaic8]ghuman exercise ma-
chines [148], optimizing the control of nonisothermal \&actuator [113], control-
ling Tokamak plasmas [25], and enhancing mixing in magngtobdynamic chan-
nel flows [97], timing control of HCCI engine combustion [64¢rmation flight
optimization [20], control of aircraft endurance based tmaspheric turbulence
[71], beam matching adaptive control [123], optimizingreiactors [141].

2.2 Why Stochastic Extremum Seeking?

In existing perturbation-based extremum seeking algmsthperiodic (sinusoidal)
excitation signals are primarily used to probe the nonlitgand estimate its gra-
dient. Biological systems (such as bacterial chemotaxigial use periodic probing
in climbing food or light gradients. In man-made source §ggkystems, the nearly
random motion of the stochastic seeker has its advantagmlitations where the
seeker itself may be pursued by another pursuer. A seekahwhccessfully per-
forms the source finding task but with an unpredictable,lgeandom trajectory, is
a more challenging target, and is hence less vulnerable glizterministic seeker.
Furthermore, if the system has high dimensionality, theagbnality requirements
on the elements of the periodic perturbation vector posergateimentation chal-
lenge. Thus there is merit in investigating the use of stetibh@erturbations within
the ES architecture. The first results in that direction veateieved in the discrete-
time case [99], using the existing theory of stochasticayiag in the discrete-time
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Fig. 2.1 A quartic static map with local minimurf(—1) = 1 and global minimunt (1) = —3.

case. Source seeking results employing deterministicgEtions in the presence
of stochastic noise have been reported in [134, 135], ald@sorete time.

Stochastic extremum seeking and its stability analysig lsamne ideas and tech-
nigues in common with classical methods of annealing, stsinh approximation,
and stochastic adaptive control [16, 45, 46, 77, 94, 95, 96].

2.3 A Brief Introduction to Stochastic Extremum Seeking

In this section we present the basic idea of stochastic rexine seeking, make
a comparison with deterministic (periodically perturbesdjremum seeking, and
discuss a heuristic idea of stochastic averaging as a waludyisg stability of a
stochastic extremum seeking algorithm.

While extremum seeking is applicable to plants with dynanfptants modeled
by ordinary differential equations), in this section wergtuce extremum seeking
on the simplest possible problem—the optimization of astaap f (6). Without
loss of generality we assume thathas a minimum ad = 6* and we seek that
minimum.

For the purpose of illustration, we use the following quantiap

f(0) =0%+6%-20%2-30, (2.3.1)

which is depicted in Fig. 2.1 and has a local minimdi+-1) = 1 and a global
minimum f (1) = —3. The second derivatives at the two minima &fe-1) =2 <
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Fig. 2.2 Block diagram fordeterministicextremum seeking scheme for a static map.

14 = f”(1), which is consistent with the global minimum @t= 1 being much
“deeper” and “sharper” than the local minimuméat —1.

2.3.1 A basic deterministic ES scheme

Let us consider first the deterministic ES scheme shown in ER The scheme
employs a sinusoidal perturbation &wt), which enters additively the maf(6).
The measured outpyt= f(0) is then passed through a washout filter and multiplied
by the same perturbation signal, Git), generating an estimate of the derivative
(scalar gradient)’(8) at the input of the integrator. The integrator then updates
the estimated(t) in the direction of driving the gradient to zero. Hor- 0 the ES
scheme drived(t) towards the nearest local minimum bf6), whereas fok < 0
the scheme converges towards the nearest maximum. The wtdsten ﬁ is not
required but it somewhat helps performance. The logic lwkthia use of the washout
filter is to kill the DC component of the map(6*), although the multiplication of
the outputy with the zero-mean perturbation éint) also performs that role. The
washout filter is just more effective in eliminating the DQwmonent ofy, without
requiring that the perturbation frequen@ybe relatively high.

The scheme in Fig. 2.2 has four design parameteks,w, andh. The amplitude
a provides a trade-off between asymptotic performance aaddhion of attrac-
tion of the algorithm. The smallex, the smaller the residual error at the minimum
achieved, but also the larger the possibility of gettinglstat a local minimum. Con-
versely, the largea, the larger both the residual error and the possibility atre
ing the global minimum. The gain paramekecontrols the speed of convergence,
jointly with awhich also influences the speed of convergence. The petimmtiee-
quencyw controls the separation between the time scale of the estimarocess,
conducted by the integrator, and of the gradient estimaioness, perfumed by the
additive and multiplicative perturbation. The higher theguencyw, the cleaner the
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Fig. 2.3 Time response of a discrete-time version of the deterniéréstremum seeking algorithm
in Figure 2.2, starting from the local minimur@(0) = —1. The parameters are chosenuas- 5,
a=04k=1.

estimate of the gradient and the smaller the effect of theigmations introduced by
the higher-order harmonics and of the DC component dhe washout filter fre-
quencyh should be smaller thaw, so that the filter eliminates the DC component
in y without corrupting the estimation of the gradidit6).

Figure 2.3 shows the time response of a discrete-time verdithe determin-
istic ES algorithm in Figure 2.2. Even though the algorithtarts from the local
minimum@ = —1, it does not remain stuck in the local minimum but it conesrtp
the global minimun® = 1. However, if the amplituda and the gairk were chosen
smaller, the algorithm would be unable to overcome the “hubgtweend = —1
andf = 1 and it would remain stuck at the local minimum.
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Fig. 2.4 Block diagram forstochasticextremum seeking scheme with unbounded perturbations
for a static map.

2.3.2 A basic stochastic ES scheme

Limitations of the deterministic ES scheme include the thet the perturbation
is uniformly bounded (by), which may highly restrict the algorithm’s region of
attraction, and the fact that learning using a single-fezqy sinusoidal perturba-
tion is rather simple-minded and rare in probing-basechiegrand optimization
approaches encountered in biological systems.

To overcome such limitations of deterministic probing silgnwe consider using
stochastic probing signals. Sinusoidal signals have twpgnties that are crucial for
extremum seeking: (1) their mean is zero and (2) when squidnr@chean is positive.
Such properties are similar to the properties of Gaussiatewbise signals, namely,
zero expectation and positive variance.

Hence, we consider replacing the signalq &) in Figure 2.2 by white noise
W(t), whereW(t) is the standard Brownian motion process (also referred theas
Wiener process). However, such a perturbation is overlyesgive and makes the
mathematical analysis intractable, because it enters iffexedhtial equation in a
nonlinear manner (it gives rise to quadratic and other fonstofW).

To soften the impact of the white noise perturbations, wintlewducing random-
ness and making the resulting dynamics mathematicallyatoée, we replace the
signals sirfwt) in Figure 2.2 by the signafj(t) obtained by passing white noise

W(t) through a low-pass filtet£ for some positive constantsandg, or, given in
s+1

terms of an Ito differential equation, we employ the peratidnn (t) governed by
gdn = —ndt+/eqdWw. (2.3.2)

The resulting stochastic ES scheme is shown in Fig. 2.4.
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Fig. 2.5 Time response of a discrete-time version of the stochastiierum seeking algorithm in
Figure 2.4, starting from the local minimurfi(0) = —1. The parameters are chosemas 1, =
0.25,a=0.8,k=10.

Figure 2.5 shows the time response of a discrete-time verdithe stochastic
ES algorithm in Figure 2.4. Starting from the local minimém- —1, the algorithm
converges to the global minimuéh= 1.

2.3.3 A heurigtic analysis of a simple stochastic ES algorithm

To provide the reader with some intuition and motivatiorthiis section we provide
a preliminary and completely informal analysis of the extoen seeking algorithm
in Figure 2.4. We present a series of calculations whichyghonot reflective of
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the rigorous methods pursued in the book, do illustrateibiéeally the basic ideas
behind establishing stability and quantifying the conesrce rates of ES schemes.
To simplify our analysis, we eliminate the washout filternfrehe ES scheme,
namely, we replac% in Figure 2.4 by a unity gain block. This approximation is
certainly justified foh that is small relative to other parameters, particularigtiee
to k. The elimination of the washout filter results in a first-arglgstem, whose sole
state is the stat@ of the integrator in Figure 2.4, and which is driven by anofhst-
order linear stochastic system with stgteDespite the low order, the analysis of the
closed-loop system is not trivial because the system isimeand, time-varying, and
stochastic.
We start by introducing notation to describe the system gufé 2.4. We note
that

o(t)=0(t)+an(t) (2.3.3)

and denote the estimation error as

6(t) =6 —B(t). (2.3.4)
Combining (2.3.3) and (2.3.4) we get

o(t) =an(t) - (t). (2.3.5)

Then, from the integrator block we observe that the estonagiror is governed
by

(8(t)). (2.3.6)

Using (2.3.5) and applying the Taylor expansiorf {@) aroundd* up to second
order we get

f(8) = f (an — 8)
~ f(0%)+f'(6") (an — ) +%f“(6*) (an — 9)2 . (2.3.7)

Given the assumption that the md6) has a minimum ab*, it follows that
f’(6*) =0, which yields

£(0) ~ (6% +%f”(9*) (an —6)°
- f(e*)+%f”(9*) [a®n?—2an6+ 67 . (2.3.8)

Substituting (2.3.8) into (2.3.6) we get
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6 ~ kn {f(e*)+%f”(6*) [a®n? —2an6 + éz}}

2 . ~
=kn [f(e*)+%f”(e*)nz—af”(e*)n9+%f”(e*)ez] . (2.3.9)

Grouping the terms in powers gfwe obtain

) ~ k{0 |16+ 31680

—n?(t)af’(6)8(t)

2

+n3(t)a§f”(6*)} : (2.3.10)

N

The signaln(t) is a stochastic perturbation governed by the stochastiatin
differential equation (2.3.2), whel#®/(t) is the Wiener process. With smal| the
signaln is a close approximation of white noise. Using elementar\ycélculus, it
is easy to calculate the expectations of the three powensagipearing in (2.3.10).
These expectations have the properties that

fimE{n{t)} =0
lim E{n?t)} = o
t—c0 2
t|er‘3‘)|z{n3(t)} =0. (2.3.11)

To illustrate how these relations are obtained, we congftecase of)2, namely,
(2.3.11), which is obtained by applying Ito’s differenitat rule ton? with the help
of (2.3.2), which yields the ODE

2 2
sdEé? }:—E{n2}+£% (2.3.12)

The solution of the linear ODE (2.3.12) is

2
E{n2(t)} — e’t/EE{nz(O)}—F% (1-eve) (2.3.13)
- q_22 ast — . (2.3.14)

Whene is small, it is clear from (2.3.13) that the convergencenmeti is very fast.
This is the case with the convergence rates of all three ¢xpeas givenin (2.3.11),
(2.3.11),and (2.3.11).

Approximating now they-terms in (2.3.10) by their respective expectations, after
a short transient whose lengthGge), the estimation error is governed by
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Fig. 2.6 Block diagram forstochasticextremum seeking scheme with bounded perturbations for
a static map.

B(t) ~ —@f”(e*)é(t). (2.3.15)

This completes our heuristic preliminary study of stapitf the stochastic ES
scheme in Figure 2.4. Local stability is expected, in a slétgrobabilistic sense,
providedka > 0 and provided the map has a minimumé@it Moreover, the con-
vergence speed is governed by the values of the parankegegsand also by the
value of f”(6*) > 0. The “flatter” the extremum, the slower the convergence and
conversely, the “sharper” the extremum the faster the ageree towards it.

Rigorous stability analysis of stochastic ES algorithmmésented in Chapters 5
and 6. However, the scheme Figure 2.4 with the unboundetastic perturbation
n(t) is notamenable to rigorous analysis. To make analysisfleasising averaging
theorems that we develop in Chapter 4, we replade the algorithm in Figure 2.4
by a bounded stochastic perturbation(giiy obtaining the algorithm in Figure 2.6.

Algorithms in Figures 2.4 and 2.6 have very similar localngence properties.
The convergence speeds of the two algorithms are related as

_eg @
speedny) (2-e ) (2.3.16)

speeq g2




Chapter 3
Stochastic Averaging for Asymptotic Stability

In this chapter, we remove or weaken the restrictions in #igting averaging
theory and develop stochastic averaging theorems for stgdie stability of a
general class of nonlinear systems with a stochastic fetion. This chapter fo-
cuses on the asymptotic stability because the originaksystonsidered here is
required to satisfy an equilibrium condition. When suchditan does not hold for
the original system, practical stability is studied in Ctea!.

In this chapter, if the perturbation process satisfies aoumifstrong ergodic con-
dition and the equilibrium of the average system is expdalystable, we show
that the original system is exponentially practically &ah probability. Under the
condition that the equilibrium of the average system is egndially stable, if the
perturbation process ig-mixing with exponential mixing rate and exponentially
ergodic, and the original system satisfies an equilibriumd@gon, we show that
the equilibrium of the original system is asymptoticallglge in probability. For
the case where the average system is globally exponerstaltye and all the other
assumptions are valid globally, a global result is obtaifioedhe original system.

The chapter is organized as follows. Section 3.1 describegptoblem inves-
tigated. Section 3.2 presents results for two cases: umifirong ergodic pertur-
bation process, and exponentiafiymixing and exponentially ergodic perturbation
process, respectively. In Section 3.3, we give the detatedfs for the results in
Section 3.2. In Section 3.4 we give three examples. Sectbodhtains some notes
and references.

3.1 Problem Formulation
Consider the system

ax

dt :a(xtevY[/s)v X(‘;::X, (3.1.1)

21
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whereX¢ € R", and the stochastic perturbatigne R™ is a time homogeneous con-
tinuous Markov process defined on a complete probabilitgsp@, %, P), where
Q is the sample space” is the o-field, P is the probability measure, ardis a
small positive parameter, wheges (0, &) for some fixedsp > 0.

The average system corresponding to system (3.1.1) canfinedién various
ways, depending on assumptions on the perturbation pr@gess 0). For exam-
ple, the average system of (3.1.1) can be defined as

dx. - _
d_ft:am), %o = X, (3.1.2)

wherea(x) is a function such that (1.2.34) holds, i.e., for any 0 andx € R",

T—o0

t+T
lim P{H /t+ a(x,Yo)ds—ax)| > 3} =0 (3.1.3)

uniformly int > 0.

From Theorem 1.3, we know that on a finite time interf&IT], under certain
conditions, the solution of the original system (3.1.1) barapproximated in prob-
ability by the solution of the average system (3.1.2) as thallsparametee goes
to zero.

In this chapter, we explore the averaging principle whbgrlongs to the infinite
time interval[0, «). First, in the case where the original stochastic system moay
have an equilibrium, but the average system has an expaiigstable equilibrium
at the origin, a stability-like property of the original $gm is established far suf-
ficiently small. Second, whes(0,y) = 0, namely, when the original system (3.1.1)
maintains an equilibrium at the origin, despite the presasfmoise, we establish
stability of this equilibrium for sufficiently sma#.

3.2 Main Theorems

3.2.1 Uniform strong ergodic perturbation process

Inthe time scals=t/¢, defineZf = X5 = X¢, Ys=Y; /.. Then we transform system
(3.1.1) into

dzg e
e =falZ. ), (3.2.4)

with the initial valueZ§ = x. Let Sy be the living space of the perturbation process
(Y;,t > 0). Notice thatSy may be a proper (e.g., compact) subseRBf

Assumption 3.1.The vector fielda(x,y) is separable, i.e., it can be written as
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[
a(x,y) = _Zlai(x)bi (v, (3.2.5)
1=
where the function®; : Oy — R,i = 1,....1, are continuous (the s&y, which
containsSy, is an open subset @&") and bounded oi%,; the functionsa; : D —
R",i=1,...,l, and their partial derivatives up to the second order arémaous on
some domain (open connected d2ty R".
Assumption 3.2.Fori =1,...,1, there exists a constat_xtsuch that
S T _
lim —/ bi(Ye)ds=bi, a.s. (3.2.6)
T T Jt

uniformly int € [0, o).

By Assumption 3.2 we obtain the average system of (3.2.4) as

dz—s:'9 _ ea(7E
bs - ga(zy), (3.2.7)

with the initial valueZ§ = x, where

|
ax) = _;a;(x)bi. (3.2.8)

Theorem 3.1.Suppose that Assumptions 3.1 and 3.2 hold. EewZ andZE denote
the solutions of system (3.2.4) and the average systenv)3i@spectively. If the
origin Z£ = 0 is an exponentially stable equilibrium point of the averaystem,
K C D is a compact subset of its region of attraction, atjd= x € K, then for any
¢ € (0,1), there exists a measurable S8t C Q with P(Q) > 1—¢, a class %’
functionac, and a constant*(¢) > 0 such that if Z — Z5 = O(ac), then for all
0<e<e*(q),

ZE(w) —ZE = O(ac(e)) forallse [0,0) (3.2.9)

uniformly inw € Qc, which implies

P{ sup |Z&(w) — Z| :O(ac(e))} >1-c. (3.2.10)

se[0,00)

Next we extend the finite-time result (1.2.36) of [40, Theonre.2.1] to infinite
time.

Theorem 3.2.Suppose that Assumptions 3.1 and 3.2 hold. Eétif andZE denote
the solutions of system (3.2.4) and the average systenv)3t@spectively. If the
origin Z§ = 0 is an exponentially stable equilibrium of the average systé C D
is a compact subset of its region of attraction, affd= Z§ = x € K, then for any
0>0,
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limP<{ sup |Z&(w)—ZE| >3 =0, (3.2.11)
£—0 s€[0,00)

i.€. SURc[0.e0) |28 () — ZE| converges to 0 in probability as— 0.

The above two theorems are about systems in the time sealg's. Now we
turn to theX-system (3.1.1) and its average system (3.1.2), wkere Zf/g, and

XE = 5/8. Theorems 3.1 and 3.2 yield the following corollaries.

Corollary 3.1. Suppose that Assumptions 3.1 and 3.2 hold. If the odgis O is
an exponentially stable equilibrium point of the averagstem (3.1.2), K. D is a
compact subset of its region of attractiof, = x € K, then for any¢ € (0,1), there
exists a class?” functiona¢ and a constant™(¢) > Osuch that if § —Xo = O(ac),
then for all0 < € < £*(¢),

P{ sup [XE(w) —X| = O(ac(e))} >1-c¢. (3.2.12)

te[0,0)

Corollary 3.2. Suppose that Assumptions 3.1 and 3.2 hold. If the obigia 0 is
an exponentially stable equilibrium point of the averagstem (3.1.2), Kz Dis a
compact subset of its region of attraction, an§lX Xo = x € K, then for anyd > 0,

lim P{ sup [XE(w) — X| > 5} =0. (3.2.13)
€20 | te[0.m)

From Theorem 3.1 and the definition of exponential stabihitydeterministic
systems, we obtain the following stability result.

Theorem 3.3.Suppose that Assumptions 3.1 and 3.2 hold. If the obigis O is
an exponentially stable equilibrium point of the averagstem (3.1.2), Kz Dis a
compact subset of its region of attraction, axgl= x € K, then for any¢ € (0,1),
there exists a measurable 8¢ C Q with P(Q¢) > 1— ¢, a class’# functiona,
and a constang*(¢) > 0 such that if X§ — Xg = O(a¢(¢)), then for all0 < € <

£°(c),
IXE(w)| < c[xle " +0(ac(€)) forallt € [0,) (3.2.14)
uniformly inw € Q. for some constantg c > 0.

Remark 3.1Notice that for any giverg € (0,1), a¢ is a class’#” function of €.
Then by (3.2.14), we obtain that for ady> 0 and any; > 0, there exists a constant
€*(¢,0) > 0, such that for all 6< € < £*(¢,9),

P{|X(w)| <clXe " +3,Vte[0,0)} >1—¢, (3.2.15)

for X§ = Xo = X € K and some positive constant. This can be viewed as a form
of exponential practical stability in probability.
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Remark 3.2SinceY; is a time homogeneous continuous Markov procesgxify) is
globally Lipschitz in(x,y), then the solution of equation (3.1.1) exists with probabil
ity 1 for anyx € R" and it is defined uniquely for all> 0 (see Section 2 of Chapter
7 of [40]). Here, by Assumption 3.5(x,y) is, in general, locally Lipschitz instead
of globally Lipschitz. Notice that the solution of equati(®1.1) can be defined for
every trajectory of the stochastic proc€¥st > 0). Then by Corollary 3.1, for any
sufficiently small positive numbeg, there exists a measurable €&t C Q and a
positive numbeg*(¢) such thatP(Q¢) > 1 — ¢ (which can be sufficiently close to
1) and for any < € < £*(¢) and anyw € Q, the solution{ Xf(w),t € [0,)} ex-
ists. The uniqueness ¢X&(w),t € [0,e)} is ensured by the local Lipschitzness of
a(x,y) with respect tox.

Remark 3.3Assumptions 3.1 and 3.2 guarantee that there exists a detstinwvec-
tor functiona(x) such that

1 T _
TIian—/t a(x Ys(w))ds=a(x), a.s. (3.2.16)
uniformly in (t,x) € [0, ) x Do for any compact subs&ly C D. This uniform con-
vergence condition is critical in the proof and a similar dition is required in the
deterministic general averaging on infinite time interealdperiodic functions (see
(1.1.23), (1.1.24) or [58, Chapter 10]).

In weak convergence methods of stochastic averaging o fiimte interval,
some uniform convergence with respectta) of some integral o&(x,Ys) is re-
quired [59, (3.2)], [40, (9.3), p. 263] and there the bouness ofa(x,y) is assumed.
Here we don’t need the boundednessagf,y) but need a stronger convergence
(3.2.16) to obtain a better result—"exponential practgtability” on infinite time
interval.

The separable form in Assumption 3.1 is to guarantee the (Bn2.16) is uni-
form with respect to, while the uniform convergence (3.2.6) in Assumption 3.2 is
to guarantee that the limit (3.2.16) is uniform with respect. For the following
stochastic processé€¥,s > 0), we can verify that the uniform convergence (3.2.6)
holds.

1.dYs = pYeds+ ¥, p<%;
2.dYs = —pYds+qge*dWs, p,q>0;
3.Ys = €% + ¢, wherec is a constant ané satisfiesd&s = —ds+ dW.

In these three exampleds is a 1-dimensional standard Brownian motion defined
on some complete probability space afyds independent ofws, s> 0). In fact, for
these three kinds of stochastic process, it holds that

SILm Ys =, a.s.for some constant (3.2.17)

which together with the fact lif .« % jf” bi(Ys)ds=lims .. bi(Ys), a.s., when the
later limit exists, gives that for any continuous functimn
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A+T

1 .
TI|an?t bi(Ys)ds:Slmobi(Ys):bi(c), a.s., (3.2.18)

uniformly int € [0, ). If bj has the forn; (y1 +Y2) = bix(y1) +biz(y2) + bia(y1)bia(y2)
for anyys,y» € Sy andbij, j = 1,...,4, are continuous functions, and

Ys = sin(s) +g(s) sin(&s), (3.2.19)

where(&s,s> 0) is any continuous stochastic process gfs] is a function decay-
ing to zero, e.ge S or 1, then

1 t+T
lim ?/t bi(Ye)ds

Tt e . . _
= lim = {/t [bi1(sin(s)) + bi2(g(s) sin(s)) + bia(sin(s))bia(9(s) sm(és))]ds}
= o [ bu(sin)ds+ 02(0) + 8a(0) o [ b(sinis)ds as. (3220

uniformly int € [0, ).
If the procesyYs,s > 0) is ergodic with invariant measune, then (cf., e.g.,
Theorem 3 on Page 9 of [129])

T _
lim 1/ bi(Yo)ds=bi, a.s, (3.2.21)
T T 0

whereb; =[5, bi(y)u(dy). While one might expect the averaging under condition
(3.2.21) to be applicable on the infinite interval, this i$ tnoe. A stronger condition
(3.2.6) on the perturbation process is needed (note therdifte between the inte-
gration limits; that is the reason why we refer to this kingefturbation processes
as “uniform strong ergodic”). Uniform convergence, as gggubto ergodicity, is es-
sential for averaging principle on the infinite time intdrvBhe same requirement
of uniformity in time is needed for general averaging on thinite time in the
deterministic case. Only under the ergodicity (3.2.21)haf perturbation process,
can we obtain a weaker averaging principle on the infiniteetimierval, which is

investigated in the next chapter.

In Sections 3.4.1 and 3.4.2 we give examples illustratirgtiieorems of this
section.

3.2.2 @-mixing perturbation process

Let .%® denote the smallegi-algebra that measurdy,,t < u < s}. If there is a
function g(s) — 0 ass — o such that

sup |P{AB} —P{B}| < ¢(s), (3.2.22)

it
AT s BeF
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then(Yy,u > 0) is said to bep-mixing with mixing rateg(-) (see [79]).

In this subsection, we assume that the perturbgffon > 0) is ¢-mixing and
also ergodic with invariant measuge The average system of (3.1.1) is (3.1.2),
where

ax) = /& a(x,y)u(dy), (3.2.23)

andSy is the living space of the perturbation procégst > 0).

Assumption 3.3.The processY;,t > 0) is continuousg-mixing with exponential
mixing rateg(t) and also exponentially ergodic with invariant measure

Remark 3.4(i) In the weak convergence methods (e.g., [79]), the pladtion pro-
cess is usually assumed to pemixing with mixing rateg(t) (/5 qo% (s)ds < ).
Here we consider infinite time horizon, so exponential eigjpdis needed. (ii) Ac-
cording to [111], ergodic Markov processes on compact Spéee are examples
of gp-mixing processes with exponential mixing rates, e.g. Bf@vnian motion on
the unit circle [36](Y;,t > 0):

dy :—%Yth— BYdW, Yo=[cogd),sin(d)]", V& €R, (3.2.24)

0-1

whereB = { 10

] andW is a 1-dimensional standard Brownian motion.

Assumption 3.4.For the average system (3.1.2), there exists a funition € C2,
positive constants; (i =1,...,4),9d,y such that fofx| <9,

X% < V(x) < 62, (3.2.25)

a\;g) < Cafx| (3.2.26)

‘020\;2)() < Ca, (3.2.27)
T

d\él(tX) - (0\;_53()) ax) < -W(x), (3.2.28)

i.e., the average system (3.1.2) is exponentially stable.

Assumption 3.5.The vector fielda(x,y) satisfies

1. a(x,y) and its first-order partial derivatives with respecktare continuous and
a(0,y) =0;
2. For any compact s& C R", there is a constahkb > 0 such that for alk € D

andy € Sy, |25 < ko.




28 3 Stochastic Averaging for Asymptotic Stability

Theorem 3.4.Consider the system (3.1.1) satisfying Assumptions 3,33%. Then
there existg* > 0 such that for all0 < € < &*, the solution ¥ = 0 of the original
system is asymptotically stable in probability, i.e., foya > 0 and ¢ > 0, there is
a constani > 0 such that if X§| = x| < &, then

P{sup.o|Xf[ <r}>1-g, (3.2.29)
and moreover,
limy_oP{lim{_ |XE| =0} = 1. (3.2.30)

Remark 3.5This is the first local stability result based on the stodhasteraging
approach for locally Lipschitz nonlinear systems, whiclaimsextension from the
deterministic general averaging for aperiodic functidtl]].

If the local conditions in Theorem 3.4 hold globally, we gétlal results under
the following set of assumptions.

Assumption 3.6.The average system (3.1.2) is globally exponentially staié.
Assumption 3.4 holds with “fojx| < 8" replaced by “for any € R™".

Assumption 3.7.The vector fielda(x,y) satisfies

1. a(x,y) and its first-order partial derivatives with respecktare continuous and
a(0,y)=0;
2. There is a constait> 0 such that for alk e R" andy € Sy,

9a(xy)
22| <k

Assumption 3.8.The vector fielda(x,y) satisfies

1. a(x,y) and its first-order partial derivatives with respecktare continuous and
SURes, [a(0,Y)| < ;
2. There is a constakt> 0 such that for alk e R" andy € S,

9a(xy)
20| <k
Theorem 3.5.Consider the system (3.1.1) satisfying Assumptions 333.. Then
there existss* > 0 such that for0 < € < &*, the solution ¥ = 0 of the original
system is globally asymptotically stable in probabilitg, i for anyn; > 0andn, >
0, there is a constanly > 0 such that if X§| = || < &, then

P{IXf|<me ™ t>0}>1-n, (3.2.31)
with a constan# > 0, and moreover, for any & R",

P{lim |x¢| =0} =1 (3.2.32)

If, on the other hand, (3.1.1) has no equilibrium, we obtaafollowing result.
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Theorem 3.6.Consider the system (3.1.1) satisfying Assumptions 33 38. Then
there existg* > 0 such that fol0 < € < €*, the solution processof the original
system is bounded in probability, i.e.,

lim supP{|X¢| >r} =0. (3.2.33)
r=%¢>0
Remark 3.6Theorems 3.5 and 3.6 are aimed at globally Lipschitz systanus
can be viewed as an extension from deterministic averagingiple [121] to the
stochastic case. We present the results for the global ecgsenty for the sake of
completeness but also because of the novelty relative fo (2rgodic Markov
process on some compact space is replaced by an exporentiaing and expo-
nentially ergodic process; (ii) for the case without edprilim condition the weak

convergence is considered in [21], while here we obtain éisaelt on boundedness
in probability.

In Section 3.4.3 we present an example that illustrateshberems of this sec-
tion.

3.3 Proofs of the Theorems

3.3.1 Proofsfor the case of uniform strong ergodic perturbation
process

3.3.1.1 Technical lemma

To prove Theorem 3.1 and Theorem 3.2, we first prove one tegehl@mma. To-
wards that end, denote

1 AT
F.(T,/\,m):T/A bi (Yo())du, (3.3.34)

forT>0A>0,we Q,i=1,...,1. We can verify that(T,A, w) is continuous
with respecttqT,A) foranyi =1,...,I.

Lemma 3.1.Suppose that Assumptions 3.1 and 3.2 hold. Then, fogang, there
exists a measurable s&. C Q suchthat RQ;) >1—¢,andforanyi=1,...,1,

A+T _
lim % //\ bi (Yu(w))du= b, uniformly in(w,A) € Q¢ x [0,0). (3.3.35)

T-—o00

Moreover, there exists a strictly decreasing, continudumsjnded functioro*(T)
such thato¢(T) — 0as T — o, and for any compact subsep@ D,
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1 AT _
’T //\ a(x,Yy(w))du—a(x)| <kp,0%(T), V(w,A,x) € Q¢ x [0,) x Do,

(3.3.36)
where lp, is a positive constant.

Proof. Step 1. (Proof of (3.3.35))
From (3.2.6) we know that for any=1,...,1,

fora.e.we Q, TIim F(T. A, w) = by uniformly in A > 0. (3.3.37)
Noticing that

{w T"m F(T,A,w) = b; uniformly in A > O}
=NUnN ﬂ{IH(T,/\,w)—5i|<%}, (3.3.38)
K=1t>0T>tA>0
by (3.3.37), we get that
” _ 1
P(UﬂU U{IF.(T,/\,w)—biIzE}):Q (3.3.39)
K=1t>0T>tA>0

SinceR (T, A, w) is continuous with respect {@, A ) , we can easily prove thak >
1,vt>0,the sets), o {|F(T, A, w) —bi| > th UrstUnso {IR(T.A, ) —bi| > ¢}
andMNoUrst U0 {|F(T,A,w) —bi| > £} are measurable. Then by (3.3.39) we
obtain that for ank > 1,

P(ﬂU U{IH(T7/\7w)—5i|2%}>:0. (3.3.40)

t>0T>tA>0

Since the set)r= Ux=o {|F(T,A,w) —bi| > £} is decreasing asincreases, it
follows from (3.3.40) that

mp(U U{|F.(T,/\,oo)—5i|z%}>_0. (3.3.41)

T>tA>0
Thus, for any¢ > 0 and anyk > 1, there existaﬁii> > 0 such that
P F(T,A bl > = o 3.3.42
UU |I(a 7w)_ I|—E <m ( )
T A20

Define
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I g —
o=NN N N{RTAe-BI<f.  @ad

izlk:sztS))‘Zo

Then by (3.3.42)P(Q.) > 1— ¢. Further, by the construction @1, we know that
foranyi=1,...,1,

A+T _
TIim %/ bi (Yu(w))du= by, uniformly in (cw,A) € Q¢ x [0,), (3.3.44)
—00 A

i.e., (3.3.35) holds.
Step 2. (Proof of (3.3.36))

By (3.3.44), for anyk > 1, there exist(¢) > 0 (without loss of generality,we
can assume thag(q) is increasing with respect 9 such that for anyl > t(¢),
any(w,A) € Q¢ x[0,e), and anyi = 1,...,1, we have that

1 AT —
‘?/A bi (Ye(w))du—bi| < (3.3.45)

|l

By Assumption 3.1 and (3.2.6), there exists a conskint 1 such that for any
i=1,...,1,

sup|bi(y)] <M and |bi| <M. (3.3.46)
yeSy

Now we define a functiohl ¢(T) as

M, it T e[0,t1(¢g));
HC(T)‘{ U T el ta(@)k=12.... (334D

Then by (3.3.45), for anyw,A) € Q. x [0,»), and anyi = 1,...,l, we have

1 AT _

‘?/ bi (Ya())du—bi| < HS(T), (3.3.48)
I

andH¢(T) | 0 asT — . Noticing that the functiorH¢(T) is a piecewise con-
stant (and thus piecewise continuous) function, we coosastrictly decreasing,
continuous, bounded functiar® (T):

K/IT—|— (2M+1), if Tel0,t(¢));
o¢(T)=4{ — 2 _tllq) —t1(¢))+2M, it T € [ta(C),ta(Q)): (3.3.49)
1 l
W(T—tk(c)ﬂ—ﬁll, i I:egkg(f) tier1(Q)),

which satisfier¢(T) > H¢(T),vT >0, ando‘(T) | 0 asT — co.
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For any compact s&q C D, by Assumption 3.1, there exists a positive constant
Mp, > 0 such that forany=1,...,1I,

|ai(X)| < Mp,, Vx € Do. (3.3.50)

Definekp, = IMp,. Then, by Assumption 3.1, (3.3.48), (3.3.50) and the faas th
ax) = y1_jai(x)bi and o¢(T) > HS(T),VT > 0, we get that’ (w,A,X) € Q¢ x
[O, 00) X Do,

1 AT

‘?/A a(x, Yo ())du—ax)

- ‘_'Zam (/" bi<vu<w>>du—6i)‘

' A+T _
< S a0l [ b@)du-b
< koo (T), (3.3.51)

i.e. (3.3.36) holds.

3.3.1.2 Proof of Theorem 3.1

The basic idea of the proof comes from [58, Section 10.6]. F&nd Q. as in
Lemma 3.1. For anw € Q, define

a(s,x,w) = a(x,Ys(w)). (3.3.52)

Then we simply rewrite the system (3.2.4) as

3—z= €a(s,z w). (3.3.53)

Let
h(s,z,w) = &(s,z w) — a(z), (3.3.54)
Ws2 w,1) = /Osh(r,z, o) exp—n (s— 1)]dr (3.3.55)

for somen > 0. For any compact s&y C D, by (3.3.51), we get that fare Dy,

S+0 'S

s +8.2.0.0) - wis 2.0 = | [~ hirzapdr - [“hir.z.wjr
0 JO
s+d

/ h(t,z w)dt
S
< kp,00¢(9). (3.3.56)

This implies, in particular, that
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|W(Sa Z W, O)| < kDo SO-C(S)a V(Sa Z) € (0700) X DOv (3357)

sincew(0,z, w,0) = 0. Integrating the right-hand side of (3.3.55) by parts, Wwam

S
w(s2.0.0) =w(s2w.0)~ 1 [ “exp-n(s—1)w(t,zw.0)dr
0
= eXp(_"lS)W(Sa Z, 0, 0)

-n /Osexp[—n(s— 7)|W(T,Z w,0) —w(s,z w,0)]dT, (3.3.58)

where the second equality is obtained by adding and subitgact

'S
n / exp—n(s—1)]dt w(s,z,w,0) (3.3.59)
Jo
to the right-hand side. Using (3.3.56) and (3.3.57), weioliteat

'S
IW(s,z,w,n)| < kp,sexp(—ns) o (s)+kp, N / exp—n(s—1)](s—1)0°(s—1)dT.
Jo
(3.3.60)
For (3.3.60), we now show that there is a clagsfunctiona, such that

nlw(s,z w,n)| <kp, ac(n), ¥(s,zw) € [0,e0) xDox Q¢ (3.3.61)

Letze Dy. Firstly, fors < \/iﬁ by (3.3.60) and the property of the function,

niw(s,z w,n)| .

< kp, (nse”sac(s) +nz/0 expg—n(s—1)](s—T1) 0% (s— T)dr>
= kp, (rise”SUC(S)Jrn2 /(;Sexpn(—nu)uoq(u)du)
iﬁa%m+nfé%e’W§%a%mdq

<ko, (VIOS(0)+ T (1-€ V") 05(0))

< ko, (2/705(0)). (3.3.62)

Then, fors > % by (3.3.60), (3.3.62) and the property of the functiof, we
obtain

S kDo <r’

niw(s,z w,n)| .
< kpy {nse”soc(s) +n2/0 exp—n(s—1)](s—1)0%(s— T)dT}

=kp, {nse’7504(3)+nz/(;sexp>(—nu)uo<(u)du}
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1
= ko, {ﬂsensac(sﬂ—nz /ﬁ exp(—nu)uc®(u)du
JO

+/S exp(—nu)uc*®(u)du
L

< kpy {r/se”ScrC (%) +\/ﬁ(1—efﬁ) c(0)

+n?c¢ (%) /Osexp(—nu)udu}

< koo { v 0(0)+ nse o< (-

v 1 1 1
2C( _— _“eg NSy — (1_aNs
s () |- e}
< kp, <\/ﬁac(0)+0C (%) > (3.3.63)
Thus we define
ac(n) = { 2VMo(0) N o (). :]‘: Z :8 (3.3.64)

Thenac(n) is a class# function ofn, and forn € [0,1],a¢(n) > 20¢(0)n. By
(3.3.62) and (3.3.63), we obtaln that for amy> 0, (3.3.61) holds.
The partial denvatwe%— and > are given by

ow(s,z,w,n)

s = h(s,z w) —nw(s,z,w,n), (3.3.65)
ow(s,zw,n) /‘5 Jdh
7 =/, az(r,z, w)exp—n(s—r1)ldr. (3.3.66)
Noticing that
| [
aa| aa| t+T
I bi(Ys)d
0x Z ox T— (Ys)ds
T ga(x,Ys)
= T|Irl1m't Tds a.s., (3.3.67)
we can build results similar to (3.3.35) and (3.3.36) in Lea 811 for(%, ag(;))
instead of(a(x,y),a(x)). Furthermore, fog > 0, we can take the same measurable
setQ. C Q. Hence, for"a%;’“’) = aa(zg;(w))’ we can obtain the same property
(3.3.51) asa(s,z w) = a(z Ys(w)). ConsequentlyZ? (s,z,w) = %3(s,z,w) — %(2)

possesses the same propertids(az, w). Thus we can repeat the above derivations
to obtain that (3.3.61) also holds f&¢, i.e.



3.3 Proofs of the Theorems 35
ow
N |5, (52.0.0)| <koyac(n), ¥(s.2w) €[0.0) x Dox Q. (3.3.68)

There is no loss of generality in using the same positivetertiy, in both (3.3.61)
and (3.3.68). Sincép, = | Mp, will differ only in the boundMp, in (3.3.50), we
can defineMp, by using the larger of the two constants.

Define the change of variable

z={+¢ew(s {,w,e), (3.3.69)

whereew(s, , w, €) is of orderO(ac(¢)) by (3.3.61). By (3.3.68), for sufficiently

smallg, the matrlx{l + 805} is nonsingular. Differentiating both sides with respect
to s, we obtain

d_z_ dc ow(s, {,w,&) ow(s, {,w,&) %
ds_ds f as  TfT a7 ds

(3.3.70)

Substituting forﬂ—g from (3.3.53), by (3.3.69), (3.3.65), and (3.3.54), we finatthe
new state variablé satisfies the equation

owld¢ ow(s,{,w,&)
= £4(s,{ +&w, ) — g[A(s, ¢, w) — a({)] + £2W(s, {, w, €)
= ea({) + p(s.{,w.€), (3.3.71)
where

p(s,{,w,€) =€ [A(s,{ + e, w) — &(s,.{, w)] + £°w(s,{, w,€).  (3.3.72)

Using the mean value theorem, there exists a functisuch thatp(s,{, w, €) is
expressed as

p(s.{,w,&) = £21(s,,ew,w)W(s,{, w, &) + £2W(s, {, w, £)

= £2[f(s ¢, ew, ) + 1| w(s, ¢, w, €). (3.3.73)
Notice that
0d
[I +e£] — 1+ O(ac(€)), (3.3.74)

andac(g) >20¢(0) e for € € [0,1]. Then by (3.3.71) and (3.3.73), the state equation
for C is given by

dd

45 = [1+0(ac(e))] x [eald) +€%(f(s. ¢, ew w) + 1)W(s {, w,£)]

!
ea_(Z)Jreac( )q(s, {, w, €), (3.3.75)

L
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whereq(s, {, w, €) is uniformly bounded o1i0, ») x Dg x Q. for sufficiently small
€. The system (3.3.75) is a perturbation of the average system

dg  _
s — £ad). (3.3.76)

Notice that for any compact s&y C D, q(s,{, w,€) is uniformly bounded on
[0,00) x Dg x Q, for sufficiently smalle. Then by the definition of2; and the av-
eraging principle of deterministic systems (see Theorers 46d Theorem 9.1 of
[58]), we obtain the result of Theorem 3.1. The proof is costed.

3.3.1.3 Proof of Theorem 3.2

Forany¢ > 0, by Theorem 3.1, there exists a measurablé&get Q with P(Q.) >
1- ¢, aclass’ functionac, and a constarg*(¢) > 0 such that for all 6< € <

£%(¢),

sup |Z (w) — Z&| = O(ac(e)), (3.3.77)

se[0,00)

uniformly in w € Q. So there exists a positive const&ht> 0 such that for any
we Qcandany 0< € < €%(¢),

sup)|Z§<w> —Z| <Cc-ac(e). (3.3.78)

se[0,00

Sinceac(¢€) is continuous and(0) = 0, for anyd > 0, there exists ag’(¢) >0
such that for any & ¢ < £'(¢),

Cc-ac(e) < d. (3.3.79)

Denotee(g) = min{e*(¢),€'(¢)}. Then for anyw € Q. and any 0< € < £(¢), it
holds that

sup |ZE(w) —ZE| < 3, (3.3.80)
sc[0,)
which means that
{ sup |Z&(w) — ZE| > 5} C (Q\Qo). (3.3.81)
se[0,00)

Thus, we obtain that for any @ € < £(¢),

[0,

P{ sup |ZE - ZE| > 5} <P(Q\Qc) < <. (3.3.82)
0.5)
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Hence the limit (3.2.11) holds. The proof is completed.

3.3.2 Proofsfor the case of @-mixing perturbation process

3.3.2.1 Proof of Theorem 3.4

Throughout this part, we suppose that the initial vaffe= x satisfies|x| < & (&
is stated in Assumption 3.4). Defifiies = {X' € R": |X'| < &}. For anye > 0 and
t > 0, define two stopping timess andt5(t) by

T; =inf{s>0:X{ ¢ Ds} =inf{s>0:|X| > 3} andti(t) = 15 At(3.3.83)

Hereafter, we make the convention that irf®o.
Define the truncated proces9q‘°36 by

XEC = X0 = Xz t20. (3.3.84)

Then for anyt > 0, we have that

85_x+/ a(Xz, Yo )d (3.3.85)

For anyt > 0, define ao-field .7 % as follows:
FEO — G{ng*é,Ys ,:0< sgt} =0 {Yy::0<s<t} 2 7). (33.86)

: €0 _ oY
Since. % =Fe

this paper we use&#¢ instead otﬂ‘f"s
Step 1. (Lyapunov estimates for Theorem 3.4)
For anyx € R" with |x| < J, andt > 0, defineVé(x,t) by

is independent 06, for simplicity, throughout the rest part of

VE(x ) =V (X) +VE(x ), (3.3.87)

where
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~ [ axy) Ry~ Ry + iy e

£
o]

;
— [0 (T522) (Elatx Yo 7] - Efalx o) o

T

A ox
2 v
ve fiao (To2) ([ aten) Ry — ey )
£ Vi1 (1) + eVi(xt), (3.3.88)

and whereR, is the distribution of the random variab¥g. Next we give some esti-
mates ofeVf, (x,t) andeV,(x,t), which imply thatvf (x,t) is well defined.

By Assumption 3.5, there exists a positive constgnsuch that that for any
x € R"with [x] < J, andy € Sy,

Ja(x,y)

a(0,y) =0, ———+<@. (3.3.89)

X

Then by Taylor’s expansion and (3.2.23), for any R" with x| < d andy € Sy,
la(x,y)| < kslxl, [ax)] < ks[x]- (3.3.90)

Without loss of generality, we assume that the initial ctindiYy =y is deter-
ministic. By Assumption 3.3, we have

var(R — ) <cs e ™, (3.3.91)

for two positive constantss and a, where “var” denotes the total variation norm
of a signed measure over the Boeefield, and the mixing rate functiog(-) of the
process; satisfiesp(s) = cg e PS for two positive constantss andp.

Thus, by (3.3.86), (3.2.26), (3.3.90), Lemma B.1, and theimgirate function
@(s) = cgePS of the procesy;, we obtain that fot < &,

£
s
£
£

/r5<t

&

%
< E/S ’dV(x)
-t ox
s

& t
< .s/L Cs|x| ~k5|x|-(p(u—g) du

B

e|Viixt)| =€

]
> (dg—w (E[a( Yo) |- 7] — Efa(x Y] du

prummggJ—Emendu

£
o]

< 80306k5|X|2/tT e Bl-t)du

T

C3Cek,
< 8% %|x/2,

(3.3.92)



3.3 Proofs of the Theorems 39

and fort > 1%,

o] = | fi (25) Elae |7 Elae o =0
(3.3.93)
Thus for anyt > 0,
[VEL(x1)] < 503%"5|x|2. (3.3.94)

By Holder’s inequality, (3.2.26), (3.3.90), and (3.3.94 get that

£

2 VX)\T
/ﬂ ox

e\vfz(x,t)| =¢

/ a(x,y) (Pu(dy) — u(dy))> du
Sy

1
2

1
g 3

<& fi ([ (kseo 2 Rutey + ey var(Ry — ) du

&

£

< caakol? o, ([ Ray+ @) ) (ese )

£
5

= £1/2c5C3k;|x[? réir) e 2Udu
Y e

2+/2c5c3K

< 57; Cakc

1
2

du

|x|2. (3.3.95)

Therefore, by (3.3.88), (3.3.94) and (3.3.95), for any R" with |x| < 9, and
t>0,

—£C1(8)[x? <V (xt) < eCi(8)[x?, (3.3.96)

whereCy(0) = Z\/TTE’CSK“ + %. By (3.2.25), (3.3.87) and (3.3.96), there exists an
& > 0such thaflc% <1, andfor O< ¢ < &, xe R"with x| < J, andt > 0,
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ki(B)V(x) < VE(x,1) < ka(B)V(), (3.3.97)

wherek, (8) = 1— 299 > 0,ky(5) = 1+ 240 > 0,
Step 2. (Action of thep-infinitesimal operator on Lyapunov function in the case
with local conditions)

We discuss the action of thginfinitesimal operator;zfg of the vector process

(Xf"S,Yt/g) on the perturbed Lyapunov functisff (x,t).
Recall thatr(t) is defined by (3.3.83). By the continuity of the procgs we

know that for anyt > 0, ng(t) €Ds={X eR": |X| < d}. Define
3

T _ T
G(x,y) = (a\;—ix)) alx,y), G(x)= (d\gix)> ax), (3.3.98)
G(x,y) = G(x,y) — G(X). (3.3.99)

Notice thatxfgm is measurable with respect to tlefield .#f. Then by the
)
definition in (3.3.87),

VE (X)) =V (Xfe ) + VE (K 1)- (3.3.100)

Now we prove that for O< € < g, vs(XE( t) € @(;z%g) the domain ofp-

infinitesimal operatomfg (for definitions of p-limit and p-infinitesimal operator,
please see Appendix A), and

szgve(xfg(t)vt)

= 75 aEte[é(Xst e)l
ey oy [ [ 20D
{t<ts} { Jes X

whereEf| - | stands for the conditional expectatiBh- | #¢], i.e.E[ - LZ\;g]

Since X* and Y are both continuous processes, we know ti&tx? ),t)
6

andg(t) are progressively measurable w.ith respec{ﬁg}. In order to prove
(3.3.101), we need only to prove the following three claimsd< € < &;:

() Vf(x%(t),t) € %2, where%é is defined with respect to the vector process

T
] a(xteth/S)dS} £ gg(t)a
X=X¢
(3.3.101)

(Xf"S,Yt/g) similarly as.Z° defined in Appendix A.
(i) 95(t) € 5.
(iii)
lim Ete[vs(xf (t+6’) t+ 5/)] _VS(ng(t)vt)
P 510 o

—gi(t).  (3.3.102)

By (3.3.97) and the definition af; (t), we get that for O< € < &1,
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& & &
supE V(G 1) | < supE [ke(@V Xy >>]
< lo(8) - supV () < (3.3.103)
xeDg

Thus (i) holds. For the proofs of (ii) and (iii), see Lemmag Bnd B.3.
Hence, by (3.3.101), (3.2.28), (B.12), and (3.2.25), fortar 0 and 0< € < ¢,

C2(5)

M;V (X g(t) ) < I{I<T§} (—W(X g(t)) V(st(w))

3
C 0)

Takeg; > 0 such thaty — sici(f) > 0. Let &, = min{er, g1}. ThenforO<e < &

and anyt > 0,
JE\JE(YE
5V (Xrgm,t) <. (3.3.105)
Step 3. (Proof of stability in probability (3.2.29))
Suppose € (0,&)],r € (0,0), andX§ = x satisfying thatx| <r. Fort > 0, define
two stopping timegf andtf(t) by

¥ =inf{s>0:|Xf| >r} and 1f(t) = 1 At. (3.3.106)

Then for anyt > 0,

Xl <1 <0, T(t) < T5(), (3.3.107)
and
(7 (1) = AT (1) = T3 A (T7 AL
= (Ts A A(TF AL)
=TT () = T (). (3.3.108)

Thus by Theorem A.1, the property of conditional expectgtand (3.3.105),

E [V (X T (1) =V (.0)| = B V& (X T (1)~ VE (.0
E VA ap(0), T () - VE(0)| 75 |
— E |5 |ve( ><Ts S TE)] - VEx,0)]

= E [ ,affvf ( ),u)du] ]

|
ITI

_g| ,affvf (X du] <0. (3.3.109)
1Jo

By (3.3.97) and (3.3.109),
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E [ka(8)V (X)| < E [VEOXE T 1)
< ENVE(x,0)] <ko(S)V (). (3.3.110)

Denote
Vi = inf V(X). 3.3.111
=t (%) ( )

Then for anyT > 0, we have

ENV(XE )] = / V(XE - )dP V(XE - )dP
V( T (T))] (i <T) (er (T)) + (1£>7) (er (T>)
> V(X p)dP > V(XS r))dP

- - £
Jize<Ty { sup [Xg[>ry
0<t<T

>\ - P{ sup |X¢| > r}7 (3.3.112)
0<t<T

which, together with (3.3.110), implies

EVXEm)]  ka(8)V(x)
P! su 8>r}< (M- 2 . 3.3.113
{Ogngw S (3.3.113)
Letting T — oo, we get
k2(0)V(X)
P{supXE| >rp < =2 3.3.114
{m?'xf' }— (M (3.3.114)
Hence
k2(S)V (x)
PIsupXf|<rp>1— "~ "~ 3.3.115
{tzop|xt < } ki(0)Vr ( )

SinceV(0) = 0 andV(x) is continuous, for any, > 0, there exist®(r,¢) € (0,9)

such thatV (x) < kﬁi‘(sg\)/'c for all |x| < é1(r,¢). Thus we obtain that for any €

€ < &" with " = min{e, &} = &, for any givenr > 0,¢ > 0, there existsy =
61(min(r,6/2),¢) € (0,0) such that for allx| < &,

P{sup|xf| < r} > P{sup|)<f| < min(r, 6/2)} >1-¢, (3.3.116)
t>0

t>0
equivalently, for any < € < £*, and any givem > 0,
lim P{sup|)<f| > r} =0. (3.3.117)
X—0 t>0

Step 4. (Proof of asymptotic convergence property (3.2.3D)
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LetO< € < " (= &). By Theorem A.1, for any & s<t,

E VE(XE ) DIFE] =V / TEVE (X U FE| du, s,

(3.3.118)

(u)®

where.Z£ is defined by (3.3.86). By (3.3.97), we know that for agyo,VS(xfg(t) 1)
9
is integrable. By (3.3.105) and (3.3.118), we obtain thaaftoy 0< s<t,

E [vf(xfg(t),t)wc‘;} SVE(Xf(g:9) as. (3.3.119)
Hence by definition{ve(xfg(t),t) :t > 0} is a nonnegative supermartingale with
9
respect to[.%¢ }. By Doob’s theorem,

limVE(Xfe).t) = €, as. (3.3.120)

and¢ is finite almost surely. LeBg denote the set of sample paths(¥f : t > 0)
with X§ = x such thatrs = . Smcexf 0 is stable in probability, by (3.3.117),

lim P(B) = 1. (3.3.121)

x—0

Note thate* = & = min{e1, £}, andg; > 0 satisfyingy — ’CZ( ) > 0. Then by
(3.3.104), we get that for anyQ € < €*,

AN (K1) € —CeV (X)) Dpecrsy. (3.3.122)

wherecg = y— 8%15) > 0. Forany O< ¢ < 9, let c§ = c.c1¢2. Notice that for any
t>0, |ng<t)| < d. Then by (3.2.25) and (3.3.122), we obtain that @ < €* and
]

&
|XT§<I)| > ¢, then
.Q%(SEV&(X () ) < Cg I{t<T£} (33123)
ForO< e <eg*, 0< ¢ < dandanyt > 0, define two stopping time!%(S andrglé(t)
by ' '

o5 =inf{t: [X| ¢ [¢, 0]} =inf{t: [Xf| < cor|X|>d} andtf 5(t) = T¢ 5 AL
(3.3.124)

Then for anyt > 0, we have that{ ;(t) < 75(t). Suppose thak§ = x and |x| €

(¢.8). Then for anyt € [0, T¢ 5], |Xf| €1[6,9]. If ue [0, 7¢ 5(t)], then

0<15(u) =T5AU<SU<TE5(t) < e, (3.3.125)
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and thuqxfg(u>| € [¢,d]. Hence by Theorem A.1, the property of conditional expec-
tation, and (3.3.123), we obtain that

E V4 (X0 7o) | ~ EV(x0)

— B [V g0 TE(0) - V(K 0)

~ [ [Ve0g 0 o) - VE(0) 55
— B8 |veOxie, m),rza(t))] Ve )|
—E :Eg {/Or“so,afgvf 0 du”

R0
_E /0“5 TVE(XE )du]

[T ,5(0
<e[" <—c§-|{t<rg}>du]
— _CSE [rgﬁ(t) : |{t<rg}} . (3.3.126)

whereE§[-] means the conditional expectatibr- |.7¢].
Thus by (3.3.126) and (3.3.97),

E[VS( 0 _ ke(OV )

= ~ (3.3.127)
£ £

E [T§,6(t) : |{t<r§}}

By the definitions 0fr£5 andts, we have that‘f < 15. Thus by the property of
expectation and (3.3. 127) we have

Plt<rey} =Plt<rt<ts)
E[T s I{t<r§}}
t

ka(O)V (X)
= gt

N

)

(3.3.128)

which means that the solution proce$$ beginning in the domaimg < |x| < 9,
almost surely reaches the boundary of this domain in a fiimite.tThen by the
definition of the seB¢, for all paths contained in the sBf, except for a set of paths
of probability zero, we have ipfo|Xf| = 0. Sincea(0,y) = 0, if X¢ = 0 for some
s> 0, thenXf = 0 for allt > s. Hence we obtain

liminf [X¢| =0, (3.3.129)
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and then by (3.2.25) and (3.3.97), for any.& < £*, we have

Ii{‘rliogf VE(XE 1) =0. (3.3.130)
But by (3.3.120) and the definition of the &, the limit

lim VE (X ), t) = lim V() (3.3.131)

t—o0 t—o0

exists for almost all paths iBS. By the above discussion this limit is equal to zero.
Thus by (3.3.97) and (3.3.121), we obtain

. e
mp{mm | = o} -1 (3.3.132)

The proof is completed.

3.3.2.2 Proof of Theorem 3.5

For brevity and to avoid overlap, we refer to parts of the padarheorem 3.4 that
are adapted in the proof of Theorem 3.5.
Step 1. (Action of thep-infinitesimal operator on Lyapunov function in the case
with global conditions)

In the proof of Theorem 3.4, také = M for some positive intege. Then
similar to (3.3.97) and (3.3.104), we obtain that theretexase; > 0 such that for
any 0< € < g1,x € R"with x| <M, andt > 0,

KaV (X) < VE(x,t) < kaV/(X), (3.3.133)

~ C

2
whereky = 1— 231 > 0,kp = 1+ 85, C; = 2250k 4 ok ) — Solesrcic

B
%ﬁc“)"z (independent oM used in the truncation).
Step 2. (Proof of global asymptotical stability in probabilty)
LetO< g < min{%y, €} and denote

L1 ,C
y= o (y & Cl). (3.3.135)

Then by (3.3.133), (3.3.134), we get that for @y (0, &),

V(X (1) < =27 KoV (X ) L itrt,)
< =20 VE(XE 100 ety (3.3.136)

By Lemma B.4,
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A (VS(xfm,t) - uwm) = ARNVEXE )11), (3.3.137)
which together with (3.3.136) implies that
(i +29) (VEOG 8) gy ) <O (3.3.138)
Fort > 0, define
ME = EMVE(XE ).) - Ltars) + €MV (X ) - lgg <) —VE (%, 0)
t . - A
- /O P (fg +27) (VX (9 jsergy ) A (3.3.139)

Then by the fact thaty, > 0, a.s., we know tham§ = 0, a.s. By the definition
of VE(x,t), we can verify thae?™Ve(Xg . .t) |tz +e2VTfAV(thgA) Vet <ty 1S
continuous irt, and thusVf is continuous. By (3.3.133), (3.3.98), the definition of
,thjvf(xfm,t) (replaced by M in (3.3.101)), (B.13) withd replaced byM, and
the fact thatjxff/l| < M, we know that for any > 0, M¢ is integrable. By Lemma
B.5, we know that is a martingale relative t9.7¢}, and thus it is a zero-mean,

continuous martingale relative {07 }.
By (3.3.133), (3.3.138) and (3.3.139), we get that

0< klezﬂv(xfﬁl(t)) : |{t<r,\€A} < eZﬂvs(XTs’\g/l(t)7t) : |{t<r,\€A}
< eZva(xfm,t) rersy + eZVTMV(Xfﬁl) A<ty (sinceV(x) > 0)
ot ~ N
= V#(x,0) + M + /o & (Ai +29) (VS(Xi s): I{Ma}) ds

()’
S VE(Xv O) + Mta
< KoV (X) + ME, (3.3.140)

which means,V (x) + Mf is a nonnegative continuous martingale relativé.f } .
By (3.3.140), and Doob’s inequality (cf. Section 2.111.988]), we have that for any
n >0, andT >0,

P{ sup kleZ“V(Xffn(t))-l{t<TfA} > n} < P{ sup {kaV(x) +Mf} > n}
0<t<T 0<t<T
< kz\g(x). (3.3.141)

LettingT 7 0 in (3.3.141) yields
k2V(X)

P{sup kleZV‘V(thgA(t>) Mergy > n} < (3.3.142)

t>0

Notice that under Assumption 3.7, the original system (3.i. globally Lipschitz.
Then we know that the solution proces§is regular (c.f. Section 7.2 of [40]), i.e.
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|v||im iy = %, a.s. (3.3.143)
Notice thak;, k, andy are independent &, andtf; (t) =t A 75,. Then by (3.3.143),

sup ki€MV (XE) < liminf supkiV (X& e o) lerg) as. (3.3.144)

t>0 M—o >0

In fact, letQ® = {w € Q |limy_. T =« }. Then by (3.3.143), we have

P(Q%) =1 (3.3.145)
For anyw € Q¢ let
A () = sup k €V (X&) (w). (3.3.146)
t>0

Firstly, we assume that(w) < . Then for any 0< d < A (w), there exists a con-
stantty = to(9, w) > 0 such that

A() > ke €MV (XE) (w) > A (w) - 8. (3.3.147)

By the definition ofQ¢, there existdg = Mop(tg, w) > 0 such that for anjl > Mo,
we have that§) (w) > to, and thus for anyvl > Mo,

ki €OV (X 1) (@) L torg ) (@) = ke €MV (XE) (). (3.3.148)

By (3.3.147) and (3.3.148), we get that for avly> M,

su(|)ok1e2VtV(x e (@) tergy (@) > A (@) = 6, (3.3.149)
t>
and thus
liminf sup kye?V/( (Xfe (@) -lerg (@) 2 A (w) =3, (3.3.150)
—%® t>0

Sinced can be any positive constant, we obtain that

liminf supk1e2V‘V( ()( w)) - Ly (@) = A(w). (3.3.151)

—% t>0

Secondly, ifA (w) = o, then for anyM > 0, there exists a constatat=t1(d,w) >0
such that

ki€?MV (XE) (w) > M. (3.3.152)
Following the proofs of (3.3.148)—(3.3.151), we can obthit

liminf supki€V (X e (@) ljergy (@) > M, (3.3.153)

M—o >0
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and thus by the arbitrarinessdf, it holds that

P vt £ ) .
limin ts;opkle2 V(X ) (@) - gy (@) = . (3.3.154)

By (3.3.146), (3.3.151), and the fact tHtQ¢) = 1, we obtain that (3.3.144) holds.
Now, by (3.3.144), Fatou’s lemma and (3.3.142), we obtain

P{sup ke €MV (XE) > n} =E ['(n,m] (SUD klemV(th)ﬂ

t>0 t>0

<€ it 1 (s9p1a V050 1 )

< liminf E [I(n,m] <sup kleZVtV(Xf“gA(t)) - I{t<r,f,|})]

—00 t>0
T " € )
= liminf P{tsyg)klez V(Xge ) ety > n}

< "2\”7(’(). (3.3.155)

By Assumption 3.6, we have

{cllelz < e*”‘kﬂl,t > 0} > {V(Xf) < e*”‘kﬂl,t > 0}, (3.3.156)

which together with (3.3.155) implies

1
~ 2
PoXf[<e™ (—” ) Ctzols1- V) (3.3.157)
kj_Cl n

1
Letn; > 0 andn, > 0 be given. Choosg such that(ﬁ) : < n», and then choose

d > 0 such that ifix| < &, then% < n1. Thus we have

P{IXfI <me’, t> 0} >1-n. (3.3.158)

Now, we prove for any € R", P{lim{_. |X¢| = 0} = 1. Notice that for any
H >0,

{lim IXE| = o} - {tlimovw) - o} > {supklemV(Xf) <H } (3.3.159)

t—o t>0
Then by (3.3.155), we obtain

P{im X¢| =0} > 1- kz\ﬁx), (3.3.160)
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and lettingH 1 oo yieldsP{lim;_., |[Xf| = 0} = 1. The proof is completed.

3.3.2.3 Proof of Theorem 3.6

The only condition of Theorem 3.6 that is different from tlomditions in Theorem
3.5isa(0,y) = 0 replaced with supsg, |a(0,y)| < . Thus here we use the same
approach as in the proof of Theorem 3.5.
Step 1. (Lyapunov estimates for Theorem 3.6)

Let ¢ = (suR.s, |a(0,y)|) v 1. Then by Assumption 3.8 (assurke> 1, other-
wise, replacd by kv 1), we get that for any € R" andy € S,

la(x,y)| < c+k|x| < k(c+ [x]). (3.3.161)
By (3.2.23) and (3.3.161), we get that for ang R",
|a(x)| < k(c+ |x]). (3.3.162)

Then following the proofs of Theorem 3.4, we obtain thatfer R" with |x| < M,
andt > 0,

—&Cy|x|(c+ |X|) < Vf(x,t) < eCalx|(c+ |X]), (3.3.163)

whereC; = @ + %‘ (the same with the one in the proof of Theorem 3.5).

By Assumption 3.6, the definition &f¢(x,t), and (3.3.163), we get that for any
€>0,xe R"with [x| <M, andt >0,

V(X) — €Cy|x|(c+|X]) < VE(X,t) <V (X)+€Cq|x|(c+[X]). (3.3.164)
It follows from (3.3.164) ana > 1 that if |x| < 1, then
V(x) — 2ecCp < VE(x,t) < V(X) + 2ecC;. (3.3.165)

By Assumption 3.6 and > 1, we have that ifx| > 1, then|x|(c+ [x|) < 2¢|x|? <
£V(x), and thus by (3.3.164), Ik > 1, then

2ecC 2ecC
<1_ £¢ 1)V(x) <VE(x D) < <1+ £ 1)V(x). (3.3.166)
C1 C1
Take a positive constagf < 22—101 and define
/ 2cC 2cCy
K=1- 2 =14 g (3.3.167)
C1 C1

Then by (3.3.166), we get that for any0e < ei and|x > 1,
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KV (X) < VE(X 1) < KoV (x).
equilibrium condition)

(3.3.168)

Step 2. (Action of the p-infinitesimal operator on Lyapunov function without
By (3.3.161) and Assumptions 3.6, 3.8, we get that foraayR",y € S,

1Q(x,Y)| < Cak(c+ [x]) + cakIX, (3.3.169)
whereQ(x,y) is given by (B.8). Then by (3.3.161) and (3.3.169), follogithe proof
of (B.12), we obtain that
T
/.

m(t)

IEF[G(xYee)] ]

a(XaYt/E)d;‘
<€ [ew ‘

E[Q(X, Yu)|7e] — EIQ(X, Yu)]

ox

&
£
™

|a(x,Y;/¢)| du
+ oo | L Qey)(Rudy)—p(ay)| [atee) du
< o [ (o) + o) Ko+ )

2./205 (cak(c + |x]) + caklx) - k(c + |x|>}
a

< ek? [E + 2V

B o

] - [caC® + (C3+ 2ca)C|X| + (3 + €a)[x[?] . (3.3.170)
By Assumption 3.6 and > 1, we have that ifx| > 1, then

Ccac? +C2 (Ca—+ 2¢4)c|X| + (C3 4 Ca)|X|?

< [ca€? + (Cg+ 2c4)C+ (Ca+ Ca)] X2
. C4C2 + (03+ 2C4)C+ (C3+ C4) | |2

1|X]

C1

2
< et (et 224)” (Ca+Ca)y . (3.3.171)
1
Denote
, 2
c,— 2 Co n 21/2C5 | €4C°+ (C3+ 2C4)C+ (C3+ Ca) (3.3.172)
B a C1

Then by (3.3.170), we obtain that|¥| > 1, then

1€
/TM

OEF[G(X, Ys/e)]
T (t)

T
ax ‘| a(XaYt/S)dS‘ < £C,2V(X);

(3.3.173)
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if |x| <1, then
% [OEE[G(Yee)] ]
M t s/e '
ST SER L ax, Y )ds < £61C. 3.3.174
Jo | =2 ] (% Yee) ;‘_ G (33179)
By the definition of,szi,\jvf(xfhgm,t), Assumption 3.6, (3.3.173) and (3.3.174), for
anyt >0,
AEVE( ng
13 / ; £
< ( W(X &) )—|—£C1C2) I{t<r,§|}v ?f |er,|(t)|<1 (3.3.175)
(V SCZ) (XTS ) I{t<rf,|}a if |X78n£/|(t)| >1

Step 3. (Proof of boundedness in probability)
LetO< e* < m|n{C ,el} and denotg = Y- CZ .Then by (3.3.175)and (3.3.168),
2
we get that for ang € (0,&*], if |Xrg ® | >1, then

,ef‘hjvf(xr ) < =PV (XFe ) litegyy < —IVE(XEe () g 3.3.176)
By ,a/,\j (VE(X%A(I),t) . I{t<r,\€A}) = ,a/,\jvf()(f“gn(t),t) (see Lemma B.4) and (3.3.176),
we get that if|xf,3|(t)| > 1, then
(i +9) (VEOXE 0 ljergyy ) <O (3.3.177)
Fort > 0, define
ME = eVE(XE < 0t)- lecrs ) + €MV (X5 <)l <ty —VE(%,0)
it
—/0 (s +7) (Vo (X 99 '{s<rm) ds (3.3.178)

As in the proof of Theorem 3.5, we can prove tht is a zero-mean, continuous
martingale relative t§.7¢ }. Thus by (VE( & ot): l{t<TM}) :%ﬁvf(xfmw,t),
(3.3.165), (3.3.175), (3.3.177), and the fact that y, we have for any & € < £*,

E [thVE(Xf'a(t),t)l{tqg }}
<E [eﬂve(xs‘f (t) ) lierg) +eVTMV(X ) {rf,l<t}}

—VE(%,0) +/ (%5 + ) (VX (99 serg )| IS

£(x,0) +/ [ (a+7) ( XTs I{s<rM}) {\xf‘g S)<1}]
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+/ [eVS;szer ( (X (9

gvf(x,0)+/ E
0

it
gvf(x,0)+/ E
0

t -
§V£(X,O)+/ E |€
0 L

t
<VE(X0)+ /
0

VE(x,0) +

<VE(x,0)+
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'{s<rM}) (X% )>1}}d5
o7 (hi+9) (VE (K&
_eys (—W(X%A(s)) +ecCy

+WE(XT£§A(S)75)) |{s<r,§,|}|{xf"\gﬂ<s)<l}:| ds

- £ ds
{s<rM}) {er/l<5)<l}]

sclc/z + 2yecCy ot

& (—W(X,%:/l(s)) +&c1G;

—i—V(V(Xre’\gA(S)) + 2£CC1)) |{5<T'\£/|}I{Xrg,fﬂ(s)<l}:| ds

E [ef’s (eclclz + ZVsccl)] ds
£c1C, +A2f/eccl (e‘”
y

_1)

X 3.3.179
7 ( )

where in the first equality, we used Fubini’s theorem and niegirability condition

'/o-t E Hef’s(dﬁ + f/)vs(xfhgﬂ(s),s)u ds< o,

(3.3.180)

which can be verified by (3.3.10B)(s changed taV), (3.3.98), (3.3.99), (B.8),
(3.3.165), and (3.3.168). Thus we have that

E [vf(xfm,t) : '{t<rm] < e MvE(x,0) +

£¢1C, + 2y£cCy (3.3.181)

By (3.3.168), Assumption 3.6 and the property of expectatice get that for any

r>1,

P{IX;

P{|ng 0 | >,

(t)|>r,t<r§,|}

k/lv(xff ) SVEXE 1) < k/ZV(xf,fA(t))vt < Tfn}

{|XT8 | >rV X ()) >Clr27kél_v(xf,fn(t))SVS(XTS’&(I)J)

<KV (X )t < T |

< P{|Xr£§,|(t)| > LV (X ) > Clrzvka.v(xf,f,l(t)) <VEXE 1)

<KV (X ).t < T |

<PLIXE | > LVEXE 1) > ik t< 1y |
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1
S Gkt [Vg(xfm)’t) ecrgy '{xggﬂwl}} : (3.3.182)
Thus by (3.3.181), (3.3.165), and (3.3.168), we obtain fiyr@< & < £*, and any
tZ 01

E [Vg(x%ia 0 Neergy - '{Xffﬂ<f>>1}}

= {VS(X%A(UJ) : I{t<r,f,|}} -E [vf(xfm ) lergy - I{ng,|<t>§1}]

<oty (x0)+ £ciC, +A2y£cC1

—E [ (V(X& ) —26CCy) - lriopen - lyixe
{( (Xfy0) ~266C1) Hery {XWQ}}
501C/2+2V£ccl

<e MVE(x,0)+ +2ecCy

< max{V () +26"cC KV () b+ £ C;CZ 46" AC,  (3.3.183)

whereC is a positive constant dependent xrg*, c, cl,Cl,C’Z,k’2 andy. Thus by
(3.3.182) and (3.3.183), we get that for ang @ < €*, anyr > 1, and any > 0,

P{|xfm| Srt< rf,l} < (3.3.184)

cikjr2’

By the fact that liny—.. 7§ = %, a.s. (see (3.3.143)), the dominated convergence
theorem, and (3.3.184), we get that for any @ < £* and anyr > 1,

supP{|Xf| > r} = SUpE [l (|%])]
t>0 t>0

_ . < . ]
= tssop E |:|V||"I]oo |(r,oo] (|XTI‘::/| (t) |) l{t<rM}j|

- ts;()p (h}Iian E {'(r,m](|xf’\gﬂ(t)|) : |{t<r§A}D

= sup (Jm_ P{Ix | >t <Ti})

C

< —, 3.3.185
< e (3.3.185)

which implies that

lim supP{|X¢| >r} =0, (3.3.186)
r—o0 tZO

i.e. the solution proces$® is bounded in probability. The proof is completed.
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3.4 Examples

3.4.1 Perturbation processis asymptotically periodic

Consider the following system

ax

_z2 1 2
gt = e D -5+ D)5 (3.4.187)

where the perturbation process is
d¥ = —pYdt+qdWw, & = sint + e sinYy (3.4.188)

with p,g,a > 0,W is a 1-dimensional standard Brownian motion defined on some
complete probability space. Noticing that for any 0

1 T o1 T . . .
lim = / E2ds= TI|m = (sir?s+ 2sinse #sinYs + e #%sir’ Ys) ds
Jt

_1as (3.4.189)

we obtain the average system of (3.4.187) as

dx 1, 5 —

G = 5 (KX)o =x, (3.4.190)
which is locally exponentially stable af = 0. Figure 3.1 shows the simulation
results withxo = x§ = 0.5,p = 1, = 2,a = 0.01,¢ = 0.09, from which we can
see that the solution of the original system (3.4.187) cages(in probability) to
the solution of the average systégﬁ =— (% + f(?) /2 (see (3.2.11)in Theorem 3.2)
and the solution of system (3.4.187) is exponentially pcally stable in probability
(Theorem 3.3).

3.4.2 Perturbation processisalmost surely exponentially stable

Consider the following system

ax _ —sir?(&e) + (sin(ft/s) - }) €)X,  d& = p&dt+a&dw,

dt 2
(3.4.191)
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Fig. 3.1 States of the original and average systems for system 87%-(3.4.188) to illustrate
Theorems 3.2 and 3.3.

2
wherep < ¢2/2. We know thag; = &eP~)t+aW By the law of iterated Logarithm
of Brownian motion (see Theorem 2.9.23 of [57]), we know that> 0, a.s. as
t — co. Noticing that

) t+T
lim ?/ s)ds= lim (9 (3.4.192)

T—o00

for continuous functiorf when the latter limit exists, we have that for any 0

. 1 T

Jim = sir?(&)ds=0, a.s, (3.4.193)
—00 t

1 MmT 1\ , 1,

T“Lnoof./t ((sm(és)—é)x —x) ds_—éx —X, a.s. (3.4.194)

Thus we obtain the average system of (3.4.191) as

(?j—)it —)?t——x1 X0 = X, (3.4.195)
which is locally exponentially stable af = 0. Figure 3.2 shows the simulation
results withxg = x§ = 0.2,§o = 1,p = 0.4,q = 1, from which we can see that the
solution of the original system (3.4.191) converges (irbatulity) to the solution of
the average syste% = —% —x¢/2 (see (3.2.13) in Corollary 3.2) and the solution
of system (3.4.191) is exponentially practically stablgiiabability (Theorem 3.3).
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> e=0.01 Tt

Time(sec)
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Time(sec)

Fig. 3.2 States of the original and average systems for system @%.Top: fore = 0.01, which

is small (the average approximation is tight). Bottom:det 0.64, which is large (the average ap-
proximation is qualitatively correct, but it is not very acate since the condition on the smallness
of € in Corollary 3.2 and Theorem 3.3 is not met).

3.4.3 Perturbation processis Brownian motion on the unit circle

While in Sections 3.4.1 and 3.4.2 we illustrated the thesrémSection 3.2.1 for
uniform strong ergodic perturbation processes, in this@eeve illustrate the theo-
rems in Section 3.2.2 fap-mixing perturbation process. Consider the system

de _

D [01] [Y2/e) Y2t/e)] T
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+ ([o 1] [a(t/e) Ya(t/e)]" — %) )2, (3.4.196)

where the perturbation procesg) = [Y1(t), Y2(t)]" is Brownian motion on the unit
circle,

dy; = —%Ytdt—i- BYdW, Yo = [cogd),sin(9)] forall & € R, (3.4.197)

0-1

with B= [1 0

} . In fact, we have the simple expression [109, Example 5.43p. 6

Y(t) = [cogd +W),sin(8 +W)]T = @), (3.4.198)

We know that the stochastic proce@$(t),t > 0) is @-mixing with exponential
mixing rate and exponentially ergodic with invariant distition p(dS) = én) for

any setSc T, whereT = {(x,y) € R?|x?+y? = 1}, and|(S) denotes the length
(Lebesgue measure) 8f Corresponding to system (3.4.196), we have the function

1
ax,y1,y2) = y2x—|— ( Yo — E) X2 (3.4.199)

Noticing that

1

2n ) 1
/T_ygu(dyl,dyz) _ _/O SirP(6) 5-d6 = —3, (3.4.200)

and

1 an [ 1\ 1 1
/T (yz— E) H(dy,dys) :/o (sme — E) Z_[de =-% (3.4.201)

we obtain the average system of (3.4.196) as

S G
5 = 5 () Xo=x, (3.4.202)
which is locally exponentially stable af = 0. Figure 3.3 shows the simulation
results withxp = x§ = 0.1, = 0.64,Yy = [1, 0]", from which we can see that the
solutionx = 0 of the system (3.4.196) is asymptotically stable (in pholitg) (see
(3.2.29) and (3.2.30) in Theorem 3.4).

3.5 Notes and References

In this chapter, which is based on results that we introdurc¢€0] we developed
several basic theorems of stochastic infinite-time avaafpr a class of nonlinear
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Fig. 3.3 States of the original and average systems for system €&).13.4.198) to illustrate
Theorem 3.4.

systems with uniform strong ergodic stochastic pertudpastandp-mixing pertur-
bations. For the former class, under the condition of exptiakstability of average
equilibrium, the original system is exponentially praatig stable in probability.
For the latter class, under the condition of exponentiddikta of average equilib-
rium, which is also an equilibrium of the original systeme tbriginal system is
asymptotically stable in probability. This is the first sétresults on infinite-time
stochastic averaging for locally (rather than globallypddhitz systems and repre-
sents an extension of the deterministic general averagimgystems with aperiodic
vector fields.



Chapter 4
Stochastic Averaging for Practical Stability

In this chapter, we present new stochastic averaging theotbat relax the key
limiting conditions in the existing stochastic averagihgdry. We first introduce the
notion of weak stability under random perturbation for gahaonlinear systems.
This stability notion is a stability robustness property éodeterministic system,
relative to perturbations involving a stochastic process] in the presence of a
small parameter. Then we formulate and study some stabkiyproperties for the
original system by investigating the weak stability under tandom perturbation of
the equilibrium of the average system. We present the éetpiloofs for the general
theorems.

4.1 General Stochastic Averaging

4.1.1 Problem formulation

Consider the following system

dX¢
dt
whereXf € R",Y; € R™is a time homogeneous continuous Markov process defined

on a complete probability spa¢€@,.#,P), whereQ is the sample space* is the
o-field, andP is the probability measure. The initial conditi®fj = x is determin-

:a(xtevY[/s)v X(‘;::X, (4.1.1)

59
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istic. € is a small parameter ifD, &) with fixed g5 > 0. LetS; C R™ be the living
space of the perturbation procédgt > 0) and note thaS, may be a proper (e.g.,
compact) subset @&™.

The following assumptions are made.

Assumption 4.1.The vector fielda(x,y) is a continuous function afx,y), and for
anyx € R", it is a bounded function of. Furthermorea(x,y) satisfies the locally
Lipschitz condition irx € R" uniformly iny € Sy, i.e., for any compact subsbtC
R", there is a constat such that for alky,x, € Dand ally € Sy,

[a(x1,y) — a(x2,y)| < kp [x1 —X|. (4.1.2)

Assumption 4.2.The perturbation process;,t > 0) is ergodic with invariant dis-
tribution p.

Assumption 4.2 is in contrast to most of the stochastic ayiegatheory, where,
in addition to this assumption, the perturbation processdsired to satisfy some
form of a strong mixing property. The meaning of ergodicitysimple terms, is
that the time average of a function of the process along #jedtories exists almost
surely and equals the space average:

T"L’lﬁ [ T (Yyds— / Fy as. (4.1.3)

for any integrable functioffi(-). The following are two examples of ergodic stochas-
tic processes (one is a 1-dimensional process and the sthe2-dimensional pro-
cess):

1. The Ornstein-Uhlenbeck (OU) procddgt > 0):
dY, = —pYdt+ qdW, (4.1.4)

whereW is a 1-dimensional standard Brownian motion on some prdibabi
spacg Q,.#,P). Itis known [112] that the OU process is ergodic with invatia

_pe
distributionpi (dx) = %e ? dx.

2. Brownian motion on the unit circlgy,t > 0):

Y, = eM = [cogW),sin(W)]T, (4.1.5)
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wherej is the imaginary unit and is a 1-dimensional Brownian motion which
is not necessarily standard in the fovsg = 0. By Ito’s formula, its coordinates
Y1 andYy satisfy

{ dYy = — 2 cogW)dt — sin(W ) dW,

d¥a = — sin(W)dt + cogW ) dW. (4.1.6)

Thus the procesg = [Ylt,th]T is the solution of the following stochastic dif-
ferential equations with initial conditiovip = cogWp) andYzo = sin(Wp) :

(4.1.7)

dYy = —2Yydt— YxdW,
dYa —zthdt-i-YltdW,

or, in matrix notation,
1
dy; = —EYtdtJr BY,dW, (4.1.8)

whereB = {2 _01 . On the other hand, the solution of (4.1.8) with initial value

Yo = [cogd),sin(3)]" (8 €R)is

Y = e(f%lf%Bz)tJrBWYO
BWK(t)
S K

= (I cogW) + Bsin(\W]))Yo

= [cog(® +W),sin(& +W)]"

— i(9+W) (4.1.9)

= eBWY(): Yo (BZZ—l)

Therefore Brownian motion on the unit circte= [cogW),sin(W)]" is equiv-
alent to the solution of stochastic differential equation

1 .
dy = —EYtdtJr BYdW, (4.1.10)
with initial conditionYy = [cos(yvo),sin(vvo)]T, whereW is a 1-dimensional
standard Brownian motion withhp = 0. It is known [13] that Brownian motion
on the unitcirclgY;,t > 0) is exponentially ergodic and its invariant distribution
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u is the uniform measure 6h = {(x,y) € R?|x> +y? = 1}, i.e.,u(S) = % for

any setSC T, andl(S) denotes the length (Lebesgue measur& of
In the extremum seeking applications in this book, we useetigedic processes
(4.1.4) and (4.1.10) as the excitation signals to develmghststic extremum seeking
algorithms.

Assumption 4.3.For anyx € R" and the perturbation proceé%,t > 0), system
(4.1.1) has a unique (almost surely) continuous solutiofdon).

SinceY; is a time homogeneous continuous Markov procesgxify) is globally
Lipschitz in (x,y), then the solution of system (4.1.1) exists with probapilitfor
anyx € R"and itis defined uniquely for all> 0 (see Section 2 of Chapter 7 of [40]).
Here, we firstly don’t emphasize how to guarantee or proveettistence of the
solution of system (4.1.1) but just assume that system1(¥as a unique (almost
surely) continuous solution d, «). In fact, by Assumption 4.1, we know that for
any trajectory of the perturbing procedg,t > 0) and for anye > 0, system (4.1.1)
has a unigque solution up to a possible explosion time. Assiomg@.3 implies that
there is no finite explosion time for system (4.1.1), so that.() has a continuous
solution defined on the whole time interv@] +o).

Under Assumption 4.2, we obtain the average system of sy§teil) as fol-
lows:

X%, Ko=x (4.1.12)
dt
where

) = [ alcyu(dy) (4.1.12)

By Assumption 4.1a(x,y) is bounded with respect tg, thusy — a(x,y) is u-
integrable. Sa is well defined. For the average system (4.1.11), we makeothe f
lowing assumption.

Assumption 4.4.The average system (4.1.11) has a solutiofOor).

For the original system (4.1.1) and the average systemil@®.lwe introduce the
following definitions.

Definition 4.1. A solutionX¢ of system (4.1.1) is said to satisfy the property of
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1. weak boundedne#fshere exists a constaiM > 0 such that

Iimo inf{t >0:[X%| >M} =+, as. (4.1.13)
£—

2. weak attractivityif there exists a poink* € R" such that for any > 0, there
exists a constarifiy > 0 such that

Iim0 inf{t >Ts: X’ —X| >3} =+, as. (4.1.14)
E—

By convention, inf 0= +oo.

Since it is not assumed that system (4.1.1) has an equitibnee cannot nec-
essarily study the stability of an equilibrium solution g6tem (4.1.1). However,
the average system (4.1.11) may have stable equilibria.0Nsider system (4.1.1)
as a perturbation of the average system (4.1.11) and amalyably defined stabil-
ity properties by studying equilibrium stability of (4.1L)L To this end, we rewrite
system (4.1.1) as

Xt  _
S =) HROE V), X = (4.1.15)

whereR(X¢,Y/e) = a(Xf, Yy e) —a(X?), and consider system (4.1.15) as a random
perturbation of the average system (4.1.11). We assuma(bpt= 0, andX; =0

is a stable (resp., asymptotically stable, exponentidahypls) solution of system
(4.1.12).

Definition 4.2. The solutionX; = 0 of system (4.1.11) is called

1. weakly stableinder random perturbatid®(-, Y, ¢ ), if for any & > 0, there exists
a constants > 0 such that for any initial conditiorne {X€ R": [X| < rs}, the
solution of system (4.1.1) satisfies

Iim0 inf{t >0:|Xf| >0} =+, as. (4.1.16)
E—

2. weakly asymptotically stablender random perturbatid®(-,Y; /¢ ), if itis weakly
stable under random perturbatiB(, Y; /¢ ) and there exists > 0 such that for
any initial conditionx € {X € R": |X| < r}, the solutionX¢ of system (4.1.1) is
weakly attracted to the point 0.

3. weakly exponentially stablender random perturbatid®(-,Y; ¢ ), if there exist
constants > 0, ¢ > 0 andy > 0 such that for any initial conditione {X € R":
|X| <r} and anyd > 0, the solution of system (4.1.1) satisfies
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lim inf {t>0:[Xf|>clxe " +8} =+, as. (4.1.17)
E—

In Definitions 4.1 and 4.2, we use the term “weakly” becausepttoperties in
question involve IiBnand are defined through the first exit time from a set. In [60],

E—
stability concepts that are similarly defined under rand@mysbations are intro-
duced for a nonlinear system perturbed by a stochastic gsotrethis chapter, the
system perturbation also comes from a small parangeter

4.1.2 Statements of general results on stochastic averaging

Lemma 4.1.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.3 dndhen
forany T> 0,

lim sup |[Xf —X| =0, a.s. (4.1.18)
e—-00<t<T

This result extends the stochastic averaging for globafigthitz systems [88] to

locally Lipschitz systems. The result (4.1.18) means thap [ — X;| converges
0<t<T
to 0 almost surely as — 0, and thus it converges to O in probabilityas- 0, i.e.,

foranyd > 0,

lim P{ sup [XE —X| > 5} =0, (4.1.19)

0<t<T

which is a stochastic averaging result on finite time in [48)] globally Lipschitz
systems. Here we obtain a stronger result (4.1.18) for ptgbschitz systems by
using ergodic perturbation process but assuming the exisi@nd uniqueness of the
solution.

Let p be the metric in the spadg([0,»),R") of all the continuous vector func-
tions f,g € C([0,»),R"), defined as

o<t<k

pLO=3 5 <1A< sup |f<t>—g<t>|>>. 4.1.20
=1

Suppose that the conditions of Lemma 4.1 hold, and defdi®) = (X¢ (w),t > 0),
X = (%,t > 0). Then by (4.1.18) we have
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lim p(Xf(w),X) =0, a.s, (4.1.21)

£—0

i.e., X¢ converges almost surely Yase — 0. By [79], X also converges weakly
toX ase — 0.

Next, we extend the finite-time approximation result in Leavnl to arbitrarily
long time intervals.

Theorem 4.1.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.34ahd
Then

(i) for any & > 0,

lim inf{t > 0: X — X| > 8} =+, a.s; (4.1.22)
E—

(ii) there exists a function {) : (0, &) — N such that for any > 0,

lim P{ sup X —X%|>d =0, (4.1.23)
=0 | o<t<T(e)
where
IimOT(e) = 00, (4.1.24)
E—

This is an “approximation theorem” of stochastic averadordocally Lipschitz
systems: ag tends to zero, the solutions to the original and averagesstvill
remaind-close for arbitrarily long time in the sense of both almasety (4.1.22)
and in probability (4.1.23). Based on this result, we inigege the solution property
of the original system (4.1.1) under the stability of therage system (4.1.11).

Theorem 4.2.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.34ahd
Then

(i) (Boundedness) if the solution of the average system1(#) with initial con-
dition Xo = x is bounded, then the solution of system (4.1.1) wih=X is
weakly bounded, more precisely, for any ©,

Iim0 inf{t>0:|Xf| >M+c} =+, as, (4.1.25)
E—
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where M= sup|X| < +.
t>0
(i) (Attractivity) if the solution of the average system1(4.1) with initial condition
Xo = X converges to*xe R", i.e.,tlim X = X*, then for the system (4.1.1) with

X§ = x, whose solution is X the point X is weakly attractive, i.e., for any
d > 0, there exists a constant T 0 such that the solution of system (4.1.1)
satisfies

Iimo inf{t > Ts5: X —X*| >0} =+, as. (4.1.26)
£—

(iii) (Stability) if the equilibriumX; = 0 of the average system (4.1.11) is stable,
then itis weakly stable under random perturbation,® /¢ ), i.e., for anyd > 0,
there exists a constang r> 0 such that for any initial condition ¥ {X € R":
|X| <rs}, the solution of system (4.1.1) satisfies

Iimo inf{t >0:(X%| >9d}=+w, as. (4.1.27)
E—

(iv) (Asymptotic stability) if the equilibriurX; = 0 of the average system (4.1.11)
is asymptotically stable, then it is weakly asymptoticathble under random
perturbation R-,Y; ¢ ), i.e., for anyd > 0, there exists a constan r> 0, such
that for any initial condition x {X € R" : |X| < rs}, the solution of system
(4.1.1) satisfies

Iim0 inf{t >0:|X¢| > 8} =+, as, (4.1.28)
E—
and moreover, for ang < ¢ < §, there exists a constangT 0 such that

Iim0 inf{t >T5:|Xf|>c} =+, as. (4.1.29)
E—

(v) (Exponential stability) if the equilibriur¥ = 0 of the average system (4.1.11)
is exponentially stable, then it is weakly exponentialgbt under random
perturbation R-,Y;/¢), i.e., there exist constantsx 0, ¢ > 0 and y > 0 such
that for any initial condition xe {X € R": |X| < r}, and anyd > 0, the solution
of system (4.1.1) satisfies

lim inf {t>0:|X|>c]xe " +5} =+, as. (4.1.30)
E—
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Moreover, there exists a function(&) : (0,&) — N such that under the conditions
of (i)—(v), the respective results (4.1.25)—(4.1.30) camdplaced by

(i) the boundedness result

lim P{ sup |Xf|>M+cp =0, (4.1.31)
=0 | o<t<T(e)
(ii) the attractivity result
lim P{  sup [Xf—x|>d;=0, (4.1.32)
-0 | Ty<t<T(e)
(iii) the stability result
lim P sup [XE|>9d, =0, (4.1.33)
=0 | o<t<T(e)
(iv) the asymptotic stability result
(4.1.33) and lim P{ sup [Xf|>cp =0, (4.1.34)
e-0 | Te<t<T(e)

(v) the exponential stability result

lim P{ sup {|XF|—clxle "} > 6} =0. (4.1.35)
)

=0 |o<t<T(e
Furthermore, (4.1.35) is equivalent to

. £ —¥t _
L'To P{IXf| <clxe"+0d,vte[0,T(e)]} =1

According to the approximation result (4.1.22), we obtai@almost sure stabil-
ities: (4.1.25)—(4.1.30) in Theorem 4.2, while by the apgir@tion result (4.1.23),
we obtain the stabilities in probabilities: (4.1.31)—(83) in Theorem 4.2. It should
be pointed out that the two approximation results (4.1.2R)..23) together with the
corresponding two kinds of stability results in Theoremd2 independent, but to
make the content more compact, we combine them in one theorem
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The stability results in Theorem 4.2 are weaker than thdlgyaim probability
results in Chapter 3, where stronger conditions, not sadi$fi sStochastic extremum
seeking applications, are imposed. Compared with otheitsesn stochastic aver-
aging on the infinite time interval [21, 67, 70], we remove aaken the following
restrictions: global Lipschitzness of the nonlinear vedield, equilibrium condi-
tion, global exponential stability of the average systemd aompactness of the
state space of the perturbation process, but impose thenptisa of the existence
and uniqueness of the solution of the original system.

4.2 Proofs of the General Theorems on Stochastic Averaging

4.2.1 Proof of Lemma 4.1

Fix T > 0, and denote

M’ = sup %] (4.2.36)

Since(X,t > 0) is continuous andD, T] is a compact set, we have thdf < +oo.
DenoteM = M’ + 1. For anye € (0, &), define a stopping time; by

Te = inf{t > 0:|X¢| > M}. (4.2.37)

By the definition ofM (noting thatix| = [Xo| < M’) and the continuity of the sample
path of (X&,t > 0), we know that O< 7 < 400, and if 7 < 4+, then

Xg =M. (4.2.38)

From (4.1.1) and (4.1.11), we have that for any 0O,
_ 't —
X% = [ [aX¢. Yoe) — %) ds

— /Ot [a(XE, Ye/e) —a(Xs, Ys/e) | ds+ /Ot [a(Xs,Ys/e) — a(Xs)] ds
(4.2.39)

By Assumption 4.1, we obtain that for asy< 7. AT,
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(X, Yoe) —a(Xs, Yore) | < kX =X, (4.2.40)
whereky is the Lipschitz constant cdi(x,y) with respect to the compact subset

{xeR": x| <M} of R".
Thus by (4.2.39) and (4.2.40), we have thatdf 7 AT, then

_ t _ t o
XE =Xl <k [ |x§—xs|ds+‘ [ [20% voe) a5 d%. (4.2.41)

Define
AF = X =X, (4.2.42)
t o _
ale) = P /0 [a(Xs,Ys/e ) —al(Xs)] d%. (4.2.43)

Then by (4.2.41) and Gronwall’s inequality, we have

sup AF < a(e)dM™ ) < g (g)emT, (4.2.44)

O<t<TeAT

Since (X,t > 0) is a deterministic continuous function, by Assumption 4nH a
Birkhoff ergodic theorem (see e.g., Liptser and Shiryaéi})[8ve have that

lim a(e) =0, as. (4.2.45)

e—0

For the reader’s convenience, we give the detailed proaf.@f45) in Section 4.2.6.
It follows from (4.2.42), (4.2.44) and (4.2.45) that

limsup sup |X&—X%|=0, as. (4.2.46)

e—0 O<t<TeAT

Thus by (4.2.36) and (4.3.130), we have

limsup sup |X|
e—0 O<t<TeAT

<limsup| sup |X—X|+ sup [|X|
£—0 0<t<te AT O<t<1eAT

<limsup sup |X&—X|+M

e—0 O<t<TeAT

=M <M, as. (4.2.47)
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By (4.2.38) and (4.2.47), we obtain that for almost every Q, there exists an
&(w) > 0 such that for any & ¢ < &(w),

Te(w) >T. (4.2.48)
Thus by (4.3.130) and (4.3.131), we obtain that

limsup sup [X§ —X%| =0, a.s. (4.2.49)

£—0  0<t<T

Hence (4.1.18) holds. The proof is completed.

4.2.2 Proof of approximation result (4.1.22) of Theorem 4.1

Define

Q' = {w: limsup sup [X(w) —X%|=0, VT € N}. (4.2.50)

£—0 O<t<T
Then by Lemma 4.1, we have
P(Q) =1 (4.2.51)
Letd > 0. Fore € (0, &), define a stopping timed by
0 =inf{t > 0:|Xf - X| > 5}. (4.2.52)

By the fact thatX§ — Xo = 0, and the continuity of the sample paths(¥f,t > 0)
and(X,t > 0), we know that 0< 2 < +o0, and if ¢ < +oo, then

|xf§ - >ng| =3J. (4.2.53)

For anyw € Q’, by (4.3.134) and (4.3.138), we get that for dny N, there exists
&(w,d,T) > 0 such that for any & € < &(w,0,T),

2 (w)>T, (4.2.54)

which implies that
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lim 12 (w) = +oo. (4.2.55)

£—0

Thus it follows from (4.3.135) and (4.3.139) that

I|m T8 400, a.s. (4.2.56)

The proof is completed.

4.2.3 Preliminary lemmas for the proof of approximation result
(4.1.23) of Theorem 4.1

Lemma 4.2.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.3 dndhen
foranyd > 0, 0 < 0 < 1, there exists a decreasing sequeKee}tcy of positive
real numbers satisfyingr | 0 as T— o, such that

T=1eec(0,e7] Ost<T

(ﬂ N {sup |><f—>§|§6}> >1-§, (4.2.57)

or equivalently,

P{sup sup  sup |XE—X| > 6} <. (4.2.58)

TeN O<e<er 0<t<T
Proof: Letr? be defined by (4.2.52). Since

{liinng— } nuU N {2>7}, (4.2.59)

T=1 £c(0,&p) €<(0,£]

by Theorem 4.1, we have

Jgn u {T§<T}>=O. (4.2.60)

(T—l £c(0,&9) €€(0,€]

7
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We show that the sel. gz {Tf < T} is measurable. LeD denote the set of all

rational numbers. Then by the definitiontg, and the continuity oXZ andX; with
respect te andt, we have

U {r§<T}

£€(0,£]

- {356 (0,], sit. 12 <T}

={Jee(0,§,3tc[0,T), st [XE—X|>d}
={3e€(0,£lnQ,Ite[0,T)NQ, s.t. [XF—X|> 3}
U U {xX-x>3} (4.2.61)

(0,ENQ [0,T)NQ

which is measurable. Since the §&t o ¢ {Tf < T} isincreasing relative t8, we
have

n U {T§<T}_ N U {#<1} @262

£€(0,60) €€(0,€] €(0,60)NQ €€(0,£]

and hence the s€¥;c (0.5 Uec(0.z {70 < T} is also measurable. Thus by (4.2.60),
we obtain that for any € N,

( n U {r§<T})_o, (4.2.63)

£c(0,59) €€(0,€]

which implies that for anyl € N,

-0 £c(0,€]

lim P ( U {rg < T}) —0, (4.2.64)

and thus there existsr € (0,&) (without loss of generality, we assume tlet
decreases to 0, 85— o) such that

P( U {r§<T}) <2§T. (4.2.65)
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Define
—+oo
N=U U {#<T} (4.2.66)
T=1 ec(0.er]

Then by (4.2.65), we have

P(N) <o, (4.2.67)
and thusP(N°€) > 1— 5, where
—+oo
= N {#=T} (4.2.68)
T=1 ec(0,e7]
By the definition oft?, we have
{ sup |xf—>§|§6}g{r§zT}. (4.2.69)
0<t<T

Hence (4.2.57) holds. The proof is completed.

Lemma 4.3.Consider system (4.1.1) under Assumptions 4.1, 4.2, and ieh for
anyd > 0, there exists a functionsT¢) : (0,&) — N such that

lim P{ sup [XE—X|>dp =0, (4.2.70)
-0 | o<t<T;(e)
and
IimOTa(s) = 0, (4.2.71)
E—

Proof: Ford > 0,0 < 5< 1, we useet (6, 5) instead ofer in Lemma 4.2. Now

fix & > 0. For anyk = 2,3,..., by Lemma 4.2 we obtain a decreasing sequence
{er (8, ) }ren Of positive real numbersy (5, %) | 0 asT — o, such that

P{sup sup sup |Xf—)§|>6}<%.

TEN oce<er(s,1) O<t<T
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(4.2.72)

By the proof of Lemma 4.2, we assume that for dng N, &r (5, %) is a nonin-
creasing function ok, and thus for ank=2,3,...,

1 1 1 1
i — | < — ] < =] .(4.2.
0< Ek+1 (5, Kt 1> < & <5, Kt 1> < & <5, k) < & (5, 2> (4 2 73)

It follows from (4.2.73) and lime (3, 3) =0 that
— 400

& (6, %) 10, ask — +oo. (4.2.74)

Now we define the desired functidg(¢) as follows:

1if g€ (&(8,3),8),

Ts(€) = {k, if £ € (a1 (0, 127) & (3,%)], k=23, (4.2.75)
Then foranyk =2,3,..., by (4.2.72) and (4.2.75), we get that
sup P{ sup  |XE—X| > 5} < }, (4.2.76)
g1(0. ik )<e<a(8.) |0<t<Ts(e) k

and forj =k+1,k+2,..., we have

H
x|l

sup P{ sup |Xf—)§|>5}§—_<—. (4.2.77)
)

£j+1<6,]%1><5§5j (6,% 0<t<Ts(¢) J

By (4.2.74), (4.2.76) and (4.2.77), we get that for &ny 2,3, .. .,
£ va 1

sup  P¢ sup [XF-X[>dp <, (4.2.78)
O<e<g(s,t) 0<t<Ts(e) k

which implies (4.2.70). By (4.2.74) and (4.2.75), we obt@ir?.71). The proof is
completed.
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4.2.4 Proof of approximation result (4.1.23) of Theorem 4.1

Fork=1,2,..., by Lemma 4.3 there exists a functifﬁg(e) : (0, &) — N such that

lim P{  sup |XE—X| >3 =0, (4.2.79)
€0 ogth%(s) k
and
lim T (&) = +oo. (4.2.80)
e—0 k

Without loss of generality, we assume that for &y N, we have
Tkéi (e) < T% (€), Ve € (0, ). (4.2.81)

In fact, we can replace the functidn. (€) by T 1 (€) AT1(€). Let & = 1. For
k+1 k+1 k
k=2,3,..., define

& 1= sup{s € (0,&-1): T% ()= k} . (4.2.82)
Now we define the desired functidr¢) : (0,&) — N as follows:

Ti(e), if €€ (&213.8),
T(e) = . 1 1
( ) {T%(S), |f £€(£k+1/\m,£k/\R:|, k:2,3,

(4.2.83)
SinceklimekA 1 — 0, the functionT () is defined on(0, &). By (4.2.82) and the
definition ofT% (¢)(k € N) stated in the proof of Lemma 4.3_112((8) is increasing
whene decreases to 0), we have that for any @ < g A £,

T(e) >k, (4.2.84)

and thus (4.1.24) holds. 5
Next, we prove (4.1.23). For any > 0, takek € N such that% < d. Then for

j=kk+1k+2,..., by (4.2.81) and (4.2.83), we get that
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sup P{ sup |Xf—)§|>5}
]

1ga1 0<t<T(e
se(sHlAm,q/\T <t<T(e)

= sup P{ sup [XE—X|>9o

gc (sjﬂAJ%l £j Aﬂ OSIST% (€)

< sup PS sup [XF-X%[>0
e (sjﬂm—h £j Aﬂ OSIST% (e)

e o 1

< sup P sup X5 —X| > 5
se(sjﬂm%,emﬂ OStST% (e)

< sup P! sup |Xf—>§|>% ,

e (O,EJ/\ﬂ OStST% (€)

(4.2.85)
andthusforany=j+1,j+2,...,
sup P{ sup |Xf—>§|>6}
ee(gaangant]  (0<t<T(e)
e o 1
< sup P sup X5 —X|> =
ec(0.gA¢] Ogth%(e) k
s o 1
< sup P sup X —Xt|>E , (4.2.86)

e (O,EJ/\ﬂ ogth% (€)

where in the second inequality of (4.2.86), we use the fatdteth'\% <EA Tl for
anyl = j+1,j+2,.... Hence by (4.2.85), (4.2.86) and the fact tpat Hm 1 =0,

we obtain that folj = R,IVH— 1,R+ 2,...,
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sup P{ sup |Xf—)§|>6}

EE<0-,€J'/\H 0<t<T(g)

A 1
< sup P sup  [XE—=X|> % 5. (4.2.87)
IS (O,sj /\Tl] Ogth% (€) Kk

By the fact thatk limge A £ =0, (4.2.79) and (4.2.87), we obtain that for ahy 0,
lim P{ sup [Xf—X|>dp=0. (4.2.88)
=0 | o<t<T(e)

The proof is completed.

4.2.5 Proof of Theorem 4.2

(i) We prove boundedness. Notice tiat= sup-, |X| and
{IXF| > M+c} C{|XF —X| > c}. (4.2.89)

Then by the continuity of the sample path(®f,t > 0) (we don’t mention this fact
in the following proofs again), we have

inf{t >0:|Xf| >M+c}>inf{t >0: X —X]| >c}. (4.2.90)

Thus by Theorem 4.1, (4.1.25) holds.
(ii) We prove attractivity. SinC(ta lin = x*, we have

lim [X — x*| =0, (4.2.91)

t—o0

and thus for any) > 0, there exists a constafy > 0 such that

sup|X — x| < g, (4.2.92)
t>Ts

by which, we obtain that for any> T,



78 4 Stochastic Averaging for Practical Stability
(6 =X > 8} = {06 = %)+ (% -] > 8} € { X - % > § 4299
and thus
inf{t > Ts:|Xf—x*| > 3}] > inf{t > Ty [XE—X| > g}
> inf{t >0 X —X| > g} (4.2.94)

which together with Theorem 4.1 implies (4.1.26).
(iii) We prove stability. If X; = 0 € R" is a stable equilibrium of the average
system (4.1.11), then for ardy> 0, there exists a constany > 0 such that

= — 0
[Xo| <rg = supX| < =, (4.2.95)
t>0 2
which together with Theorem 4.1, implies that fef < r 5,
Iimo inf{t >0:[X¢| > d}
E— - _
= IimO inf{t >0:|(Xf —X)+X/| > d}
E—
> IimO inf{t >0 X —X| > g} =400, a.8. (4.2.96)
E—

Hence (4.1.27) holds.
(iv) For asymptotic stability, the proof follows directlydm (ii) and (i) above.
(v) We prove exponential stability. Since the equilibriddn= 0 of the average
system is exponentially stable, there exist constant®,c > 0,y > 0 such that for
any|x| <r,

%] < c|xje ™, vt > 0. (4.2.97)
Thus for anyd > 0, we have
{IX] > clxje "+ 8} C {|XF — %] > &}, (4.2.98)

which together with Theorem 4.1 implies that
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lim inf{t >0 : %] > cxe " +8} > lim inf{t > 0: (X — X| > 8} = 4o, as.
£ PN

Hence (4.1.30) holds.

(4.2.99)

Let the functionT (¢) be defined in Theorem 4.1. Thusollee) = +oo. For the
E—
stability results (4.1.31)—(4.1.35) with respect to theragimation result (4.1.23),

we only prove (4.1.35). The proofs for (4.1.31)—(4.1.34)similar.

Since the equilibriunX, = 0 of the average system is exponentially stable, there

exist constants > 0,¢ > 0,y > 0 such that for anyx| <r,
%] < clxe™, vt>o0.
Thus for anyd > 0, we have that for anj| <,

{ sup {|XF|—clxle "} > 5}

0<t<T(e)

= U {IX—cxe" >3}

0<t<T(e)

c U {X-Xx/>d}

0<t<T(e)

={ sup |><f—>§|>6},

0<t<T(g)

which together with result (4.1.23) of Theorem 4.1 gives tha
limsupP{  sup {|Xf|—clxe "} >5
e—0 0<t<T(¢)
<limP{ sup [Xf—X|>3d;=0.
&= 0<t<T(g)

Hence (4.1.35) holds. The whole proof is completed.

4.2.6 Proof of (4.2.45)

We give a detailed proof of (4.2.45), i.e.,

(4.2.100)

(4.2.101)

(4.2.102)
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lim sup
-0 o<t<T

/Ot (a(%s, Yese) — A1X6)) d% ~0, as. (4.2.103)

Proof: We follow the proof of Theorem 5 of Chapter 3 of [130f fhe globally
Lipschitz case. Notice that

M = ogyg X, M=M"+1, (4.2.104)

andky is the Lipschitz constant @&f(x,y) with respect to the compact sub&sj :=
{xeR": x| <M} of R", i.e., for anyx,X € Dy and anyy € S, (see Assumption
4.1),
la(x,y) —a(%y)| < ku|x—X]. (4.2.105)
Then by (4.1.12) and (4.2.105), we have that for an¥yc Dy,
|a(x) —a(X)| < kv |x—x. (4.2.106)

For anyn € N, define a functior)@,sz 0, by

X = k;JX%I{KSKk#}. (4.2.107)
Then for anyn € N, we have
sup [XJ| < sup [Xs| <M <M. (4.2.108)
0<s<T 0<s<T

By (4.2.105)—(4.2.108), we obtain that

't _ L

sup | [/ (@) %) as
t va —

octer /0 [(a(Xs)Ys/e) —a (XS Ys/e))

(@R, ) — &OT)) + @00 - a1%e))] d%

it _ —
< sup/ ’a(x&Ys/s)_a(xsn’YS/E)‘ds
0<t<T /0
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+ sup

o<t<T /0t (a (X, Ysse) —a(x{)) d%

t _ _
+ sup | [a(X) —a(Xs)|ds
0<t<T /0

0<s<T 0<t<T [/0

< 2kuT sup [Xs—XJ|+ sup /t (a(Xd,Ys J—é()@))d% (4.2.109)

Next, we focus on the second term on the right-hand side 2f{@9). We have

un [ 00 ~ava)as

~ 2up |, (020 - 50) 5 '{E<s<k:1}d+

“oadr otki(a(_%“s/f)‘5(_%))'{%@# dTL
D) p, e

"5 [ () -0 e
n(t+1) ket _ e

:ogjng kZO ./‘ﬁ‘m : (a(xE’YS/S)_a( %))ds{

n([t]+1)
< sup H
k=0

0<t<T

el ag
./‘ﬁ‘Ant (a(%ﬁ’YS/S) _a_(%ﬁ))ds‘a (4.2.110)

wherel[t] is the largest integer not greater thafror fixedn andk with k < n([T] +
1), we have

.k%l/\t _ _
FATARCCRBECHE
o 'kinl/\t _ i -Fk]/\t _ -
Sé&%(./o (a (e vse) —a( 5))d5{+ b (@) - 5))0'5{)
<2 sup [ [ (o(7% %) -5())
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/0‘ (a (%%’YS) —5()?%)) ds‘- (4.2.111)

Then by the Birkhoff ergodic theorem and [88, Problem 5,3, obtain that

; a(Xk,Ys) —a(Xx))ds =0, as, (4.2.112)
[ (a(%%)-a(%,) o

which together with (4.2.110) and (4.2.111) gives that forac N,

=2 sup ¢
o<t<Gd

lim sup ¢
SHOOStS%

lim sup
€—0 p<t<T

/Ot (a (XD, Yg/e) — A(XD)) ds‘ —0, as. (4.2.113)

Thus by (4.2.109), (4.2.113), and

lim sup [Xs—XJ| =0, (4.2.114)
N—=% 0<s<T
we obtain that
t _ _
lim  sup / (a(% Yose) — A1X6) d% —0, as. (4.2.115)

The proof is completed.

4.3 Discussions of the Existence of Solution

In Section 4.1.2, to obtain the general stochastic avegati@orems, the existence
of the solution of the original system is assumed. But in,faeting to the close
relationship of the original system and its average systéim,condition can be
removed when the solution of the average system has somepgopelrty.

Now, we consider a weaker condition on the original systerh. {3

Assumption 4.5.The vector fielda(x,y) is a continuous function afx,y), and for
anyx € D, it is a bounded function of. Furthermorea(x,y) satisfies the locally
Lipschitz condition inx € D uniformly iny € Sy, i.e., for any compact subsby C
D, there is a constarkp, such that for alX',x” € Dp and ally € S, |a(X,y) —
a(x",y)| <kp, [¥X —X|.
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Before presenting the main results, we give two lemmas. ®ehd, for any
pointx € D, we define byd(X,dD) the distance betweet and the boundargD
of the domairD, i.e.,

d(X,0D) =inf{|xX —y|:y € dD}. (4.3.116)

By conventiond(X',0) = «. SinceD is a domain, for anw € D, we have that
d(x,0D) > 0. If Ais a subset oD, we define byd(A, dD) the distance betweeh
anddD as follows:

d(A,dD) = in;d(x’,dD) =inf{|X —y|:X e Ayedy}. (4.3.117)
Xe

Throughoutthis section, we assume thatD, wherex s the initial value of sys-
tem (4.1.1). System (4.1.1) is a stochastic ordinary diffiéial equation (stochastic
ODE), and its solution can be defined for each sample pathegb¢hturbation pro-
cess(Yy/e 1t > 0). If system (4.1.1) satisfies Assumptions 4.5, then for amgyzact
subseDg C D and the constarkp, stated in Assumptions 4.5, it holds that for any
we Q,anyt >0, anye € (0, &), and allX',x” € Do,

|a(X, Y/ (@) —a(X", Y /e (w))| < kpgX — X7 (4.3.118)

Thus by the theorem on local existence and uniqueness diawuof nonlinear
systems (see, e.g., Theorem 3.1 of [58]), for ary (0, &) and anyw € Q, system
(4.1.1) has a unique solutioff (w) with the life timels(w) > 0, wherel¢(w) =
inf{t >0:Xf(w) € dD}. For t > l¢(w), we defineXf(w) = Xé(w)(w), i.e., as
soon as the solution reaches the boundary of the dobBhaire fix it and maintain it
at that constant value thereafter.

Lemma 4.4.Consider system (4.1.1) under Assumptions 4.5 and 4.2{)@;1 >
0},0D) > 0, then for any T> 0, we have that

lim sup X —X| =0, as. (4.3.119)

£—0 0<t<T
Proof. Fix T > 0 and define
Ar ={|X|:0<t<T}. (4.3.120)

Then by the assumption thdt{X,t > 0},dD) > 0, we have that
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or :=d(Ar,dD) > 0. (4.3.121)

For anye € (0, &), define a stopping time: by
i CIXE Y. or
Te=infqt>0:|X —X¢|>7 . (4.3.122)

Notice thatX§ = Xo = x. Then by the continuity of the sample paths(%f,t > 0)
and(X,t > 0), we know that < 7 <|I¢, and if T, < 40, then

IXE — Xee| = % (4.3.123)

Thusd(X&,dD) > & > 0, and so in this casg < l.

T

From (4.1.1) and (4.1.11), we have that for any 0 < I,

Xt xt / xs Ys/s) (>ZSaYS/£)] ds
+ / (%, Yee) — A1X6)] ds (4.3.124)

SinceX; is continuousAr is a compact subset &f. Further, by the assumption that
d({X,t > 0},dD) > 0, we know that the st := {x’ eD:d(X,Ar) < %} is a
compact subset @. Then by Assumption 4.5, we obtain thatforang8< 1, AT,

|a(XE, Ys/e) — a(Xs, Yo/ )| < kr|XE — X, (4.3.125)

wherekr is the Lipschitz constant af(x, y) with respect to the compact sub&et
of D. Thus by (4.3.124) and (4.3.125), we have thati#f 0< 7. AT, then

IX¢ Xt|<kT/|Xs Xs|d5+‘/ (Xs. Yee) — alXs)] % (4.3.126)

Define
AF = X =X, (4.3.127)
t _ _
ae) = oztung /0 [a(Xs, Ys/e) —a(Xs)] d% )

Then by (4.3.126) and Gronwall’s inequality, we have
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sup AF < a(e)dT =) < a(g)eT, (4.3.128)

O<t<TeAT

Since()@,t > 0) is a deterministic continuous function, by Assumption 4@ the
Birkhoff ergodic theorem (see e.g., Chapter 1 of [130]), weethat

lim a(e) =0, as. (4.3.129)

£—0

It follows from (4.3.127), (4.3.128) and (4.3.129) that

limsup sup |X&—X%|=0, as. (4.3.130)

£e—0 O<t<TeAT

By (4.3.123) and (4.3.130), we obtain that for awec Q, there existso(w) > 0
such that for any & € < &(w),

Te(w) >T. (4.3.131)
Thus by (4.3.130) and (4.3.131), we obtain that

limsup sup |[X& —X| =0, a.s. (4.3.132)

£—0 0<t<T
Hence (4.3.119) holds. The proof is completed.

Lemma 4.5.Consider system (4.1.1) under Assumptions 4.5 and 4.2{)@;1 >
0},0D) > 0, then for anyd > 0, we have

lim inf{t > 0: X — X| > 8} = +o, as. (4.3.133)
E—
Proof. Define
Q= {w: limsup sup X (w) —X%|=0, VT e N}. (4.3.134)
£-0 0<t<T

Then by Lemma 4.1, we have
P(Q') =1 (4.3.135)

Let 6 > 0. Without loss of generality, we can assume ihat %d({)@,t > 0},0D)
since if 0< a < b, we have



86 4 Stochastic Averaging for Practical Stability
inf{t >0:|Xf —X| >b}>inf{t >0: X —X|>a}. (4.3.136)
Fore € (0, &), define a stopping time? by
0 =inf{t > 0: X — X| > &}. (4.3.137)

By the fact thatX§ — Xo = 0, and the continuity of the sample paths(¥f,t > 0)
and (Xt > 0), we know that 0< 1 < +o0, and if 12 < 4, then

X5 — X3l =o. (4.3.138)

For anyw € Q', by (4.3.134), (4.3.138) and < 1d({X,t > 0},dD), we get that
foranyT € N, there existgg(w,d, T) > 0 such that for any & & < &(w,o,T),
12 (w) > T, which implies that

lim 0 (w) = +oo. (4.3.139)
E—

Thus it follows from (4.3.135) and (4.3.139) that liny 10 = +0, a.s. This com-
pletes the proof.

Now, by Lemmas 4.4 and 4.5, following the corresponding fe@oSection 4.2,
we obtain the following two theorems.

Theorem 4.5.Consider system (4.1.1) under Assumptions 4.5 and 4.2. i b
equilibriumX; = x € D of the average system (4.1.11) is exponentially stabés th
there exist constants® 0, ¢ > 0 and y > 0 such that for any initial condition
xe{X e D:|xX —x] <r}, and anyd > 0, the solution of system (4.1.1) satisfies

lim inf{t>0:|Xf—X >clxle "+ 8} =+, as. (4.3.140)
E—

Theorem 4.6.Consider system (4.1.1) under Assumptions 4.5 and 4.2 Edli-
librium X = x € D of the average system (4.1.11) is exponentially stabée there
exist constants > 0, ¢ > 0, y > 0 and a function T¢) : (0,&) — N such that for
any initial condition xe {X' € D : [X —x] < r}, and anyd > 0,

lim P{ sup {|XF—X—clxe "} > 6} =0, (4.3.141)
)

=0 |o<t<T(e

or equivalently,
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lim P{IXf —X <clxe "+t e0,T(e)]} =1 (4.3.142)

with [im T (&) = +oo.
£—0

4.4 Notes and References

In this chapter, which is based on our results in [91], weldista stability proper-
ties for stochastically perturbed differential equatiaeig the averaging approach.
We remove the following restrictions in previous results: the average system or
approximating diffusion system is globally exponentiatable; (b) the nonlinear
vector field of the original system has bounded derivativis clominated by some
forms of Lyapunov function of the average system; (c) thelinear vector field
of the original system vanishes at the origin for any valup@turbation process
(equilibrium condition); and (d) the state space of theyrbition process is a com-
pact space. The theorems developed in this chapter allow dedign stochastic
extremum seeking results and to study their stability prribgs






Chapter 5
Single-parameter Stochastic Extremum Seeking

The goal of extremum seeking is to find the optimizing inpuanainknown operat-
ing map that has at least a local extremum. In addition ticst@ierating maps, dy-
namic input-output maps are also allowable, provided theadyics are sufficiently
fast, or provided extremum seeking is tuned to operate glembugh relative to the
time constants of the dynamics.

Extremum seeking has traditionally been developed as ardigiistic approach,
employing sinusoidal perturbations for estimating the imapknown gradient. For
a brief historical account of deterministic extremum segkthe reader is referred
to [74] and to the Preface and Chapter 1 of [6].

Extremum seeking is easier to understand for single-inpolblpms than for
multivariable problems. For this reason, we start our preg®n of stochastic ex-
tremum seeking in this chapter by considering single-ippablems.

The simplest version of deterministic extremum seekingleygan additive si-
nusoidal perturbation at the input of an unknown map and ggee an estimate of
the unknown derivative of the map by multiplying the meaduyatput of the map
with the same sinusoid that is applied additively at the inpbough it is not obvi-
ous that this set of operations generates an estimate ofikmown slope of the map,
an elementary analysis, under the assumption that the tmalof the sinusoid is
small, shows that, on the average (over the period of thessidal perturbation),
the estimate of the map’s slope, generated in the mannerilbes@bove, closely
approximates the actual slope of the unknown map. By feettieg@stimate of the
map’s slope into an integrator, the output of the integratyves as the estimate
of the optimizing input into the map, and the integrator'spaut converges, on the
average, to the actual optimizing input of the unknown map.

89
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This book proposes algorithms for stochastic extremumisgek which the
principal change is the replacement of the sinusoidal peation by a random noise
input. The specific noise input that we employ is the whitesagiassed through
a low pass filter with a high cutoff frequency. Such a signabfien called the
Ornstein-Uhlenbeck (OU) process. Sometimes it is simplgrred to as “colored
noise.” The key properties that the OU process has in commitimtihie sinusoid
is that its mean, defined in an appropriate sense, is zeraeatiehe mean of its
square is positive.

For technical reasons (the OU process being unbounded enthémown map
having a nonlinear dependence on the perturbation sigmalactually cannot sim-
ply apply the OU signal as a perturbation, but we must passsignal through a
bounded nonlinearity which has a zero value and a positiygesat zero. For ex-
ample, a saturation function or a sine nonlinearity can lpdieghto the OU process
before it is injected as an additive perturbation in theaxiim seeking algorithm.
The sine nonlinearity is particularly convenientin thelgsis because it facilitates
the calculation of certain averaging integrals. The pécibdof the sine function,
as a function dependent on the OU signal as its argument,ns pfrticular sig-
nificance in the extremum seeking algorithm except thateltdg explicit formulae
in the averaging calculations, which in turn yield explmitnvergence rates for the
extremum seeking algorithms.

Hence, the difference between deterministic and stochastiemum seeking is
not conceptually substantial. The algorithm structureste same and the pertur-
bation signals in both cases are zero in the mean, wherdasdjuares are positive
in the mean. The main difference is in the operation of the a&lgorithms, where
the deterministic algorithm has a predictable, nearlyqaici evolution of the input
and output, whereas the stochastic algorithm generatatsiapd outputs that, to an
untrained eye, appear completely random. In certain aguphics, this randomness
offers an advantage.

As in deterministic extremum seeking, certain filters arfteotnodifications can
be introduced in the stochastic extremum seeking algosttas well illustrate in
this and other chapters of this book. Stochastic extremusnskeaeral features in
common with the methods of stochastic approximation, whighcovered in detail
in the books [80] and [132] and the references therein. Bathods deal with opti-
mization of unknown maps and employ stochastic perturbatidhe key difference
is that stochastic extremum seeking, as formulated angzedhin this book, per-
mits the incorporation of the search and optimization atgors in continuous-time
dynamic processes, as illustrated in this book through laeobbotic vehicles. Our
stochastic extremum seeking algorithms operate simudtasiy with the dynamic
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systems to which they are applied and the overall converyeates are determined
for the coupled systems consisting of the search algoritmrttae plant being con-
trolled, using the averaging and stability theorems thatlexelop in Chapter 4.

This chapter has two major sections. In Section 5.1 we dpv&iachastic ex-
tremum seeking for the case of a static single-parametaglésinput) map. Since
this is the reader’s first encounter with extremum seekirggdavelop slowly all the
details of the stability analysis for our algorithm, basedtbe stability results in
Chapter 4, and illustrate the algorithms with a numericanegle. In Section 5.2
we extend the analysis to the case of a system that contaimesdgs and whose
operating map is the equilibrium map of those dynamics.

5.1 Extremum Seeking for a Static Map
Consider the quadratic function

"
¢(e):¢*+¢7(e—e*)2, (5.1.1)
where8*, ¢*, and¢” are unknown. AnyC? function ¢ (8) with an extremum at
6 = 6* and with¢” # 0 can be locally approximated by (5.1.1). Without loss of
generality, we assume that' > 0. In this section, we design an algorithm to make
6 — 6* as small as possible, so that the output ¢(6) is driven to its minimum
¢

Denotef(t) as the estimate of the unknown optimal ingXit Let
6(t)=6"—6(t) (5.1.2)

denote the estimation error. Instead of the deterministitopic perturbation [6],
here we use a stochastic perturbation to develop a gradigmiage. Let

B(t) = B(t) +asin(n(t)), (5.1.3)

wherea > 0 and(n(t),t > 0) is a stochastic process satisfying

_/eg

T es+1

n W], or edn=—ndt+eqdW, (5.1.4)
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whereq > 0, W(t),t > 0 is a 1-dimensional standard Brownian motion defined on

some complete probability spa¢@,.#,P) and ES‘/EL[ | denotes a time domain

signal obtained as the output of the transfer func@éﬂ when the input igV(t).
Thus, by (5.1.2) and (5.1.3), we have

6 — 06" =asin(n)— 6. (5.1.5)

Substituting (5.1.5) into (5.1.1), we have the output

14

y= ¢*+7(asin(n)—6)2. (5.1.6)

Now, similar to the deterministic case [6], we design theapaater update law as
follows

do .

5t = —ksin(m)(y—4), (5.1.7)
% — _hg+hy, (5.1.8)
gdn = —ndt+4 /eqdw, (5.1.9)

wherek > 0,h > 0 are scalar design parameters.
From (5.1.9), we have

ot ot
n(t)zn(o)—'/o %n(s)ds+/0 %dW(s). (5.1.10)
Thus it holds that

/ ds+/£t—dw
o) i

(eu) du+/ L aw(eu). (5.1.11)

Definex(t) = n(et) andB(t) = %W(et). Then we have

dx (t) = —x(t)dt+ qdB(t), (5.1.12)

whereB(t) is a 1-dimensional standard Brownian motion.
Define the output error variable
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h

e= pl - 9" (5.1.13)

Then we have the following error dynamics

dd_G: =~ =ksin(x(t/2)) (%ﬂ(asin(x(t/f)) - éf)z—ef) . (5.1.14)
% =h (%(asin(x(t/s)) - 652~ ef) : (5.1.15)

Now we calculate the average system. From Section 4.1.1,nowik that the
stochastic procesx(t),t > 0) (OU process) is ergodic and has invariant distribu-

tion
><2

u(dx) = %e? dx (5.1.16)

2
X
Notice thate < is an even function and

+o00 >(2
/ cog2xt)e P dt — \/geF, (5.1.17)

—o00

wherex, b are parameters. Thus we have

J —00

"2kl kg L B
/Rsm2 (x)u(dx)_/ sir? (x)\/ﬁqe ?dx=0, k=0,1,..(5.1.18)

oo 1 -2 1 2
sin?(x)u(dx :/ sif(x)——e @dx==(1—e ). 5.1.19
[ sitoouteg = [ sty S1-e ). (5119)
Therefore, by (4.1.12), we obtain that the average systef®.5f14)—(5.1.15) is
déavei k¢”a @\ Aave
T (1—e 96 (5.1.20)
detve ¢”a2 —q? 9" fnave  _ave
T_h( 2 (1—e )+79 —€ ) (5.1.21)
By simple calculation, we get the following equilibrium bt above average system
. 2 p1
gae_o ere_ 39 o (5.1.22)

4
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0 4 Plant

m é _5 } y=¢ s
#/ Ky @ s+h
a sin(n) sin(77)
_Neq _
(n= [W] or edn=-ndt+ \/;qu )
es+1

Fig. 5.1 Stochastic extremum seeking scheme for a static map.

with the corresponding Jacobian matrix

_k'arq o
z (1-e%) 0 5.1.23
{ e 0] (5.1.23)
Noticing that¢” > 0,k > 0,a > 0, andh > 0, we know that the above Jacobian
is Hurwitz, i.e., the equilibriun(o, #(1— e*qz)) of the average system is expo-

nentially stable.
According to Theorems 4.5 and 4.6 for the stochastic extrarseieking algo-

rithm in Figure 5.1, we have the following result.

Theorem 5.1.Consider the static map (5.1.1) under the parameter update |
(5.1.7)—(5.1.9). Then there exist constants ®,c > 0,y > 0 and a function T¢) :
(0,&) — N such that for any initial conditiof\?(0)| < r and anyd > 0,

lim inf {t>0:]A%(t)| > c|Af(0)|e ¥+ 5} =, as.  (5.1.24)
E—

and

limoP{|/\£(t)| <c|A%(0)|e " +5, vt e [0,T(g)]} =1 with lim T(g) = oo,
(5.1.25)
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whereA®(t) £ (B5(t), () — (o, 2y" (1_efq2))_

These two results imply that the norm of the error vecib(t) exponentially
converges, both almost surely and in probability, to belovaiitrarily small resid-
ual valued, over an arbitrarily long time interval, which tends to irfyras & goes to
zero. In particular, thé%(t)-component of the error vector converges to befoo
quantify the output convergence to the extremum, for &ny0, define a stopping
time

=inf{t > 0:|A%(t)| > c|A*(0)|e "' +5}. (5.1.26)
Then by (5.1.24) and the definition 4f (t), we know that Iirgrrf =0, a.s., and
E—
|65(t)] <c|A®(0)|e " +5, vt <. (5.1.27)
Sincey(t) = ¢ (6* + 65(t) +asin(n(t))) and¢'(6*) = 0, we have

yit)— 6(0%) = £ (@ (1) - asintn ()2 + 0 (8°(t) + asin(n 1)))?).

(5.1.28)

Thus by (5.1.27), it holds that
y(t) — $(6%)| < O(@?) + O(8%) +CIAf(0) e 2, Wt <12, (5.1.29)
for some positive consta@t Similarly, by (5.1.25),

lim P{Iy(t) — $(6")| < O(a?) +0(8%) +C|A*(0) e Wt & 0.T(e)] } = 1.
(5.1.30)

whereT (¢) is a deterministic function W|th Ilrfr( ) = oo,

Inequalities (5.1.29) and (5.1.30) charactenze the asgtigperformance of ex-
tremum seeking in Figure 5.1 and explain why it is not only argnt that the
perturbation parameterbe small but also that the perturbation gaibe small.

In the gradient-based estimator (5.1.7), stochastica&xeit is chosen in the form
of sin(n(t)). The use of the sinusoidal nonlinearity should not be carduwgith the
use of sinusoidal perturbation signals in deterministicesrum seeking [6]. In the
present stochastic design, the sinusoidal nonlinearigjniply used as a bounded
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——ES value y = ¢(0)
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Fig. 5.2 Stochastic extremum seeking with an OU process perturbdfap: output and extremum
values. Bottom: solutions of the error system and averagiesy

function whose role is to guarantee that the vector field @f&ttor system (5.1.14)—
(5.1.15) is a bounded function of the perturbation proc®és.can choose other
bounded odd functions to replace sinusoidal functions) sisg(x) = xe . Cor-
responding to (5.1.19) in calzculating the average systbmfdllowing integral is

1

) 2
computed; "2 x?e e dx= L

Figure 5.2 displays the simulation results with= 1, ¢” = 2, 8* = 0 in the static
map (5.1.1)and=0.1,h=k=qg=1,& =0.25in the parameter update law (5.1.7)—
(5.1.9) and initial conditior§%(0) = 1,€£(0) = 0.99,8(0) = —1,Z(0) = 1.99. The
simulation result is robust to design parameters, and aimgisults are obtained for
values on this order of magnitude.
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The only requirements on the perturbation process in ouagugg theorems are
ergodicity and the bounded dependence of the vector fiell@perturbation. The
OU process satisfies these requirements. Brownian motitimeamit circle can also
be used as the excitation signal. In the extremum seekirgitig, we replace the
bounded signal sim (t)) = sin(x(t/&)) with the signalHT i} (t/¢), wherer(t) =
[cogW(t)),sin(W(t))]T is Brownian motion on the unit circle arti= [hy, hy]" is a
constant vector. By a similar analysis, we obtain resulis 5.1.24) and (5.1.25),
whereAZ(t) £ (B8(t), e (t)) — — (O, az%(thr h3)).

For Brownian maotion on the unit circle as the stochasticypbgtion, Figure 5.3
shows the simulation results with* = 1, ¢” = 2,6* = 0 in the static map (5.1.1),
a=01h=k=h; =hy=1¢=0.02in the parameter update law (5.1.7)—(5.1.9)
and initial conditiond% (0) = 1,€#(0) = 0.99, 8(0) = —1,Z(0) = 1.99. The simula-
tion is made under the time scale-t/¢.

By comparing Figures 5.2 and 5.3, we observe that fasterargewce is obtained
with the Brownian motion on the unit circle as compared todbevergence rate of
the average system, whereas with the OU process the actuargence is poorer
than predicted with the average system (this observatigergric and independent
of the fact that different parameters were used for the twtup®ation processes).
The difference between the effects of the two perturbatrocgsses may be due to
the “exponentially decaying form” of the invariant distition of the OU process,
in contrast to the uniform distribution of Brownian motion the unit circle.

5.2 Stochastic Extremum Seeking Feedback for General
Nonlinear Dynamic Systems

Consider a general SISO nonlinear model

x = f(x,u), (5.2.31)
y = h(x), (5.2.32)

wherex € R" is the statey € R is the inputy € R is the output, and : R" x R — R"
andh: R" — R are smooth. Suppose that we know a smooth control law

u=a(x,0) (5.2.33)

parameterized by a scalar paramétemhen the closed-loop system
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Fig. 5.3 Stochastic extremum seeking with perturbation based oBith@nian motion on the unit
circle. Top: output and extremum values. Bottom: solutioithe error system and average system.

%= f(x a(x0)) (5.2.34)

has equilibria parameterized I8y As the deterministic case [6], we make the fol-
lowing assumptions about the closed-loop system.

Assumption 5.1.There exists a smooth functibn R — R" such that
f(x,a(x,0)) =0if and only ifx=1(8). (5.2.35)

Assumption 5.2.For eachf € R, the equilibriumx =1(8) of system (5.2.34) is
exponentially stable with decay and overshoot constarfibrmiin 6.

Assumption 5.3.There exist®* € R such that
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Fig. 5.4 Stochastic extremum seeking scheme for nonlinear dynamics

(hol)'(67) =0, (5.2.36)
hol)”(6%) < 0. (5.2.37)

—

Thus, we assume that the output equilibrium rgaph(1(68)) has a local maxi-
mum até = 6*.

Our objective is to develop a feedback mechanism which miessutput equi-
librium mapy(h(1(6))) as close as possible to the maximyh(l (6*))) but without
requiring the knowledge of eithé* or the functiong andl.

We use a stochastic rather than deterministic perturbatgral and choose the
parameter update law as (Figure 5.4)

dé

Pl k&, (5.2.38)
dé .

FTt —wi & +wi(y—q)sin(n), (5.2.39)
d

d_i = —Wol +Wyy, (5.2.40)
gdn = —ndt+ eqdWw, (5.2.41)

wherek > 0,w; > 0,w, > 0,& > 0, andq > 0 are design parameters afwi(t),t >
0) is a 1-dimensional standard Brownian motion on some prdibafpace(Q,.7, P).
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Remark 5.1As in the deterministic case [6], the parametiens;,w, need to be
chosen a$D(d), where 0< d <« &. This yields a decomposition into three time
scales (in contrast to two time scales encountered with tagc smap in Sec-
tion 5.1). The fastest of the three time scales, the timeesas$ociated with the
plantX = f(x,a(x,0)), requires the employment of a singular perturbation argu-
ment, whereas averaging analysis is applied to the two Itiwer scales. Since we
do not have a suitable infinite-time stochastic singulatysbation theorem at our
disposal, we apply the singular perturbation reductiorheut invoking a formal
theorem, though the reduced and boundary layer systemdigfy $he usual local
exponential stability assumptions. In addition, the loaspfilter (5.2.39), together
with the high-pass filter (5.1.8) in Section 5.1, is introdddor improved asymp-
totic performance but is not essential for achieving stigtfil 37].

We define
6 = O +asin(n(t)) (5.2.42)
with a > 0 and obtain the closed-loop system as

dx

dat f(xa(x8+asinn())), (5.2.43)
dé
@ (5.2.44)
% = —wg +wi(y—{)sin(n (1)), (5.2.45)
% = Wl +woy, (5.2.46)
edn(t) = —n(t)dt+ VeqdwW(t). (5.2.47)
Definex (t) = n(&t) andB(t) = —=W(et). Then with the error variables
6=0-0", (5.2.48)
{=7—hol(6"), (5.2.49)

the closed-loop system is rewritten as
dx . = .
= f(x,a(6"+6+asin(x(t/g))),

= -
(5.2.50)
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d 0 ~
i@ §| =E, (5.2.51)
¢
where
k& B
Es [_wls +wa(h(x) —hol(6) — O)sin(x(t/¢)) (5.2.52)
—W2¢ +wa(h(x) —hol(6))

anddy(t) = —x(t)dt+qdB(t).

As indicated in Remark 5.1, we employ a singular perturlmeteduction. As-
suminge to be large compared to the size of parameters in (5.2.33egeex in
(5.2.50) at its quasi-steady state value as

x=1(8* + 0 +asin(x(t/¢))), (5.2.53)

and substitute it into (5.2.51), and then get the reduce@sys

d [ér] ~
— | & | =E, (5.2.54)
dt | 3
&
where
K )
E £ |:—W1£r+W1(V£ér+aSir1(X(t/£)))_ZF)Sin(X(t/“:)) (5.2.55)
—Wa{r +Wov(6 +asin(x(t/€)))
and

V(B +asin(x(t/€))) = hol (8" + & +asin(x(t/€))) —hol(8"). (5.2.56)

With Assumption 5.3, we have

v(0) = 0, (5.2.57)
V(0) = (hol)(8%) =0, (5.2.58)
V/(0) = (hol)"(6%) <O. (5.2.59)
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Now we use our stochastic averaging theorems to analyzemy(st2.54). Accord-
ing to (4.1.12), we obtain that the average system of (5)2s54

Zave
;

éave
d r ~
i@ [ EVE] = Eave (5.2.60)

where
kEraVe
= i
Eaves | —wiEde+wi—Lo [fIv(62e+asin(y))sin(y)e #dy| . (5.2.61)
—wWo e w, ke [T (624 asin(y))e @ dy

First, we determine the average equilibrig&i¢, £&¢, 7€) which satisfies

ae_, (5.2.62)
o _sinfy) %
V(62€ + asin(y e ?dy=0, (5.2.63)
[, @R asin) 7
Zae 1 e na.e ; *ﬁz
a :ﬁ/,m V(82 + asin(y))e @ dy. (5.2.64)
Assume thaB®® has the form
62€ = bya+ bya® + O(a®), (5.2.65)
and by (5.2.57)—(5.2.58), define
! 1
v(x) = @xﬂ \/3(|0)x3+0(x4). (5.2.66)

Then substituting (5.2.65) and (5.2.66) into (5.2.63) , \&eeh

/+oov(b a+b a2+O(a3)+asin(y))sin(y)ie7§dy
o T VT

— /jm {\/I(O) (bra-+bya? +O(a®) + asin(y))

2
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V" (0 ,
+ 3(| ) (bya-+b,a? + O(a®) + asin(y))
! | | .
1 - 2
+O((bh1a+ b2a2+0(a3)+asm(y))4)] sin(y) e @dy
VT
~00 !
- / [@(zma%r2b2a3+0(a4))sin2(y)
V" (0 _ _ 1 ¥
+ 3(!)(:stﬁa3+0(a4)+a3sm2(y))sm2(y)}ﬁ ?dy+ O(a%)
— 0@ +V'(0)by %—%e*qz a2
" "
(a0 L0 (33 10 (3L a4
=0, (5.2.67)
where the following facts are used:
1 [t _P
— Si y)e #dy=0, k=0,1,2,..., 2.
ﬁq/ i+ (y)e Pdy—0, k=0,1,2 (5.2.68)
1ot o 5 1 1 o
ﬁ/700 sir?(y)e @dy= 5—5¢ % (5.2.69)
L[ e Fay— 3 Loty Lo
\/ﬁq/,m sin*(y)e “dy= 8 2e +8e . (5.2.70)

Comparing the coefficients of the powersaodn the right-hand and left-hand sides
of (5.2.67), we have

by =0, (5.2.71)

1/ . 7q2 74q2
by = — QB4 T +& W) (5.2.72)
24v'(0)(1—e @)

and thus by (5.2.65), we have

) V'(0)(3— 4% + g4
6=~ (ZLE/’/(O)(l e ) -+ (), 527

From this equation, together with (5.2.64), we have
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~ oo ) e
o :/ v(6® +asm(y))ﬁe @ dy
E
_/ t:za +0O(a )+asm(y))ﬁdy
- /7 {\/é ) (bpa? + O(a )Jrasm(y))2

+\//;(O) (bpa?+O(a )+asm(y))3

¥
EZ

2 +0((ba*+O(a )+a5yln(y)) e Y
' Foo 2

a\/2(0)/ sinz(y)ﬁe ?dy+0(a’)
V(O i-e)

—o00

2 a?+0(a’). (5.2.74)
Thus the equilibrium of the average system (5.2.60) is
zae VOBt Pre ) 5 53
O e 2oae® 2 1 O@)
& | = 0 (5.2.75)
& Vo) 2 o)
The Jacobian matrix of the average system (5.2.60) at tHbqm (6™°, £2¢, 7€)
is
0 k O
B3, -w 0 |, (5.2.76)
Jra31 0 —W>
where
33, = V (822 4 asin(y)) sin(y)efqﬁzdy (5.2.77)
r \/7—Tq o r i
~ ¥
I = 721q/ V(62€+asin(y))e “dy. (5.2.78)

SinceJ? is block-lower triangular we see that it will be Hurwitz if dionly if
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o : P
/ vV (6™ +asin(y)) sin(y)e @dy<0. (5.2.79)

With Taylor expansion and by calculating the integral, we ge

400 ~ ,ﬁ 2
/+ vV (67 +asin(y)) sin(y)e @ dy=ay/mmVv’(0) (% Lo ) +0(a?).

J o 2
(5.2.80)

By substituting (5.2.80) into (5.2.76) we get
detAl —J7) = ()\2+W1A - W—ék\//(O)a(l— e ) +O(a2)> (A +w,)5.2.81)

which proves thaf# is Hurwitz for sufficiently smalk. This implies that the equi-
librium of the average system is exponentially stable fdficantly smalla. Then
according to Theorems 4.5 and 4.6, we have the followingltrésustochastic ex-
tremum seeking algorithm in Figure 5.4.

Theorem 5.2. Consider system (5.2.54) under Assumption 5.3. Then thsis @
constant & > 0 such that for any) < a < a* there exist constantsx 0,c >0,y >0

and a function T¢) : (0,&) — N such that for any initial conditiofA%2(0)| < r,

and anyd > 0,

lim inf {t>0:]4%3(t)| > c|A%?(0)|e "+ 6} =, as.  (5.2.82)
E—
and

IimOP{|A5’a(t)| <clA%?(0)|e "+ 8, vt € [0,T(€)]} = Lwith IimOT(s) = oo,
E— £—
(5.2.83)

where
AEA() 2 (ér (t),fr(t),Zr(t))_
V'(0)(3-4e P +e ) ,
247'(0)(1— e P)
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These results imply that the norm of the error vedéf(t) exponentially con-
verges, both almost surely and in probability, to below ditearily small residual
valued over an arbitrary large time interval, which tends to infiras the pertur-
bation parametes goes to zero. In particular, th@®(t)-component of the error
vector converges to belod. To quantify the output convergence to the extremum,
we define a stopping time

18 =inf{t > 0:|A%A(t)| > c|a®3(0)|e " + &} .

Then by (5.2.82) and the definition 8f2(t), we know that Iir(r)Tr;S = o, a.s., and
E—

for vt < 12,

. 1" e | a—a?
6 (t) — _VI(O)3-4e +e2 )a2+O(a3) < c|A%3(0)| e "+,
24v"(0)(1— e~ %)
(5.2.85)
which implies that
|6 (t)| < O(a2) +clas?(0)|e " +5, vt <. (5.2.86)

Sincey(t) = h(1(6* + 6 (t) +asin(n(t)))) and(hol)'(6*) = 0, we have

y(t) —hol(6%) = (6 (t) +asin(n(t)))>+0 ((ér +asin(n (t)))3) .

(5.2.87)

(hol)' (6 7
2

Thus by (5.2.86), it holds that
ly(t) —hol(6)] < O(a?) + O(8?) +C|AS2(0)|%e 4, vt <10, (5.2.88)
for some positive constaft Similarly, by (5.2.83)

lim P{y(t) ~hol(6")| < O(a%) + O(&?) +C|a*2(0) P& ",
vte[0,T(e)]} =1, (5.2.89)

whereT (¢) is a deterministic function with lifT (€) = co.
&

—0
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5.3 Notes and References

This chapter is based on our results in [91]. The first desigrstochastic extremum
seeking algorithm was proposed in discrete time in [99]hia thapter, we intro-
duced continuous-time extremum seeking algorithms thal@nstochastic excita-
tion signals instead of deterministic periodic signalghiesubsequent chapters, we
explore more specific applications of the stochastic extirarseeking algorithms.

The stochastic extremum seeking approach introduced ir@xlinspired a de-
sign of an algorithm for maximization of endurance of aiftiia[71] by exploring
the stochastic character of the air turbulence disturhavitieh affects the airspeed-
dependent drag force. The algorithm in [71] is a nontrivialdification of the algo-
rithm in this chapter because the air turbulence is not adiance that is introduced
by the user and hence it enters the feedback system different






Chapter 6

Stochastic Source Seeking for Nonholonomic
Vehicles

Steering mobile robots in concentrations fields with an wnkmspatial distribution,
and without position (GPS) measurements available to thetsphas become a very
active field in recent years, with entire conference sesstmticated to the topic
and with many grants, in various countries, awarded to taysof this topic. The
motivation comes from environmental (tracking of oil sgilumes) to homeland
security (contaminants released into the atmosphere \dérty bomb”) to biology
and medicine (understanding the feedback mechanism tatliss chemotaxis of
bacteria and cancer cells).

We refer to the problem of steering of vehicles in GPS-dearedronments, with
unknown spatially distributed concentration fieldssasrce seekingn this chap-
ter, we investigate a stochastic version of source seekinaligating a unicycle
robot with the help of a random perturbation. Our vehicle hagnowledge of its
position, nor of of the distribution of the signal field. Todithe source, we employ
a stochastic extremum seeking approach and provide aistatyiklysis based on
stochastic averaging theorems that we developed in Chépiére key challenge is
that we cannot directly control the two-dimensional positvector of the robot but
can control its scalar angular velocity input, for steeridth a controller that we
design in the chapter, the vehicle is driven to approach &l sreighborhood of the
source in a manner that seems partly random but is convergarguitable sense.
We present a stability proof for the scheme with a static @@and simulation re-
sults for both static and moving sources. Convergence igprboth in the “almost
sure” sense and “in probability”.

The chapter is organized as follows. In Section 6.1 we piteakervehicle model
and state the problem. In Section 6.2 we present our staclsasirce seeking con-

109
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>

X

Fig. 6.1 The notation used in the model of vehicle sensor and centerdics.

troller. In Section 6.3 we prove local exponential conveiggefor circular level sets,

namely, where the signal depends only on the distance freradbrce and decays
quadratically. In Section 6.4 we calculate the convergespeed, for particular pa-
rameter choices for which it is possible to do so explicilyd characterize the
best achievable convergence speed. In Section 6.5 we psgsaiations and dis-

cussions about dependence on design parameters. In Sédiiave discuss the
dependence on damping term. In Section 6.7 we discuss the effconstraints of

the angular velocity and design alternatives. In Secti8mw& consider signal fields
with elliptical level sets.

6.1 Vehicle Model and Problem Statement

As in [31], we consider a mobile agent modeled as a unicydle assensor mounted
at its front end, a distand® from the center. Fig. 6.1 depicts the position, heading,
angular and forward velocities for the center and sensag. dduations of motion
for the vehicle center are
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0 Unicycle Kinematics & rs NSig]r}al Fi;/l[d J
Sensor Position Map onunear Vap
J(x.y,)
/ 2 + c 4 s
s+h
an(1)
Jes sin(e)
2
dy ()
es+1 0
s Ina)
8Ve
es+1

white noise W (¢)

Fig. 6.2 Block diagram of stochastic source seeking via tuning otiéargrelocity of the vehicle.

fo = vel®, (6.1.1)
6 = u, (6.1.2)

wherer is the vehicle centef is the orientationy,u are the forward and angular
velocity inputs, respectively, anfis the imaginary unit. The sensor is located at
rs=re+ Re®.

The task of the vehicle is to seek a source that emits a sigephaally dis-
tributed signald = f(r(x,y)), which has an isolated local maximufi = f(r*),
wherer* is the location of the local maximum. We achieve local cogeece ta*,
in a particular probabilistic sense, without the knowled§ée shape of (-), and
without the measurement of, using only the measurement &ft) at the vehicle
sensor.

6.2 Stochastic Source Seeking Controller

We employ the scheme depicted by the block diagram in Fig. B2 forward
velocity of the vehicle is set te(t) = V; = const, whereas the angular velooftys
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tuned by the extremum seeking control law
6 = an +c& sin(n) — do&2sin(n), (6.2.3)

where é = [J] is the output of the washout filter for the sensor reading

S
sth
n= %[W](e € (0,&)) is colored noise used as a perturbation in stochastic ex-
tremum seeking, and., a, ¢, do, g, £,h > 0 are design parameters which (along with
parametemR) influence the performance. The sigr®/(t),t > 0) is a standard
Brownian motion defined in a complete probability spé@e.#, P) with the sample
spaceQ, theo-field .#, and the probability measuke

With the observation that the transfer function from whioése\W to 1 is relative
degree zero, giving

_ gVes 1

1 ges+9—4g,;

V= = _ 9w 12
es+ 1[W] Ve es+1 W= \/EW el 6.24)
the control law is rewritten as
__ @ — deE?)si a9
dé = endt+(c£ do& <) sin(n)dt+ \/EdW, (6.2.5)
_ 1 9
dn = er]dt+ \/EdW. (6.2.6)

Compared with the deterministic case in [31], wherg ®in) was used as the
probing signal, we use the stochastic signalrgii)) to develop a gradient estimate.
It is not essential to choose the sinusoidal nonlinearityrpi in the stochastic de-
sign. This choice is primarily made for the ease of deriving &verage system in
the stability analysis. We can replace(gjn with other bounded and odd functions,
such asne*”z, however, the integrals in calculating the expectationttéderiva-
tion of the average system become more complicated. Intfaethoundedness of
the perturbation (such as sjror ne*”z) is only needed in the analysis, whereas in
the simulations, successful convergence is achieved eten wir{n) is replaced
byn.

We refer to the termrdoézsin(n) as the tlp-term” or the damping term. This
term is not needed in the basic stochastic extremum seelgogthm for a static
map in Chapter 5. This term is essential for achieving exptalestability in source
seeking problems with a vehicle employing constant forwadcity.
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6.3 Stability Analysis

We assume that the nonlinear map defining the distributioth@fsignal field is
quadratic and takes the form

I=1f(rs) = —aplrs—r"P%, (6.3.7)

wherer* is the unknown maximizer;* = f(r*) is the unknown maximum ang}
is an unknown positive constant. We define an output erréavier

h

e= —pHl- 1, (6.3.8)

which allows us to express the sigrfahfter the washout filter, as

sJ_J h

“opl=I-f e (6.3.9)

and thus we have=h¢.
We now use our general stochastic averaging theory from €hdpto analyze
the stability of the closed-loop system.

Theorem 6.1.Consider the closed-loop system

dr. = Veelfdt, (6.3.10)
do = —ndt —dp&? dt+ —=dWw, 6.3.11
o 1dt+ (e —dod %) sin(n) +\/§ , ( )
de= hé&dt, (6.3.12)
&= —(alrs—r'[*+e), (6.3.13)
rs=re+Re®, (6.3.14)
1 g
dn = —=ndt+ —==dw, 6.3.15
n Ul +\/§ , ( )

where ¢dg,h,R V¢, qr > 0, and the parameters, k¢, a,g > 0 are chosen such that

1 R I>(2a,9)
H - Wc (2_ Il(avg)|2(avg)> ’ (6316)
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- <a—a>292 _ (at1)%?

242
where k(a,g) = e 1, l2(a,g)=5 |e —e 1 } . (The condition (6.3.16)

is satisfied for any h- 0 and \¢ > 0 provided g is chosen as=g \/g and a is cho-

sen as0 < a < a*(B) & %In% for any B > 0. For example, for = 1,

a*(1) = 0.24.) If the initial conditions £(0), 6(0), 0) are such that the following
quantities are sufficiently small,

Ire(0) —r*|—pl, |e(0)+a (R +p?)], (6.3.17)
either‘9(0)—arg(r*—rc(0))+g‘ or (6.3.18)
’6(0) —arg(r* —re(0)) — ’_21\ (6.3.19)

where

Vcll(avg)
_ [ Y&l 6.3.20
P 20:cRb(a,g)’ ( )

then there exist constantg o > 0 and a function T¢) : (0, &) — N such that for
anyd > 0,

lim in {t>0:rc(t) —r*|—p| > Coe ¥ + 6} =0, as.  (6.3.21)
E—
and

lim P{lIrc(t) —r*| —p| < Coe ' +5, ¥t € [0,T(g)]} =1 (6.3.22)

with limg_o T (€) = o, where the constantdds dependent on the initial condition
(r¢(0),6(0),e(0)) and on the parameters e dp,h,R V¢, qr,g, and the constang
is dependent on the parametergaly, h,R, Ve, qr, 9.

Proof. We start by defining the shifted variables

re—re, (6.3.23)
6 —an, (6.3.24)

fe

8

and a map betwean and a new quantitg* given by

—fe = |fcle!® (6.3.25)
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0% = arg —f¢) =argr* —re)
—n-4in(E), it 0" (- ~3),
={ —in (r_) , if 0 ¢ (—Z, %], (6.3.26)
fc

where 8* represents the heading angle towards the source locatédaditen the
vehicle is atr¢. Using these definitions, the expression§as

& = — (qr (R+fc|?— 2Rlfc/cog B — 6" +an)) +e). (6.3.27)

Since
d6 = d6 —adn

—a 4oE2)si ag g
: ndt+ (cé —doé )sm(n)dt+\/§dw+£r)dt \/EdW
= (c& — do&?)sin(n)dt,

(6.3.28)
we obtain the dynamics of the shifted system as
dfc - dl‘c - J(é+a’7)
FrT =Ve , (6.3.29)
db o
Gt = (c& —dog?)sin(n). (6.3.30)
3_? = —hg (R +|fc|? — 2Rfc|co 6 — 0" +an)) —he  (6.3.31)
Similar to Section 5.1, define
B(t) ﬁW(et), X () =n(et) (6.3.32)

Then we have

dx(t) = —x(t)dt+gdB(t), (6.3.33)
whereB(t) is a standard Brownian motion and the procgst) is an Ornstein-
Uhlenbeck (OU) process which is ergodic with invariantritsttion
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u(dy) = ieﬁfﬁzdy (6.3.34)

Now we define error variableg andé which represent the distance to the source,
and the difference between the vehicle’s heading and themapheading, respec-
tively,

cl=lre—r", (6.3.35)
6=06-06" (6.3.36)

Thus we obtain the following dynamics for the error variable

dfe  dlf]  dvide 1 dic. . dF

q oAt dt 2 dt e e
= —Vccog0 +ax(t/e)), (6.3.37)
dd dé de* db |  dfc. . df

R AT TR
:(c_dof)asin(x(t/e))+\ﬁsin(éJraX(t/e)), (6.3.38)

Ic
3—? = he, (6.3.39)
& = — (o (RP+72—2Rfccog B +ax(t/e))) +e), (6.3.40)
dx(t) = —x(t)dt+gdB(t). (6.3.41)

We use general stochastic averaging presented in Chapteadatyze this error
system.

First we calculate the average system of (6.3.37),(6.288)6.3.39). Since

- e 1 7
'/Rsm(ay)u(dy)z/m sm(ay)ﬁe @ dy=0, (6.3.42)
/ﬂ%cos(ay)sin(ay)u(dy)z /R cog2ay) sin(ay)u(dy) = O, (6.3.43)
/ cogay)u(dy) = /w cos(ay)iefgdyz e*ittg2 £ 11(a,0),(6.3.44)
Jr J—o /11y

| sintaysinty)p(ay) = /+°° sin(ay) sin(y) e~ Zdy
JR J—00 \/ﬁg
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1 { _(a-1)2g? (@+1)2g? ]
4 4

—e€

5 e 215(a,g), (6.3.45)

by (4.1.12), we obtain that the average error system is

dfave -
dct = —Vcl1(a,g)cog 62Y¢), (6.3.46)
nave o
dZt = - (Zc+ 4dg (qr (R?+ rgvez) + ea"e)) x o RFEVesin(62Y9)1,(a, g)
+2doPRETAE sin(2629)1,(2a, ) + F\gjesin(éavml(a, 9), (6.3.47)
derve 2 .
o = —hg R? — hgf&¢ + 2hRqf2®cog 62°)1,(a,g) — he™®  (6.3.48)

The average error system has two equilibria defined by
{ngéﬁ’éav§%7eav§ql} _ {p,+g,—Qr(R2+P2)] , (6.3.49)
{F(e:wee%’éavéé%ﬁaveeoﬂ} _ [p7_g’ _qr(R2+p2)} , (6.3.50)

wherep is given by (6.3.20 ). The above two equilibria have the fellgy Jaco-
bians, respectively,

O _Vcll(aag) 0
At = — | AZE 4doy?p2l5(2a,9) 4doypla(a,g) | (6.3.51)
2hgp  2hypli(a,g) h
and
0 _Vcll(a7g) 0
A°® ASE  —4doy?p?l2(2a,9) 4doypla(a,g) |, (6.3.52)
—2hgp  2hypli(a,g) —h

whereAST = AS® = 4y(c+ 2dogrp?)l2(a,9), Y £ R The characteristic polyno-
mial for both Jacobians is

2V2I2(a g) 2V2I2(a g)
3 2 1\ 1\
O0=A+hA“+ ¢ > A+h c >

+4dop®d?R [RI2(28,9)A 2 + (2Vel1(a,0)12(a,0)
+hR(I2(2a,9) — 211(a,9)12(a,9))) A]. (6.3.53)
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Sincea > 0, we have(a,g) > 0 andl4(a,g) > 0. For the roots of the polynomial
(6.3.53) to be in the left half-plane, all of its three coeéfitts need to be positive and
the product of the coefficients associated withandA ! needs to be greater than
the coefficient associated wift. All of these conditions are satisfied whenever

2\/C|1(a7 g)IZ(av g) + hR(IZ(Zav g) - 2ll(aa g)IZ(av g)) >0, (6.3.54)

which is equivalent to the condition (6.3.16). When the dtod (6.3.16) is sat-
isfied, the Jacobians (6.3.51) and (6.3.52) are Hurwitzchviinplies that both
average equilibria (6.3.49) and (6.3.50) are exponeptithble. Thus by Theo-

rems 4.5 and 4.6, there exist consta()g% >0 rg) > 0, yéi) > 0 and functions
T(i)( €)1 (0,&) — N, i = 1,2, such that for anyy > 0, and any initial condition

‘/\ ’<ré),

lim inf{t >
£—0

lim P{
£—0

with lims_o T (g) = oo, whereAl™ (t) = (Fo(t) — p, B(t) — &, e(t) + ar (R + p?))
and/\s(z)(t) =(fet)—p,B(t)+ 2 7, €(t) + qr(R2+p2 )). The results (6.3.55), (6.3.56),
together with the facifc(t) — p| < |(Fc(t) —p,O(t) + 5, e(t) + o (R?+ p?)) | and
the definition ofrg, we have

O[> ‘Ap(o)’ewé‘)t N 5} —w, as. (6.3.55)

and

A <cf)

A ()]e 015 te [O,T(”(E)]} =1 (6.3.56)

IimO inf {t >0:]re(t) —r*|—p| > C((,”e*V(()')t + 5} =0, a.s, (6.3.57)
E—
and

lim P{||rc(t)—r*| pl<cle®' 15 vtelo, <>(s)]}_1(6.3.58)

WhereC0 —c0 |( )— 3. €(0) +ar (RP+ p?)) |

with IlmgﬁoT ( ) =00 Fe(0)—p ., 6(0
Fe(0)—p, B(0)+Z, &0 )+q( +p?))|. ThIS completes the

andCO _c0 |(
proof.
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6.4 Convergence Speed

Theorem 6.1 establishes exponential convergence, hoytheezonvergence rate is
determined by the complicated cubic polynomial (6.3.53)p8e roots are hard to
find analytically in general. However, for particular paegtar choice, they can be
found explicitly, as given in the next proposition.

Proposition 6.1.Let the vehicle speed \and the parameter h of the washout filter
be chosen according to the following relation:

Ve =hR. (6.4.59)

Then the exponential convergence rate of the source sesfatgm in Theorem 6.1
is determined by the eigenvalues

A=—h, (6.4.60)

o doquzhll(aa g)|2(2aa g)
Ap—— ch(a.0 (1— 1 L[l) , (6.4.61)

~ doarR?hli(a, g)l2(22,9)
Ag—— ch(a.0 (1+ 1 L[l) , (6.4.62)

where
313

W= acl;(@.9) (6.4.63)

>0,
d3arhRel1(a,g)15(2a,9)
and the radius of the residual annulus is

hll(aa g)
= — 6.4.64
P \/ 2arclz(a,0) ( )
Proof. With V. = hR the stability condition (6.3.16) becomes

_ Ix(2a9)
2l1(a,9)l2(a,9)’

which is satisfied for all parameteaisg, h, R> 0. Thus the characteristic polynomial
(6.3.53) has all three roots with negative real parts. Let

(6.4.65)

H £ 4dop?g?R?l»(2a,9), (6.4.66)
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212
m & 2eli(@g) (6.4.67)
P
Q £ 4dop?afR[2Vel1 (2, 9)l2(a,9)
+hR(12(2a,9) - 211(a,g)l2(a,9))] (6.4.68)
Then we write the characteristic polynomial compactly as
A4 (h+H)A%+ (M+Q)A +hM=0. (6.4.69)

Denote byA;, i = 1,2, 3, the roots of the polynomial (6.4.69). Then by the relation
between the roots and the coefficients in the polynomial, axeh

h4+H = —A1—As— Ag, (6.4.70)
hM = —A1AoAs, (6.4.71)
M+ Q = A1A2+ A2A3+ AzAg. (6.4.72)

At this pointone can just verify (6.4.60)—(6.4.62) by dirsabstitution into (6.4.70)—
(6.4.72), however, we explain how we have arrived at (6 4-@@04.62). LetA; =
—h. We shall show that this choice satisfies (6.4.70)—(6.4y2)so findingA, and
Az which satisfy (6.4.70)—(6.4.72). Withy = —h, (6.4.70)—(6.4.72) become

H= A As, (6.4.73)
M = AxAs, (6.4.74)
Q = hH. (6.4.75)

With substitution o, = hRinto (6.4.68), we immediately see that (6.4.75) is ver-
ified. From (6.4.73) and (6.4.74) we see that we only need li®gbe quadratic
equatiomd?+HA +M = 0. Applying the formula for the roots of a quadratic equa-
tion, we arrive at

A2 = — 2dop?g?R%1(2a,g) + \/4d PBPRA3(2a,9) — 2V212(a,Q)

ll(aa g)|2(2a1 g)

= R g

- S\/dzqﬁ g%ﬁag) 4hgcli(a,g)l2(a,0),  (6.4.76)
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1
Yo =~ 2000 RP1z(22.0) - \[4dGpaRAZ (2a.0) - VRI(@.)
l1(a,9)12(2a,9)

=~ GoarRV clz(a,9)
R 12(a,g)12(2a,
R g i@IL2Y)  pho o agiyag,  (6.4.77)
c IZ(aa g)

which, with some simplifications, gives (6.4.60)—(6.4.@3)is completes the proof.

Of the three eigenvalues in Proposition 6.1 one is real ancbeaplaced arbi-
trarily far to the left by choosing large, whereas the other two can either be real
or conjugate complex. The optimal choice is where the eiglei®sA, and A3 are
equal, because otherwise, either one or both of these ellygsvare closer to the
imaginary axis then wheky, = A3. Unfortunately, this optimal eigenvalue placement
cannot be achieved by intent, since the design parameteis lWwave to depend on
the unknowrg,, however, in the next corollary we state this result in otdenote
what the best achievable convergence speed is.

Corollary 6.1. Let \; = hR and let the damping parameter be chosen as
12 c*13(a,9)
~ V@ Rhk(2a,9) | li(ag)

Then the exponential convergence rate of the source seskatgm in Theorem 6.1
is determined by the eigenvalues

do

(6.4.78)

M= —h, (6.4.79)
A2 = A3 =—2R\/qrhch(a,g)l2(a,9), (6.4.80)

whereas the residual annulus is as in (6.4.64).

From Corollary 6.1 we note that the optimizing damping ceédfitdy grows,
whereas the convergence rate= A3 decays, with a decrease of the paramgter
namely, with the flattening of the extremum, as should be &gk Not surprisingly,
the residual annulus (6.4.64) also grows with the flatterihthe extremum. The
convergence speed grows, whereas the annulus size stwittkghe tuning gairc.

Proposition 6.2.For a fixed a, the optimal convergence speed (6.4.80) has a non
monotonic dependence on the noise intensity g, with themahgonvergence speed
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1, 2a2+1+2a
B W | [— 6.4.81
9 \/ an2a2+1—2a ( )

Proof. By considering (6.4.80) and maximizing

achieved for

2202 a 122 ar1)262
! {e< 7 e”?g] (6.4.82)

l1(a,g)l2(a,9) = %e*

with respect tay?. This completes the proof.

The non-monotonic dependence of the convergence speed naife intensitg
is intuitive. If the noise is low, the gradient explorati@insufficient and the tuning
process is ineffective. Too much noise, and the perturbatikes the trajectories
too far from the average trajectory, slowing the approadhécannulus.

Proposition 6.3.For a > 1/2 the annulus radiup defined in (6.4.64) is a decreas-
ing function of noise intensity g. Fora(0, 1/2) the radiusp has a non-monotonoic
dependence on g, with the miningahchieved for

s /1 1+2a
g’ = 5'”1—2&1' (6.4.83)

Proof. By considering (6.4.64) and minimizing

192
l2(a,9) i 2Zea _ (6.4.84)
li(a,9) (2% —e 29

with respect tay?. This completes the proof.

Since we want to operate with a relatively small perturbaparameten, the
annulus-minimizing value of in (6.4.83) is of interest. Both very large and very
low intensity of perturbation noise result in a large ansulwhereas a medium
range ofg is optimal. It is worth comparing the optimizirggfor convergence speed
in (6.4.81) with the optimizing) for the annulus in (6.4.83). For smallthey are
similar, which is very fortunate.
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6.5 Simulations, and Dependence on Design Parameters

6.5.1 Basic simulations

Without loss of generality, we let thenknownlocation of the source be at the
origin r* = (0,0). We pick the design parameters ¥s= 0.1,c = 1000Qdp =
100a=01h=1g=1¢=0.01R=0.1 and take the parameters of the map
as f* = 0,q; = 1.5. The simulation results are given in Fig. 6.3. We observe that
the trajectories of the vehicle center go to a small neighbod of the source and
the vehicle motion involves a random perturbation comptnastead of a sinu-
soidal perturbation employed in the deterministic casé. [Bilthe simulations we
use band-limited white noise to approximate the white noise

The stochastic source seeking approach can also be usedriuitpof non-
stationary sources. For the case where the source is pénfpran“figure eight”
motion, unknown to the pursuing vehicle, the simulatiorulieis shown in Fig. 6.4.

6.5.2 Dependence of annulus radius p on parameters

From (6.3.20), we see the radipsof the attractive annulus is dependent on the
model parameterg, R and design parametévs, c,a, g, and that it can be made as
small as desired. Hence, by (6.3.21) and (6.3.22), by makiag small as desired,
the vehicle can converge as closely to the source as desired.

The dependence @f on the noise intensity is characterized by Proposition 6.3.
Fig. 6.5 show some of this dependence. For a fixed senall0.1, the radius for
g=2isp =0.021, which is smaller than the radips= 0.029 forg = 1.

6.6 Dependence on Damping Terndg

Similar to the deterministic case in [31], the damping terdp&2sin(n) in the con-

trol law (6.2.3) for@ plays a crucial role in achieving convergence of the vehizle
an annulus of radiug and arbitrarily small thicknes® near the source, c.f. (6.3.21)
and (6.3.22), and long-term retention (in a probabilisénse) in that annulus. To
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Vehicle (xc, yc)
10 % Initial position
ogl * Source (z*,y*)
0.6f
>
0.4+
0.2t
0,
-0.2 :
0 O).(S 1 (a)
0.5
Vehicle motion ‘
0.48¢
0.46¢
>
0.44¢
0.42¢
0.4

0.4 0.45 0.5

X (b)
Fig. 6.3 (a) The trajectory of the vehicle center for the case of sowith circular level sets. The
trajectory converges to an annulus; (b) A zoomed in sectidimeovehicle trajectory, displaying the
vehicle motion more clearly. For both simulatioivs:= 0.1,¢c = 1000Qdy = 10,a=0.1,g =1,
£=001,R=0.1, f*=0,h=1,q =15. The source is at* = (0,0).

analyze the effect of the damping term in the stochastiénggtive consider two
cases.
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15 Vehicle (z., yc)
* Initial position
1i . Source (Tspe, Ysre)
>~ 0.5
Or -
-0.5

-0.5 0 0.5 1 15
Fig. 6.4 Vehicle following a moving source with circular level setéie simulation parameters are

Ve =0.1,c=1000Qdp = 10,a=0.1,g=1,6=0.01,R=0.1, f*=0,h=1,qg, = 1.5. The source
moves according t&s(t) = 0.5sin(0.13t), ysrc(t) = 0.5sin(0.26t).

6.6.1 No damping (dp = 0)

From (6.3.49) and (6.3.50), the location of the equilibriaiadependent ady. Let
do = 0. Then the average error system (6.3.46)—(6.3.48) sirplifi

rave
drg

i = Veh(ag) cog 62ve), (6.6.85)
d”ave i pav Ve ~av
T sin(62'®) fgvell(a’g)_ZCquC 9(a,9) |, (6.6.86)
ve ~
0 — n(aR + a2 — 2RaE"cos 5™ h(a0))

—heé®€, (6.6.87)
and the corresponding characteristic polynomial becomes

2v¢13(a,9)
02

V413 (a,9)

0=A%+hA%+ A+h=—t1
P
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01t ¢9=1

2

N

R

0.05¢

Z2N3
SN
SN

soze
s

SST

0.1+

0.05¢

-0.1 -0.05 0 005 0.1 (b)

Fig. 6.5 The radius of the attractive annulus of the vehicle centertie case of source with
circular level sets. (a) is fog = 1; (b) is for g = 2. The other simulation parameters &e=
0.1,c=1000Qdy = 10,a=0.1, ¢ =0.01,R=0.1, f*=0,h=1, - = 1.5. The source is at
r*=(0,0).

= (A+h) </\2+ %) (6.6.88)
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which means that the average error system has one stabiwalige and two purely
imaginary eigenvalues, rendering it neutrally stablegadtof exponentially stable.
Thus the locally exponential convergence result in Theddehdoes not hold, nei-
ther in almost sure sense, nor in the sense of convergencehalgulity. We add the
term—do&2sin(n) to the stochastic extremum seeking control law (6.2.3)ipet
in order to achieve local exponential stability of the agerarror system without
changing its equilibria, and thus to obtain the local expuia¢convergence of the
original error system. Fig. 6.6 depicts the phase portfali@average error system,
from which we see fody > 0 that the two equilibria are exponentially stable, each
one with a region of attraction being exactly one half of ttagesspace of the aver-
age error systerfg'¢, 62¥¢) € R, x {—m, 1}, whereas fody = 0 the two average
equilibria are only neutrally stable.

6.6.2 Effect of damping (dp > 0)

Fig.6.7 displays two distinct behaviors of the source segkcheme. For largay

the vehicle undergoes a “roundabout” transient but sejtieskly into a small neigh-
borhood of the source (see Fig. 6.7 (a)). From Fig. 6.7 (b)seethat for smaller
do, the vehicle manifests distinct overshoot phenomenonrbedetting to the at-
tractive annulus, and owing to the use of stochastic peatiob, the vehicle moves
randomly and even turns around in the small neighborhoduso$ource. From Fig.
6.3 (b), we see that, for a smdy, the vehicle makes sharp turns, particularly during
the transient motion towards the annulus. However, by taitargedy, the vehicle
avoids sharp turns and moves in a smoother way (see Fig.)§. Byfssmoothing the
trajectories, the damping term actually steers the velfédter to the origin, even
though theaveragetrajectory appears more roundabout. To see this pointidens
Fig.6.8, which shows three complete trajectories over ithe interval[0, T], for

T = 60. For a small value of the damping coefficieig,= 10, the vehicle has not
even reached the annulus over the time interval considereereas for the large
damping valuedy = 40000, the vehicle has long arrived to the annulus and has
moved several times around the source in the same time @&hterv
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0.2 0.25 0.3 0.35 0.4 0.45

rave
7'C

Fig. 6.6 Phase portrait of the average error system. (a) isifes 0 and the average error system
is not exponentially stable but only marginally stable;iffor dp = 10000 and the average error
system is exponentially stable. The simulation parametes¥; = 0.1,c = 100Qa=0.1,g=1,
£=0.01,R=0.1, f*=0,h=1,q = 1.5. The source is a"*= 0 (which is thed@¢-axis manifold

in the state space of the average system).

6.7 Effect of Constraints of the Angular Velocity, and Desig
Alternatives

6.7.1 Effect of constraints of the angular velocity

A physical vehicle always has a steering constraint, nanagliynit on the angular
velocity 8. This type of a unicycle model is commonly referred to as theibs ve-
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2
-~ dy =10
-~ ~ dy = 10000
1) do =40000 | =7
> 0 i “\
_1 L -
2 1 0 1 2
X (a)
0.4 .
——dy=10 |-
(o1~ .
—dp=10000 FE= -
0.2 EoSANN TR
. _— d() = 40000 ::/ i:\:’%\\;\/i\\i\\\ \
44 0.2 0 0.2 0.4
. . 0 . A

Fig. 6.7 (a) The trajectories of the vehicle center for differentues ofdp; (b) A zoomed in
section of attractive annulus with different valuesl@fThe simulation parameters afe=0.1,c=
1000a=0.1,g=1e=001,R=0.1, f*=0,h=1,q =15. The source is at* = (0,0).

hicle. Fig. 6.9 depicts the trajectories of the vehicle eenthen the angular velocity
is restricted to a symmetric interva: Umax, +Umax, for several values afmax We
observe that, founaxas small as 20, our control law successfully steers the laeshic
to the annulus, and keeps the vehicle near the source, see.i@). In addition,
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““““ do = 10000

0.8} | —— dy = 40000 Jf’

3
0.6r 4
s R et
0.4+ §x e
AS

0.2t ;
ot
_02 n L L
0 0.5 1
X

Fig. 6.8 The trajectories of the vehicle center, for different valoédy, showing that the vehicle
arrives faster to the source for larger valuesdgfdue to the smoothing, or “straightening out”
of its trajectory. Fordyg = 10000 the trajectory just makes it to the annulusTia= 60 seconds.
Over the same time interval, the trajectory does not maketity the annulus for a smallelp,
but arrives much sooner to the annulus, and makes a coupéyalfitions around it, for a larger
do. The simulation parameters arg=0.1,c=10000a=0.1,g=1,¢ =0.01,R=0.1, f* =0,
h=1,q- =1.5. The source is at* = (0,0).

the vehicle moves more smoothly for smallgfay, see Fig. 6.9 (b). However, if the
actuator constrainimay is too small, for examplaynax = 10, the algorithm cannot
keep the vehicle very near the source, as observed in Fi@. 6.1

6.7.2 Alternative designs

In the standard extremum seeking algorithm (see [6]), tlobipg signal and the
demodulation signal are the same, typically(sit). Looking at the probing equa-
tion (6.3.24) and the demodulation equation (6.3.28) imtfesent work, the reader
should note that the probing and demodulation signals #iereint. They are; and
sin(n), respectively. In this chapter we make such a choice forake sf simplicity
of calculating the average error system in the stabilityy@mis—the integrals in the
expectations are easier to obtain analytically with suchaice. If n is replaced
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l,
0.8f
0.6f
>~ 0.4f
0.2} -0 € (—o0, 00)
ol -~ 6§ € [~100,100]
—6 € [-50, 50]
-0.2f ,
6 €[-20,20]
04 0 05 1
X (a)
0.6 :
---0 € (—o0,00)
0.58! -~ 6 €[-100,100]
——0 € [-50,50]
0.56( —0 e [-20,20]
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X (0)

Fig. 6.9 (a) The trajectories of the vehicle center for different stomints of angular velocity;

(b) A zoomed in section of vehicle motion for different camagtts uymax 0n angular velocity. The

simulation parameters a¥¢ = 0.1,c=10000a=0.1,g=1,€=0.01,R=0.1, f*=0,h=1,

g- = 1.5. The source is at* = (0,0).

by sin(n) as the stochastic perturbation in (6.3.24), the extremuwekisg control
(6.2.3) is replaced by
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Fig. 6.10 The trajectories of the vehicle center under a severe @nswon the angular velocity
input Umax = 10). The simulation parameters afe= 0.1,c = 10000a=0.1,g=1, € = 0.01,
R=0.1, f*=0,h=1,q, = 1.5. The source is at* = (0,0).

6 =acogn)n — g sin(n) +c& sin(n) — do&2sin(n) (6.7.89)

and thus (6.3.11) in the closed-loop system changes to

de = _Tacos(n)r) - g sin(n)Ldt
+(cE — do&?)sin(n)dt + % cogn)dW, (6.7.90)

where the additional term% sin(n) results from the Ito formula. Consequently,
the two terms cad +ax (t/¢)) and sir{d + ax(t/€)) in the error system (6.3.37),
(6.3.38) and (6.3.39) should be replaced by(6os asin(x(t/€))) and sir{6 +
asin(x(t/€))), respectively. Itis hard to obtain the corresponding aiedyaverage

error system because we need to calculate two integfgf8cogasin(y))e ¢ dy

¥
and (' sin(asin(y)) sin(y) e ?dyand it is hard to obtain the analytical results
though we can obtain numerical results. Fig. 6.11 depi@drdgectory of the ve-
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hicle center when the control law (6.7.89) is used. From imeiition, there is no
noticeable difference relative to the trajectory in Fi3 @&).

Now we analyze the radius of the annulus for three alteragterturbation sig-
nals. Letv. =0.1,c=1000Q0dy=10,a=0.1,g=1,6=0.01,R=0.1, f*=0,q; =
1.5. Then

1. For the probing signaj in (6.3.24) and demodulation signal & in (6.3.28),
we obtain the radius of the annulusg@s= 0.0293.

2. If we use sifn) to replacen as the probing signal in (6.3.24), the expres-
sionsly(a,g) andl,(a,g) are replaced by; (a,g) andl;(a,g), wherel; (a,g) =

2
[ cosasin(y))u(dy) = |7 codasin(y)) e #dy andl3(a,g) £ fp sin

¥
(asin(y)) sin(y)u(dy) = [*2 sin(asin(y)) sin(y)ﬁe @ dy. By calculating
the integrals numerically, we obtaif0.1,1) = 0.9984 and(0.1,1) = 0.0316.

Thus, we get the radius of the annulusels= /2(;:%% = 0.0325, which

is a little larger tharp'.
3. If we use the bounded functiore*”2 to replace bothp as the probing signal

in (6.3.24) and sifm) as the demodulating signal in (6.3.28), by numerical cal-

¥
culation we obtainf;, cog0.1ye ¥)u(dy) = [* cos(O.lye*Vz)ﬁe Zdy=

¥
0.9995, [, sin(0.1ye ¥’)y e ¥ u(dy) = [ sin(0.1ye ¥*) ye*yzﬁe Zdy=
0.0096 Thus the radius ip'"" = 0.0588, which is considerably larger than both
p' andp".

Therefore, from the point of view of the annulus radius, cwicen as the probing

signal in (6.3.24) and s{m) as the demodulation signal in (6.3.28), achieves the

best performance, in addition to facilitating the analysis

If OU process(n(t),t > 0) is used not only as the probing signal, but also as

the demodulation signal in (6.3.28), the extremum seekorgrol law (6.2.3) is
replaced by _
0 = an + (c& — do&?)n. (6.7.91)

With sin(n) replaced by as a demodulation signal, where the latter signal is not

uniformly bounded, the local Lipschitz condition (Assuiopt4.1) is not satisfied
uniformly in the perturbation process for the resultingseld-loop system. For this
reason, we cannot use general stochastic averaging the¢oramalyze stability.
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* Initial position
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Fig. 6.11 The trajectory of the vehicle center under the control law.@). The simulation pa-
rameters arg; = 0.1,c=10000dy =10,a=0.1,g=1,6=0.01,R=0.1,f*=0,h=1,q, =1.5.
The source is at* = (0,0).

However from simulation results given by Fig. 6.12, we olisdhat the vehicle
achieves convergence to a an annulus near the source uadertnol law (6.7.91).

6.8 System Behavior for Elliptical Level Sets

Our analysis is limited to circular level sets, namely, tddiethat depend on the
distance from the source only. In this section, we presemtlsition results for el-
liptical level sets. Without loss of generality, we assutmegource is at* = (0,0),
and the signal distribution in space is given (at the semmtion) by

J=f(rs) = t* —qlrs2 = qp(r2+72)
= 1 = (ar+ 206 — (0 — 20p)¥, |
:f*_qr|rc+Ré9|2_qp((rc+Ré9>2+(r‘c+Re*19)2), (6.8.92)

whereq; > 0, gr =20p > 0.
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Vehicle (z., y.)

11 % Initial position

% Source (z*,y*)

0.8

0.6f

0.4+

0.2}

-02—— ‘ ‘
0 0.5 1
X

Fig. 6.12 The trajectory of the vehicle center under the control law.@L). The simulation pa-
rameters arg; = 0.1,c=10000dy =10,a=0.1,g=1,6=0.01,R=0.1,f*=0,h=1,q, =1.5.
The source is at* = (0,0).

Fig. 6.13 depicts the trajectory of the vehicle center foigaa field with ellip-
tical level sets. The vehicle reaches a small neighborhéddeosource, however,
the average motion is not circular revolution around thesaunor elliptical revo-
lution, but a motion bias to one of the flatter sides of thepe#li More than one such
attractor exists. It depends on the initial condition andh@noise sequence which
of the average attractors the trajectory will converge to.

Fig. 6.14 depicts the trajectories of the vehicle centehdifferentdy-values in
the control law. From Fig. 6.14 (a), we see that for larggethe vehicle undergoes
a “roundabout” behavior and then moves into a small neighdad of the source.
This is no different than the situation for circular leveissavith either stochastic or
deterministic source seeking algorithms. However, from Bi14 (b), we observe
a difference relative to the results obtained for elligtiezel sets in the determin-
istic case in [31]. The value afy does not affect the shape and size of the system
attractors—the motion near the source is limited to antakibshape.
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Fig. 6.13 The trajectory of the vehicle center for signal field withglkcal level sets. The simula-
tion parameters ai, = 0.1,c=1000Qdpy = 10,a=0.1,g=1,6¢ =0.01,R=0.1, f*=0,h=1,
gr = 1.5, qp = 0.25. The source lies in* = (0,0).

6.9 Notes and References

The research on GPS-denied source seeking has been thitiatee second author
and his students in [147] (for fully actuated point mass ekesiin 2D), [31, 48, 146]
(for nonholonomic unicycles), [28] (for underactuatedietds in 3D), and [30] (for
models of fish locomotion involving multi-link structuresideal fluid and flexible
hydrofoils in vortical flows).

In this chapter, we have investigated a stochastic verdi@ouarce seeking by
navigating the unicycle with the help of a random pertudratachieving a behav-
ior that mimicks the chemotaxis-like motion observed intilaeterium Escherichia
coli (E. coli). E. coliis a single celled organism consisting of a cell body with-mul
tiple trailing flagella used for propulsion. In [18] and [18]is observed that the
bacterium is able to move up chemical gradients towardsenighnsities of nutri-
ents by switching between alternate behaviors known as’‘and “tumble”. The
behavior “run” means that the bacterium moves in esseptiaditraight line by ro-
tating the flagella counter-clockwise as viewed from beltiredcell and the behav-
ior “tumble” means that the bacterium ceases forward maiiwhspins by turning
some flagella in a clockwise direction. It is also observed the tumble behavior
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~ - dy=0
1 dy = 10000 e
- = dg=40000 |

0.8

Fig. 6.14 Signal field with elliptical level sets. (a) The trajectarief the vehicle center for different
do-values; (b) A zoomed in section of attractors for differdgivalues. The simulation parameters
areV; =0.1,c=10000,2a=0.1,g=1,6 =0.01,R=0.1,f*=0,h=1,q, =1.5,p = 0.25. The
source lies in* = (0,0).

displays apparent random nature, although the net motidheobacterium is not
completely random but is in the direction of higher nutriemmcentrations.
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Motivated by the chemotactic behavior Bf coli, in this chapter we have con-
sidered the problem of stochastic source seeking for a Honbmic unicycle. The
analogy is appropriate since neither the unicycle BEocoli can exhibit sideways
motions, though they can be steered. The unicycle vehiatenth considered in this
chapter has no knowledge of its own position, nor of the mosibf the source. It is
only able to sense a scalar signal which emanates from thieesdn an application
to autonomous vehicles, the signal could be the concenttrafia chemical or bi-
ological agent, or it could be an electromagnetic, acoustarmal or radar signal.
The strength of the signal is assumed to decay away from tiveesdhrough diffu-
sion or other physical processes, however, the spatiailaison of the signal is not
available to the vehicle.

To find the source, we employed a stochastic extremum seakipgbach and
provide a stability analysis based on stochastic averati@grems that we devel-
oped in Chapter 4. With a controller that we designed in thiapter, the vehicle
is driven to approach a small neighborhood of the source iraanar that seems
partly random but is convergent in a suitable sense. We ptega stability proof
for the scheme with a static source and simulation resultisdth static and moving
sources. Convergence was proved both in the “almost sunsésend “in probabil-

ity”.

It is important to consider the relative merits of the deti@istic solution to the
source seeking problem in [31] and the stochastic solutiesgnted here. As ex-
pected, the steering inputs in the stochastic approacheasesimooth, which is a
disadvantage of the stochastic approach from the viewpbmttuator wear. How-
ever, the nearly random motion of the stochastic seekertfaslvantage in appli-
cations where the seeker itself may be pursued by anothsu@uiA seeker, which
successfully performs the source finding task but with anexdfiptable, nearly ran-
dom trajectory, is a more challenging target, and is henge V@lnerable, than a
deterministic seeker.

Motivated byE. colichemotaxis, in [101] the authors consider a similar problem
of seeking the maximum of a scalar signal, using a swarm afremmous vehicles,
and propose a control design which induces the vehiclesfonpea biased random
walk, with a net motion of the swarm towards the maximum, actdeving higher
vehicle densities near the maximum at the end of the seasdid&s the difference
in the algorithms presented in [101] and in the present wdifkgrent results are
proved. The result in [101] guarantees that the probahiigsity function of the
positions of the vehicles evolves towards a specified fonaif the spatial profile of
the measured signal, whereas in this chapter we proved mamvee (in probability
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and almost surely), for any single vehicle, to a specific smeighborhood of the
source.

Another significant difference is that we establish expoiaénonvergence, and
in fact characterize the best achievable value, and thetwase value, of the ex-
ponential convergence rate, as a function of the desigmpeteas. In contrast, in
[101] exponential convergence is not shown, nor formalairokd. A considerable
difference in performance is also observed in simulatidhe. algorithm in [101] at
best matches the convergence of the deterministic algoiith146], whereas the
present algorithm has superior convergence to that in [246] does not employ
motions that would, in the absence of a gradient, keep a leeiniplace on the av-
erage (such as random walk, or the triangle and diamondestggits in [146]), but
employs a strategy that keeps the vehicle moving in someageeadirection even
when the gradient is zero, as is the case with the design infRiwvever, it is im-
portant to note that the results we proved here are only gprasifields that have
circular level sets, whereas in [101] such a restrictioroispresent.

The results of this chapter is not difficult to extend to 3D reeuseeking, as in
[28], for underwater vehicle applications, or even to sewseeking for fish models,
as in [30].






Chapter 7

Stochastic Source Seeking with Tuning of
Forward Velocity

In this chapter, we investigate the same source seekindgmnads in Chapter 6 but
by controlling the forward velocity of the vehicle insteatttoe angular velocity.

The chapter is organized as follows. In Section 7.1 we gigalgscription of the
vehicle model and state the problem. In Section 7.2 we pteserstochastic source
seeking controller and prove local exponential convergéma small neighborhood
for the case where the signal field has circular level setseha where the signal
depends only on the distance from the source and decaysaigatly. In Section
7.3 we present simulations. Section 7.4 contains some aatkseferences.

7.1 The Model of Autonomous Vehicle

We consider a unicycle model of a mobile robot with sensot ithaollocated at
the center of the vehicle. A diagram depicting the positioeading, angular and
forward velocities, and the sensor location on the autonmwehicle is shown in
Fig. 7.1. The equations of motion for the vehicle center are

Xc = vcoy0), (7.1.1)
Ye = vsin(@), (7.1.2)
6 = an, (7.1.3)

where(xc,Yc) = z is the center of the vehicl@, is the orientation, and, wy are the
forward and angular velocity inputs. Our stochastic extranseeking algorithm

141
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Center of vehicle
& Sensor

v

>
>

X

Fig. 7.1 The notation used in the vehicle model whese= (X, Yc) is the center of the vehicle.

will tune only the forward velocity input, while keeping the angular velocity input
ap constant.

Different from the case in Chapter 6 and [92] of tuning the wdagvelocity,
the sensor is collocated with the vehicle center. For thecallocated sensor case,
where the sensor is mounted some distance away from the ciiete is no essen-
tial difference but the calculations are more complex.

7.2 Search Algorithm and Convergence Analysis

We assume that the signal source being tracked is distdtageording to an un-
known nonlinear map) = f(x,y), which has an isolated local maximufii =
f(x*,y") at(x*,y*). Our purpose is to control the autonomous vehicle to ach@ve
cal convergence to the maximizes,y*) without knowledge of the shape 6tx, y)
and using only the measurements of its value at the vehjotesgion. A block dia-
gram of the stochastic extremum seeking scheme is showigiry F.

Consider the controller for the forward velocity,
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Fig. 7.2 Stochastic extremum seeking scheme for unicycle with fodwalocity tuning.

v:chin(n)JrgI —(ncos(n)+%gzsin(n))+g\/gcos(n)\/'v , (7.2.4)

wheredn = —Indt+ %dw, 0< € < & is a small parameter for fixegy > 0, W
denotes the white noise, anga, q > 0 are design parameters. For our analysis, we
assume that the nonlinear map is quadratic:

J=J+(z-2)"H(z—7), (7.2.5)

whereH = HT < 0,z = [x,Yc|T, andz' = (x*,y*).
After defining,

Xc— X" = X+acog0)sin(n), (7.2.6)
Ye— Y = y+asin(6)sin(n), (7.2.7)

we can rewrite (7.2.5) as

= J*+% (Zf+a {‘;‘I’rf((g))] <Z€+a[‘;?rf((g” sin(n))) . (7.2.8)

whereZ¢ denotes the error variables
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Z¢ = m . (7.2.9)

Here we use the superscriptto make the dependence on the small parameter
more clear. Then by (7.1.1) (7.1.2), (7.1.3), (7.2.4),@).47.2.7), and Ito formula,
we have the following error dynamics

L (o ] 28 o

- {_ sin(@)] aapsin(n)+c [cps(@)] sin(n){J* + %ZJ HZ¢

cog0) sin(0)
cog6)]" . .. @ [cog6)]"  [cog)] .
+a{sin(6)} sin(nHZ® + = [sin(@)] H {Sin(e)}smz(n)},
(7.2.10)
de
5= @ (7.2.11)

By the definition of Ito stochastic differential equatiorg wave

n(t) _r](O)—/Ot%n(s)ds—i-/ot%dW(s). (7.2.12)
Thus, it holds that
n(et) _n(O)—/Otn(eu)dqu/Ot%dW(eu). (7.2.13)
Now define
B(t) = %W(et), (7.2.14)
X)) =n(et). (7.2.15)

Then, the error dynamics (7.2.10)-(7.2.11) are transfdrtoe

dd_Z: — [_cils?g?} awpsin(x(t/g)) +c {Z?rig))] Sin(X/E){J*Jr%ZeTHZS
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va SO sinirtjepmz + S [0 [eo0)]

sin(6) 2 | sin(6) sin(6)
xsinz(x(t/e))}, (7.2.16)
de
5 = @ (7.2.17)
where
dx(t) = —x(t)dt+gdB(t), (7.2.18)

B(t) is a standard Brownian motion and the proce&s is an Ornstein-Uhlenbeck
(OU) process, which is ergodic with invariant distribution

¥
u(dy) = %e @ dy. (7.2.19)

Since

_ oo i
/sinz”l(y);.l(dy):/:r sinz"*l(y)ﬁeazdy— 0, k=01,

JR o0

: e i ,
/Rsinz(y);.l(dy) = /+ sinz(y)ﬁe Ezdy:%(l—e’g ), (7.2.20)

—00

by (4.1.12), we obtain the average system of (7.2.16)47)2.

dzae  ca 2. [cog62¢) ] [cogave) 1T
= _—7(1—-eY ave
dt =~ 2 (1 € )[Sin(eave> Sin(eave) HZ™, (7-2-21)
deave
— = (7.2.22)
Using the property of persistency of excitation (PEJafg 6o + wot), sin(6y +
ant)]T, it can be shown that the linear time-varying system

dzave  ca

- ?(1—e*92)UJ(t)HZa"e, (7.2.23)

where
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T
cog 6o+ wot) | | cog 6B+ ant)
WYit)y=| . . 7.2.24
®) {sm(@o—kwot)} [sm(@o—i-wot) ! (7.2.24)

is exponentially stable for an§y and anywy # 0 (see Lemma 3.4,[138]). Thus,
there existM, y > 0 such that the following holds for the average system (7)2.2
(7.2.22):

1Z2(t)] < Me " (Z), (7.2.25)
02Vé(t) = Op+ aot, Wt >0, (7.2.26)
for all (Zy, 6) € R3 and allay # 0.

If the error dynamics (7.2.16)-(7.2.17) have a unique cattus solution on
[0,0), then by the approximate result Theorem 4.1, we have fodany0

lim inf {t >0 ‘ {gig” - [gzzzm ’ > 6} — 4w, as. (7.2.27)

and there exist a functiof(¢) : (0, &) — N such that for any) > 0

. Zf(t)] B [Zave(t)” _
‘IEILnOP{0<tS<qu(s) {eg(t) pave(t) >0 0, (7.2.28)
where
liLnOT(s) = 0, (7.2.29)

Noting (7.2.25) and (7.2.26), we have

liinoinf{t > o;’ {ee(t)i_sgo)_ wot} ’ <Me MZ| +5} =+, as. (7.2.30)
and

lim P{ ‘ [ Z ” <Me "|Z§|+8,vt € [0 T(e)]} =1 (7.2.31)

£-0 6%(t) — Bp— axt || = ’ ’ - e

Finally, recall that

e — D:H +a {Z?ns((g” sin(n), (7.2.32)
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which leads us to the following result.

Theorem 7.1.Consider the vehicle (7.1.1)—(7.1.3) under the contro{leR.4). If
the error dynamics (7.2.16)-(7.2.17) have a unique comtirsusolution or[0, «),

then there exist constantxry > 0 and a function T¢) : (0, &) — N such that for
any initial condition|z;(0) — z*| < r and anyd > 0,

S I ]
0% (t) — 6o — wt Yo—Y*

>C

e+ 5+O(a)} =+, a.s.

lim inf {t >0:
£—0

(7.2.33)

X—x1| - _
SCHyo—y*} e V‘+5+0(a),Vte[o,T(s)]}_1

(7.2.34)
with limg_o T (£) = +oo.

Remark 7.1To analyze the solution property of the error dynamics (B2.we use
the stochastic averaging method as in Chapter 6, but hegeritssponding average
system (7.2.21) is time-varying. To deal with this diffiguiive consider the system
(7.2.16)-(7.2.17), however, the corresponding averageesy (7.2.21)-(7.2.22) is
not exponentially stable. Thus, the stochastic averadiagrem is not applicable.
Here we use the PE property and our developed approximasuits in Chapter 4
to overcome this challenge.

7.3 Simulation

For a numerical example, we employ the forward velocity callgr (7.2.4), with
parameters = 0.05,a = 0.025,c = 25,9 = 0.6, to steer the unicycle withy = 5
rad/sec in an unknown signal field, given by

J=1-05(xc—x")2—0.25(yc — y*)?,

where(x*,y*) = (0,0). Hence,
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Fig. 7.3 (a) The trajectory of the vehicle center, and (b) a zoomee&dtien of the vehicle trajec-
tory, displaying the vehicle motion more clearly. The seuiscat(0, 0) and the vehicle is initialized
at(1,1.5).

-05 0
H:[ 0 —0.25]'

The vehicle’s initial position i$x:(0),y:(0)) = (1,1.5).

Fig. 7.3 shows the trajectory of the vehicle as it convergestds a small neigh-
borhood of the source. It is interesting to note the stapstdrajectory that occurs
on average in Fig. 7.3(b) and the star-pattern that occuenvaeterministic ex-
tremum seeking is employed [146]. Fig. 7.4 depicts the timtly of the measured
signal field, which converges to a neighborhoodof= 1. The time histories of the
X- andy-positions are shown in Fig. 7.5.

7.4 Notes and References

This chapter is the stochastic version of the determinissalt in [146]. Owing to
the cooccurrence of a sinusoidal signal and stochastianiation, the determinis-
tic/stochastic averaging theorems are not applicabléitnchapter, we replace the
time-varying average error system (the “time-varying”rettder is caused by the si-
nusoidal evolution of vehicle heading) by a time-invarianérage system with one
more state and supply convergence analysis by the approamrasults developed
in Chapter 4.
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Fig. 7.4 Time history of the signal field measured at the vehicle'stmos
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Fig. 7.5 Time history of the vehicle’s position (a}position and (by-position.






Chapter 8
Multi-parameter Stochastic Extremum Seeking
and Slope Seeking

In Chapters 5, 6, and 7 we considered single-input ES prahl@ven though
the physical space had more than one dimensions, such as sothice seeking
problems in Chapters 6, and 7. In this chapter we introduckivartable (multi-
parameter) ES algorithms, in which a distinct white noigmal is used for each
channel of the input vector.

Numerous applications motivate the development of multhde extremum
seeking: formation flight for drag minimization, sourceldgag with fully actuated
vehicles, locomotion of fish with elongated bodies that carapproximated by a
mechanism with more than two links, beam matching in chapgeticle accelera-
tors, and many other problems where performance is shapeg n®re than one
parameter.

In this chapter we first develop the tools for a theoreticallgsis of multi-
parameter stochastic ES algorithms. These tools are mpliit stochastic aver-
aging theorems in Section 8.1. Then, we introduce multapeater stochastic ES
algorithms for static maps in Section 8.2. Finally, in Sexct8.3 we present stochas-
tic gradient-seeking algorithms, in which the input to anplia tuned to a value at
which the gradient of the map approximately equals the cona®d gradient.

8.1 Multi-input Stochastic Averaging

Consider the following system

151
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{i;giig%wxuvﬁxwamgwwwaﬁm, 8.1.1)

whereX®(t) € R", Yi(t) € R™,1 <i <| are time homogeneous continuous Markov

processes defined on a complete probability spgre” , P), whereQ is the sam-

ple space.# is theo-field, andP is the probability measure. The initial condition

X(0) = x is deterministic. The small parameters = 1,2, ...,1, are in(0, &) with

fixedey > 0,6 = [&1,...,8]". LetS; C R™ be the living space of the perturbation

procesgYi(t),t > 0) and note thaS; may be a proper (e.g. compact) subserb¥.
Assume that

=2 i—2.. (8.1.2)
Ci
for some positive real constargs Denote
Z,(t) =Ya(t), Zo(t) = Yz(Cat), ..., Z(t) =V (art). (8.1.3)
Then (8.1.1) becomes
PR = aXa(t), Zu(t/er). Zo(t/&1). ... 2 (t/£1)), (8.1.4)
XE(0) =

whereX?@(t) = X&,
We have the following lemma about the ergodicity of the psses(Y;(t),t > 0)
and(z(t),t > 0),

Lemma8.1.Fori=1,...,l, if the processY;(t),t > 0) is ergodic with invariant
distribution i (dx) (i.e., if, for any x in the living space df/(t),t > 0), we have
that||R(x,t,-) — ti|lvar — 0ast— o, where P(x,t,-) is the distribution of \(t) when
Yi(0) = x, and|| - ||var is the total variation norm), then the proceg(t),t > 0) is

ergodic with the same invariant distributign(dx).

Proof. SinceZ; = Y1, we only need to prove the claim for= 2,...,l. For any
i =2,...,1, denote byQi(z,t,-) the distribution ofz(t) whenz(0) =Y;(0) = z.
Then by the definition oZ;(t), we have tha®(z,t,-) = R(z,ct, ), and thus

1Qi(z,t, ) — Uillvar = ||R(z,Git, ) — liljvar — 0 ast — oo. (8.1.5)
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The proof is complete.

DenoteZ(t) = [Z1(t)T,Zo(t)T,...,Z (t)T]T. Then for the vector-valued process,
we have the following result:

Lemma 8.2.If the processY;(t),t > 0) is ergodic with invariant distribution; (dx ),
and the processg¥;(t),t > 0),..., (Y (t),t > 0) are independent, then the process
(Z(t),t > 0) is ergodic with the invariant distributiop (dxq) x - x py (dx).

Proof. By the independence é¥,...,Y; }, we can assume that the procgzg),t >
0) lives in the product space &, x --- x Sy;. Denote the distribution df; (t) when

Zi(0)=1z,i=1,...,1, by Qi(z,t,-) and the distribution oZ(t) whenZ(0) = z=
(z1,...,2) by Q(zt,-). Then by the independence, we have that
Q(Zata'):Ql(Zlata')X"'XQ|(Z{1t7')' (816)

And thus by Lemma 8.1, we get

1Q(zt,-) =ty x -+ X i ||var

= [|Qu(z1,t,) x -+ x Q(7,t,) — M1 X H2 X -+ X Uy ||var

< 1Qu(zast, ) X x Q7,1 0) — Hu X Qa(Z2,t,+) X - x Qi(Z,t, ) [var
{1 % Qa(z2,t,-) X - x Q(Z,t,) — p1 X 2 X Q3(Z3,t,-) X - x Q(Z,1,)|var
o X X e X Q) — X e X -1 Xy |var

< ||Q1(Zl7ta ) - I-llear+ st HQI (z,t,)— 1 Hvar — 0, t —oo. (8.1.7)

The proof is complete.

So we obtain the average system of system (8.1.4) as follows:

@ =axX()), Xo =X, (8.1.8)

where

a - | a(xz,....2)u(dz) x - x p(dz).  (8.1.9)
Syy X+ xSy
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To develop a multi-input stochastic averaging theorem, vagarthe following
assumptions:

Assumption 8.1.The vector fielda(x,y1,y2,...,y1) is a continuous function of
(X,Y1,Y2,-..,¥i), and for any € R", itis a bounded function of= [yl ,yJ....,y]".
Further it satisfies the locally Lipschitz condition ine R" uniformly in y €
Sy, x Sy, x -+ x Sy, i.e., for any compact subsét C R", there is a constarkp
such that for alky,xo e Dand ally € Sy, x Sy, x --- x Sy,

|a(x1,y) —a(xo,y)| < kp [x1 — Xa|. (8.1.10)

Assumption 8.2.The perturbation processé€¥(t),t > 0),i = 1,...,l, are ergodic
with invariant distributioru;, respectively, and independent.

By the same method as in Chapter 4 for single input stochagéicaging theo-
rem, we obtain the following multi-input averaging theorem

Theorem 8.1.Consider system (8.1.1) under Assumptions 8.1 and 8.2 Edji-
librium X(t) = 0 of the average system (8.1.8) is exponentially stable, then

(i) The solution of system (8.1.1) is weakly stochastic egptally stable, i.e.,
there exist constantsx 0, c > 0 andy > 0 such that for any initial condition
xe {XeR":|X <r}, and anyd > 0, the solution X(t) = X®.(t) of system
(8.1.1) satisfies

lim inf{t>0:|X%(t)] >c|xle "+ 8} =+, as. (8.1.11)

&1—
(i) There exists a function (;) : (0, &) — N such that
lim P<  sup {|X%(t)|—clxe "} >3d 7 =0with lim T(&)=w.
-0 | o<t<T(gy) £-0

(8.1.12)

Furthermore, (8.1.12) is equivalent to
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|im0 P{IX®(t)| < clxje " +3,vt € [0,T(&1)]} = Lwith IimOT(el) = oo,
&1— &1—

(8.1.13)
8.2 Multi-parameter Stochastic ES for Static Maps
8.2.1 Algorithm for multi-parameter stochastic ES
Let f(8) be a function of the form
f(8)=f"+(6-6")TP(6—-6"), (8.2.14)

whereP = (pjj)ix € R is an unknown symmetric matrix,* is an unknown
constantp = [64,...,6]T, and6* = [6;,...,6]T. Any C3(R') function f (8) with
an extremum af = 68* and with[J?f £ 0 can be locally approximated by (8.2.14).
Without loss of generality, we assume the maRiis positive definite.

The objective is to design an algorithm to make- 6*| as small as possible, so
that the outpuy = f(8) is driven to its minimunf*.

Denoteg (t) as the estimate of the unknown optimal ingitand let

Bi(t) =6 — (1) (8.2.15)

denote the estimation error.
We use a stochastic perturbation to develop a gradientatstifar every param-
eter. Let

0;(t) = 6;(t) +a;sin(n;j(t)), (8.2.16)

wherea; > 0 is the perturbation amplide arigj(t),t > 0) is OU process which is
given by

gjdnj(t) = —nj(t)dt+ ,/€jq;dW(t), (8.2.17)

wheregj, j=1,...,| are small parameters.
By (8.2.15) and (8.2.16), we have

0j(t) — 6; = ajsin(n;j(t)) — 6;(t) (8.2.18)
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Substituting (8.2.18) into (8.2.14), we have the output
y(t) = 5+ (8(t) — 6°)TP(B(t) — 6%), (8.2.19)

where(t) — 6" = [ag sin(na(t)) — Ba(t), ..., a sin(mi (1)) — B ()]
We design the parameter update law as follows

do;(t .
00 _kga sty () (1) ~ &), 8.2.20)
dé;(t
let( ) = —h;&;(t) +hjy(t), (8.2.21)
£dnj(t) = —n;(O)dt+ /Fadw(t), (8.2.22)
wherehj,kj,j =1,...,] are scalar design parameters. To improve the performance,

here we use a washout fiItngj for each parameter and the gradient estimation for
each parameter is based on the ou@iﬁj{ Iyl = y(t) — &;(t) of this filter.

Definex;j(t) = n;(gt) andBij(t) = \/—%V\/j (&t). Then we have

dx;(t) = —x;(t)dt+q;dBj(t), (8.2.23)

whereBj(t) is a 1-dimensional standard Brownian motion defined on tinepdete
probability spacd Q,.7,P), while [By(t),...,B(t)]" is anl-dimensional indepen-
dent standard Brownian motion on the same space.

Define the output error variable

et)=&M) —f*, j=1,...1. (8.2.24)

Therefore, it follows from (8.2.15), (8.2.19), (8.2.20)8.2.21) that we have the
error dynamics

12 - =1 (8.2.25)
= ki@ sinm (60 0"P(6) 8" ()
L S /(B0 — oy P o et
900y ytt) — 1 — 1) (8.2.26)

=hj((6(t)— 6")"P(B(t) — 6") —&j(t)),
ji=1,...,1.
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DenoteB(t)= [Bi(t),..., 6 (t)]T ande(t) = [e1(t),...,a(t)]", which are depen-
dent on the small parameter. Then we have the following result:

Theorem 8.2.Consider the static map (8.2.14) under the parameter uptiate
(8.2.20)—(8.2.22). Then the error system (8.2.25)—(8)A2weak stochastic expo-
nentially stable, i.e., there exist constants 0, ¢ > 0 and y > 0 such that for any
initial condition |A;*(0)| < r, and anyd > 0,

lim_in {t>0: A2 () > A (0)]e "+ 5} =+, as.  (8.2.27)
&1—

Moreover, there exists a function(d;) : (0, &) — N such that

lim Pq  sup {|A{:(t)| —c]AH(0)je "'} > & p = Owith lim T(g) = oo,
a-0 | o<t<T(e) €0

(8.2.28)

Where/\fl(t) = (é(t)Tae(t)T) ( I><|’2| 1plla1G0(q|) ) I = [1’15"'71]I><I'
Furthermore, (8.2.28) is equivalent to

lim P{IAL ()] < cA(0)]e V' + 8,5t € [0, T (€1)]} = L with lim T (£1) = eo.
&1— &1—
(8.2.29)

8.2.2 Convergence analysis

We rewrite the error dynamics (8.2.25)—(8.2.26) as
B _ kjaysin(x t/6) ([ar sindxa(t/1)) — Bu(0), ..., t/e)) — B(OITP

[@usin(x(t/e2) - Ba(t)....a sinx (t/a)) - (1)
— kjay sin(x (t/&})) x
|

< g pi (aisin(xi(t/&)) — Bi(t)) (asin(x«(t/&)) — Bk(t)) — g (U) 7
ik=1
' (8.2.30)

I ~
< ; k (asin(xi(t/&) — B(t)) (asin(Xk(t/&)) — B(t)) — ej(t ))
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i=1...
(8.2.31)
Now we calculate the average system of the error system nieshiat
=2 =2 (8.2.32)
Ci
for some positive real constargs Denote
Zl(t) = Xl(t), Zz(t) = Xz(Czt), .. 4 (t) = X(C|t). (8.2.33)

Then the error dynamics become

dedjt(t) =kja;jsin(Z;(t/e1))x
|
( g pi (aiSin(Zi(t/&1)) — Bi(t)) (asin(Zu(t/1)) — Bk(t)) — € (U) :
1=
(8.2/34)
900 _ hyyi) - 1 ~ei(0)

|

=h; ( g pi (aiSiN(Zi(t/1)) — Bi(t)) (Asin(Zi(t/1)) — Bi(t)) — e (t)> :
=1

j=1...L (8.2.35)

Itis known that for givenj = 1,...,1, the stochastic procesg;(t),t > 0) is er-
2
_
godic and has invariant distributiqu (dx;) = ﬁe Ejdej. Thus by Lemma 8.2,
]
the vector-valued proceg (t), Z»(t),...,Z (t)]" is also ergodic with invariant dis-
tribution py (dxq) x - -+ x py (dx).
To calculate the average system of system (8.2.34)—(8,2v@4eed to consider
the following terms

sin(Zj(t/e1))sin(Zi(t/e1)) sin(Z(t/&1)), 1#],] #kk#i, (8.2.36)
sin’(Zj(t/&1)), (8.2.37)
sin(Zj(t/&1))sir?(Z(t/e1)), i+ ], (8.2.38)
sir(Zj(t/&1)), (8.2.39)
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sin(Zj(t/e1))sin(Zi(t/e1)), 1+#]. (8.2.40)

Averaging calculation gives

/]R , SIn0x) sin(x}) sin(xie) i (dx;) < pj (dx)) x pk(dX)

2 2 2
e e e 1 % 1 -z 1 -5
= sin(x;) sin(x; ) sin(xg e o e ¥ e %
Lo [ [ srositosit e € e ¥ oo
xdxdx;dx =0, (8.2.41)
2
- oo 1 -3
Sir? (%) i (% =/ sikt(x)—=—e %dx =0, k=0,1,2,...,
/R' (%) pi (dx;) . I (Xl)\/ﬁqi X
(8.2.42)
[ SIrP06)sintx ) (ex) iy (cb)
X2 2
e e . 1 w1 @
= Sir?(x) sin(x; e o e “dxdx; =0, 8.2.43
'/700 ./700 ( ) (J)\/ﬁqi \/ﬁqj ] ( )
2
. e 1 1 o
/S|n2(>q)ui(d>q):/ Si(x)—=—e %dx = =(1—e %) 2 Go(q),
R J—o0 \/_ i 2
(8.2.44)
i) sinGx s () x )
2 x2
e e 1 2 1 2
= sin(x; ) sin(X; e o e Ydxdx; =0. 8.2.45
/700 /700 ( ) ( J)\/ﬁcﬁ \/ﬁqj ] ( )
Then we get the average error system as follows:
doavet) o
a = ~dk-e ) 3 pf). (8.2.46)
deve(t) I 1 s
] _ h. 2 —0 Yal _e°
(S o) 626

i=1,...,1.

In the matrix form, the average error system is
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O — _npgee) (8.2.48)
ve | o
WUy (; piiaiZGO(Qi)ll—eave(t)+Q(9ave(t))> C (8249)
a2k (1— e ) 0 0
0 a2ky(1—e %) ... 0 . .
wherefl = : : . : L 63%E(t) = [67Y4(t),
0 0 - ek (L—e )
hy O0--- 0
) Ohy 0|
BT, ) = (), T H = || QM) =
00--h

gave (H)Pave(t)ly, 1y = [1,1,...,1T .
The average error system has equilibri(f’,e®" ) = (07, 5_; pia?Go(qi)I7 ).
The corresponding Jacobian matrix at this equilibrium is

_ [-mP o
;1=[ 0 _H]. (8.2.50)

Sincell andP are positive definite anfl is diagonal, all eigenvalues of the matrix
1P are positive, i.e., the eigenvalues of the matrid P are negative. Furthermore,
fromthe fact; > 0,i=1,...,l it follows that the matrix=; is Hurwitz and hence the
equilibrium is exponentially stable. Thus by Theorem 8he, tonvergence results
(8.2.27) and (8.2.29) hold. The proof is complete.

To quantify the output convergence to the extremum, for gny O, define a
stopping time

2 =inf{t>0:[A(t)| > cJA{ (0)]e " + 6}

Then by (8.2.27), we know that %mg =, a.s., and
&1—

18(t)| <c|A(0)| e " +5, i< Tl (8.2.51)
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Denote 8(t)= [By(t),...,6(t)]7, asin( (n(t))= [azsin(ni(t)), ..., asin(m(t NT.
Then the outpuy(t) = f(0) = f(8* + O6(t) +asin(n(t))), for 7 f(6*) =0, we
have

y(t) — £(87) = (B(t) +-asin(n (1)) "P(B(t) +asin(n(t)))
+0(|6(t) +asin(n(t))?). (8.2.52)

Thus by (8.3.75), it holds that

ly(t) — £(6%)] < O(|al2) + O(8%) + C|AL(0) e !, Wt <12, (8.2.53)

for some positive consta@t whereja| =  /aZ + a3 + - - + a7. Similarly, by (8.2.29),

we have

eliToP{|y(t) — £(6%)| < O(|a?) + O(8%) +C|Af1(0) e 2, vt e [O,T(el)]} =1,

(8.2.54)
whereT (&) is a deterministic function with |II‘TT(£1)
1*}
Figure 8.1 displays the simulation results with=1,0* = [0,1]", P = 1 ;

in the static map (8.2.14) arad = 0.8,a, = 0.6,k; = 1.25/k, =5/3,h; = 1L, hp =
2,01 =02 = 1,6 = 0.25,&; = 0.01 in the parameter update law (8.2.20)—(8.2.22)

and initial condition8y (0) = 1, 8,(0) = —1,61(0) = —1,8,(0) = 2,&,(0) = &(0) =
0.

8.3 Stochastic Gradient Seeking

8.3.1 Single-parameter stochastic slope seeking

Let f,; denote the commanded slope on an unknown single-input gtiadperat-
ing map. Let the map be parameterized as

f//

F(6) = 1" + frer(6 — 67) + =

062 (8.3.55)
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Fig. 8.1 Stochastic extremum seeking with an OU process perturbafap: output and extremum
values. Bottom: solutions of the error system.

which means thaé* is the unknown input that produces the sloflg, f* is the
value of the output a = 6*, and f” > 0 is the second derivative df(0) at the
point & = 6* where the slope id/,;. The object is to design an algorithm to make
6(t) — 6* as small as possible, so that the sldp@) is driven tof/;.

Denotef(t) as the estimate of the unknown optimal ingtit Let

(t) =6 —8(t) (8.3.56)

D

denote the estimation error. Let
B(t) = B(t) +asin(n(t)), (8.3.57)

wherea > 0 and(n(t),t > 0) is a stochastic process satisfying
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_ VEd _
= zer1Wloredn = —ndt+ Veqdw, (8.3.58)

n

whereq > 0 andW(t),t > 0 is a 1-dimensional standard Brownian motion defined
on some complete probability spa@®,.#,P). Thus, by (8.3.56) and (8.3.57), we
have

6 — 06" =asin(n) — 6. (8.3.59)

Substituting (8.3.59) into (8.2.14), we have the output

"

y = f*+ fig(asin(n) — 6) + ~ (asin(n) - 6)2. (8.3.60)

Now, we design the parameter update law as follows

db .

T = K [sin()(y— &) +r(fer)] (8.3.61)
% _ _hé+hy (8.3.62)
edn = —ndt+4 eqdw, (8.3.63)

wherek > 0,h > 0 are scalar design parameters, aigla function to be designed.

Definex(t) = n(et) andB(t) = %W(et). Then we have

dx(t) = —x (t)dt+ qdB(t), (8.3.64)

whereB(t) is a 1-dimensional standard Brownian motion.
Define the output error variable

h

e= m[y] —f* (8.3.65)

Then we have the following error dynamics

dé)  dé)
T ksin(x(t/€)) )

(Fertasin((t/))~ 8) + 5 (asinx(t/6)) - 812~ ) + k(e
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(8.3.66)

% =h ( ref(asin(x(t/€)) — 8) + fE/I(asin(x(t/e)) _ 52— e> _

(8.3.67)

Now we calculate the average system. By (5.1.18), (5.1.08)(4.1.11), we
obtain that the average system of (8.3.66)—(8.3.67) is

déz\/te(t) _ aszr'ef(l—e*qz) _ ﬁ(l_efqz)éave_i_ k(f.), (8.3.68)
dez/:(t) —h <_frfeféave+ %az(l_efqz) + %ﬂéave2 _eave> . (8.3.69)

We choose
r(fier) = —%r/e”(l—e*qz). (8.3.70)

Then by simple calculation, we get the following equilibriwf the above average
~ 2l
system ab?€ =0, e*c= % (1- e*qz) with the corresponding Jacobian matrix

_akf" g o?
[ 2_(§f/e )_Oh]. (8.3.71)

ref

Noticing thatf” > 0, k > 0,a > 0, andh > 0, the above Jacobian is Hurwitz, i.e.,
the equilibrium(o, #(1— e*qz)) of the average system is exponentially stable.
Then by stochastic averaging Theorems 4.5 and 4.6, we haveltbwing result.

Theorem 8.3.Consider the static map (8.3.55) with the commanded slogenthe
parameter update law (8.3.61)—(8.3.63). Then there egisstants r> 0,c > 0,y >
0 and a function Te) : (0, &) — N such that for any initial conditio/\ (0)| < r
and anyd > 0,

lim inf {t=0:]A5(t)| > c|A5(0)|e "'+ 5} =, as.  (8.3.72)
E—
and

IimoP{|/\2£(t)| <clA5(0)|e " +5, vt € [0,T(g)]} =1 with IimoT(g) =,
E— E—
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2

whereA$ (t) 2 (82 (t), € (t)) — (o, 2 (1—ed )).

These two results imply that the norm of the error veei(t) exponentially
converges, both almost surely and in probability, to belawawitrarily small resid-
ual valued, over an arbitrarily long time interval, which tends to irtjnas € goes
to zero.

In particular, theéf(t)-component of the error vector converges to be@wo
guantify the output convergence to the optimum, for any 0, define a stopping
time

2 =inf{t>0:]|A5(t)| > c|AS(0)|e " + 5} . (8.3.74)

Then by (8.3.72) and the definition 4§ (t), we know that Iirgrrf =, a.s., and
E—

|65(t)] < c|Af(0)|e M +5, vt <. (8.3.75)

Sincey(t) = f(0* + B%(t) +asin(n(t))), we have

(0%)(B°(0) + asin(n (1) + -2 (6¢(t) + asin(n (1))

y(t) - f(67) = '
+O((65(t) +asin(n(t)))%). (8.3.76)

Thus by (8.3.75), it holds that

ly(t) - £(6°)] < O(a) + O(8) + c|A$ (0) | e " +CIAS (0) e, Wt <72,
(8.3.77)

for some positive consta@t Similarly, by (8.3.73),

limP{Iy(t) — 1(6")] < O(a) +0(8) +clA5(0) eV +C A5 (0) % ",
vtelo,T(e)]} =1, (8.3.78)

whereT (¢) is a deterministic function with Iiéfr(s) = 0o,
E—

Figure 8.2 displays the simulation results with= 1, f/; = 0.5, 8* = 0 in the
static map (8.3.55) anal= 0.1,k =1,g= 1,& = 0.25 h= 1 in the parameter update
law (8.3.61)—(8.3.62) and initial conditidh0) = 1, 6(0) = —1, £(0) = 1.99.
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Fig. 8.2 Single-parameter stochastic slope seeking with an OU psoperturbation. Top: output
and optimum values. Bottom: solutions of the error system.

8.3.2 Multi-parameter stochastic gradient seeking

Analogous to the single parameter case, wd () be a function of the form:
f(8)=f"+3T(6—0")+(0—6")TP (66", (8.3.79)

wherePy = Pl = (pyij )i« € R, 0 =1[64,....8]T, 6" = [6f,..., §]T, andJ =
[J1,3p,...,J] is the commanded gradient.

According to the multi-parameter stochastic extremum isgeklgorithm, we
denoteéj (t) as the estimate of the unknown optimal ingiitand let

Bi(t)=6; — (1) (8.3.80)
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denote the estimation error.
We use stochastic perturbation to develop a gradient eitifoeevery parameter.
Let

0;(t) = 6;(t) +a;sin(n;j(t)), (8.3.81)

wherea; > 0 is the perturbation amplitude afwlj(t),t > 0) is an OU process which
is given by

gidnj(t) = —nj(t)dt+ ,/€jq;jdW(t), (8.3.82)

wheregj, j =1,...,| are small parameters.
By (8.3.80) and (8.3.81), we have

6 (t)—ej* =a;jsin(n;(t)) — 6;(t). (8.3.83)

Substituting (8.3.83) into (8.3.79), we have the output
y(t) = f*+37(8(t) — 8) + (6(t) — 8")TPL(B(1) — B7), (8.3.84)

where(t) — 6" = [ag sin(na(t)) — Ba(t), ..., sin(i (1)) — B ()]
We design the parameter update law as follows

do;(t)

g = kilaysin(ni () (y(t) = &;(t) +ri(Jp)], (8.3.85)
déi(t
9O i)+ iy, (8.3.86
£dn;(t) = —n;j(Odt+ \/Za;dW (1), (8.3.87)
wherehj,kj, j =1,...,| are scalar design parameters, andre functions to be de-

signed. We use a washout filtgfh—j for each parameter and the gradient estimation
for each parameter is based on the ou@?ﬁ{ Iyl = y(t) — &;(t) of this filter.

Definex;j(t) = nj(gt) andBj(t) = \/—lE—J_VVj (&t). Then we have

dx;(t) = —x;(t)dt+qg;dB;(t), (8.3.88)

whereBj(t) is a 1-dimensional standard Brownian motion defined on tinepdete
probability spacd Q,.7,P), while [By(t),...,B(t)]" is anl-dimensional indepen-
dent standard Brownian motion on the same space.
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Define the output error variable
ety =&(t)—f*, j=1,..,1. (8.3.89)

Therefore, it follows from (8.3.80), (8.3.84), (8.3.85)(8.3.86) that we have the
error dynamics

déit) _ déi(t)

dt dt
=k [a(jJsi)r]l(m (t)[@T(6(t) - 6%)+ (B(t) — 6*)TPL(B(t) — 67) —ej(t))
+r(J;
=k [Jaj éin(xj' (t/€)(3T(B(t) — %)+ (B(t) — 6°)TPy(O(t) — 87) —gj(t))
+1j(J5)] |
=k [aj sin(n;(t)) <Z Ie(asin(xi(t/&)) — )
k=1

|
+ g Pic(a Sin(xi (t/&)) — 8) (asin(x(t/ &) — B) — &j(t)
i,k=1
+1i(3))], (8.3.90)

900y y16) - 1 — 1)

=hj3T(B(t)— 6°) +(B(t) — 6°)TPL(B(t) — 67) —gj(t)),
|
= h; lz Je(@sin(x(t/&)) — B
&1

|
+ g Pik (@i sin(xi(t/&)) — 6) (aksin(xk(t/&)) — 6k) — €; (t)] ((8.3.91)
=
i=1,...,0.

Thus the corresponding average system is

d62(t) 1-e % T LI
Jdt = afkjJ; — - afkj(1—e ) 21 poji 67 +kirj(J)),  (8.3.92)
i=
de?ve(t) 1—e

I . I 2 | L
=h |= Jkel?ve + pl__a12 + pl,kelaveekave_eave(t)
a J[ 2 2P g Pl !
(8.3:93)
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We choose
1—e %
Then in the matrix form, the average error system is
nave N
%t(t) _ _npgave), (8.3.95)
de'q(t) TAave . < 2 ve Have
g =H|-Te +le1iiai Go(ai)l1 — €™4(t) + Q(6*(t)) [8.3.96)
i=
alky (1— e %) 0 0
0 a2ky(1—e %) .. . .
wherelT = _ , , 02(t) = [67V(1),
0 0 a|2k| (1_Q*QI2)
hy 0--- 0
. Ohy--- 0 ~
CLBRE)]T, V(L) = [YE(t),..., V)T, H=| . . .|, QBAt)) =
0 0-h

6ave (t)PLBve(t)ly, 1y = [1,1,...,1)T .
The average error system has equilibri(@,e®' ) = (07, 3! _; p1ia?Go(q)IT).
The corresponding Jacobi matrix at this equilibrium is
- _|—-nP. O
== [—HJT —H] (8.3.97)
SincelT, Py, H are positive definite and is diagonal =5 is Hurwitz. By multi-input
stochastic averaging theorem given in Theorem 8.1, we Ineevéotiowing result:

Theorem 8.4.Consider the static map (8.3.79) under the parameter uptiate
(8.3.85)—(8.3.87). Then the error system (8.3.90)—(8)3Bweak stochastic expo-
nentially stable, i.e., there exist constants 0, ¢ > 0 and y > 0 such that for any
initial condition|Az*(0)| < r, and anys > 0,

lim_inf {t>0:|A (1) > A (0)|e "+ 6} =+, as. (8.3.98)
&1—
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Moreover, there exists a function(d;) : (0, &) — N such that

lim Pq  sup {|A$(t)| —c]AsH(0)je "'} > & p = Owith lim T(g) = oo,
a0 | o<t<T(e) €0
(8.3.99)

Where/\?fl(t) = (é(t)Tve(t)T) ( I><I’2| 1 Paii & Go(ql) ) = [1a 1a---71]-{><l'
Furthermore, (8.3.99) is equivalent to
I|m P{IAG ()] < clAs:(0)]e V' +8,Vt € [0,T(€1)]} = Lwith lim T (&) = co.
£—0
(8.3.100)

To quantify the output convergence to the optimum, for apy 0, define a
stopping time

2 =inf{t>0:[A$}(t)| > cJAS(0)]e " + &}

Then by (8.3.98), we know that IlrnE =, a.s., and

&—0
16(1)] <c|AS(0)| e +6, vt<T2. (8.3.101)

Denote 8(t)= [61(t),. ..,é<>JT. asin(n (t)= [asin(na(t)), -... asin(m ()]
Then the outpuy(t) = f(6) = f(6* + 6(t) +asin(n ())),w have

y(t)—f(6%) = VNf(G*)(G( +asin(n(t)) )+ (t)+asin(n(t )))
(B(t) +asin(n(t))) +O(|8(t) +asin(n(t))*). (8 3.102)

Thus by (8.3.101), it holds that

ly(t) — £(6%)| < O(|a]) + O(8) + |As:(0)|e " +C]/\§1(0)\2e’2"‘, Wt < rfl,
(8.3.103)

for some positive consta@ wherela| = |/a2 + a2+ --- + a?. Similarly, by (8.2.29),

we have

lim P{ly(t) ~ £(6%)| < Oa]) + O(8) + A5 (0) e "+ C|A5:(0) e ",
Vte[0,T(s)]} =1, (8.3.104)
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Fig. 8.3 Multi-parameter stochastic gradient seeking with an Oless perturbation. Top: output
and optimum values. Bottom: solutions of the error system.

whereT (&) is a deterministic function with Ii{)ﬂ'(el) = o0,
&1—

0,17, P = [1

12

Figure 8.3 displays the simulation results with = 1, J = [0.5,0.2]", 68* =
1] in the static map (8.3.79) ared = 0.1,a, = 0.2,k; = 1.25/k, =

5/3,01 = 1,02 = 1,&; = 0.25,&; = 0.01,hy = 1,h, = 2 in the parameter update
law (8.3.85)—(8.3.86) and initial conditiof (0) = 1, 6,(0) = —1, 61(0) = —1,
62(0) = 2,£1(0) =0, &>(0) =0.
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8.4 Notes and References

Most of the existing stochastic averaging theory focusebesystems with a single
stochastic perturbation input [21, 40, 81, 90] or on twoetigtales systems with
slow dynamics and a fast dynamics [61, 129]. There are fewltres stochastic
averaging for systems with multi-scale stochastic pestio inputs. With multi-
input stochastic averaging theorems that we developedsrcttapter, we designed
multivariable stochastic extremum seeking and gradieeking algorithms. Parts
of this chapter are based on our results in [90].



Chapter 9

Stochastic Nash Equilibrium Seeking for Games
with General Nonlinear Payoffs

Non-cooperative games have been a vibrant topic in matheszatd economics for
decades. While work on control-theoretic problems in défgial games has been
conducted since at least the 1960s, the topic of games hascémt years, been
justifiably enjoying a renaissance in the field of enginegeand, in particular, in the
area of control systems. A comprehensive account of noperative game theory
is available in the seminal book [10].

It is inherent to the non-cooperative character of gamdstiiesopponents share
as little information as possible. For example, in reaigiames, players would not
be inclined to inform their opponents about the functionatf of their performance
criteria (payoff functions). When a game is played iteriiMas the time evolves),
the opposing players would not be inclined to share with sthige information on
the actions that they are taking and on the payoff valuesthiegtare obtaining. It
is reasonable that each player is aware of the value of hispayaff achieved, but
the player doesn’t necessarily know the functional formhef payoff, namely, its
dependence on the player’s own action and on the actiong @fghonents. This un-
certainty in the functional form of the payoff functions cestfrom the uncertainty
regarding the environment in which the game is played, sath@uncertainty that
companies encounter in the marketplace when they play gemésich pricing or
production volumes are the actions, while the customeromespis hard to predict.

Due to such a lack of modeling information and restricted sneaments, the
topic of learning in games has recently been popular [2639844, 56, 85, 126,
127, 150]. Rather than seeking strategically optimal (Neghilibrium) policies
using iterative algorithms that employ the full modelingpirmation and the mea-

173
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surement of the opponents’ actions, learning-based &hgosi attempt to achieve
convergence to Nash policies using estimation and varithes techniques.

In this chapter, a multi-parameter stochastic extremunkisgealgorithm is
developed for finding Nash equilibria in N-player nonco@tiee games. For an
N-player noncooperative game, each player employs indbpely stochastic ex-
tremum seeking to attain a Nash equilibrium.The playersiateequired to know
the mathematical model of game (neither their own nor theooppts’ payoff func-
tions). The players are also not required to measure thengp® actions but only
measure their own payoff values. We prove that, under cedanditions, the ac-
tions of the players converge to a small neighborhood of ehNagiilibrium. The
convergence resultis local in the sense that convergemeg/tparticular Nash equi-
librium is assured only for initial conditions in a set aradlithat specific stable Nash
equilibrium. Moreover, convergence to a Nash equilibrignbiased in proportion
to the third derivatives of the payoff functions and is degemt on the intensity of
stochastic perturbation.

The chapter is organized as follows: we introduce the gépeoalem formula-
tion in Section 9.1, state the algorithm and convergenadteem Section 9.2, and
present the convergence proof in Section 9.3. We providengerioal example for
a two-player game in Section 9.4.

9.1 Problem Formulation

Consider an N-player noncooperative game where each plagkes to maximize
its payoff function of the general nonlinear form. Assume payoff function of
playeri is of the form

J = hi(ui,u_), (9.1.2)

wherey; is playeri’s action, the action (strategy) space is the whole sffaee ; =
[Ug,...,Ui1,Uis1,...,Un] represents the actions of the other playbrsRN — R is
smooth, and € {1,...,N}.

Our algorithm is based on the following assumptions.

Assumption 9.1.There exists at least one, possibly multiple, isolatedlstBlash
equilibriumu* = [uj, ..., uy] such that
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dhj
u=0 9.1.2
5 (W) =0, (912)
0°h;
—(U") <0 9.1.3
7 ) (9.1.3)
foralli e {1,...,N}.
Assumption 9.2.The matrix
02hy(u*)  9%hy(u*) 92hy (u*)
duf duidu, "'t duiduy
02%ho(u*)  92hy(u*) 0%hy (u*)
- duiduy ﬁu% T dupduy

(9.1.4)

9%hy(u*) %hn(ur)  9%hy(u)
duiduy  duxduy 5uﬁ

is strictly diagonally dominant and hence, nonsingular.

By Assumptions 9.1 and 9.Z is Hurwitz.

In our scheme, playérhas no knowledge of others players’ payloffj # i and
actionsuj(j # i). It can only measure its own paydif. Our objective is to de-
sign a stochastic extremum seeking algorithm for each pkayapproximate Nash
equilibrium.

9.2 Stochastic Nash Equilibrium Seeking Algorithm

In our algorithm, each player independently employs a ststit seeking strategy
to attain the stable Nash equilibrium of the game. Playmplements the following
strategy:

W) = 60 +ahim () 925)
WO kat ()3, 92

where forany =1,...,N, g > 0 is the perturbation amplitudik,> 0 is the adaptive
gain,Ji(t) is the measured payoff value for playeandf; is a bounded smooth func-
tion that playei chooses, e.g., a sine functiap(t),i = 1,...,N, are independent
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m @ k—— white noise W, (r)

gs+1
i [k
L/ s

: J1=hl(”1’”2)
J,=h,(u,u,)

=
i

a, sin(-) ,(t) ql\/g «—— white noise W2 (1)

&,5+1

Fig. 9.1 Stochastic extremum seeking scheme for a two-player nqecatve game

ergodic processes chosen by player.g., the Ornstein-Uhlenbeck (OU) process

_ VA A () = —n g
M= gorg W, or &dmi(t) = —ni()dt+vEGdW(), (9.2.7)

g > 0, & are small parameters satisfying<Omax & < & for fixed & > 0, and
Wi(t),i =1,...,N are independent 1-dimensional standard Brownian motioa on
complete probability spacg?,.#,P) with the sample spac@, o-field .#, proba-
bility measureP.

Figure 9.1 depicts a noncooperative game played by two @ayglementing
the stochastic extremum seeking strategy (9.2.5)—(9t@.6)tain a Nash equilib-
rium.

To analyze the convergence of the algorithm, we denote tioe eiative to the
Nash equilibrium as

Gi(t) = Gi(t) — uf. (9.2.8)

Then, we obtain an error system as
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du.()

—kipPOn (u + G+ 0P M), 0.29)

where oM (t) = afi(ni(t)), pYt) = [afi(na(t))...., &_1fi1 (M_1(t)), a1

|
fijl(”ijl(t))v %NfN( nn(t))], 0 =[G, ..., G307, ...,0y], and U’ =
[ul,. caUi—1,Ui11,. . .,UN].
If the players choosé; (x) = sinx for all i = 1,...,N, andn; as OU processes

(9.2.7), we have the following convergence result.

Theorem 9.1.Consider the error system (9.2.9) for an N-player game unfker
sumptions 9.1 and 9.2. Then there exists a constant@such that fomax<i<n & €
(0,a*) there exist constants o,c > 0,y > 0 and a function Tez) : (0,&0) — N

such that for any initial conditiofA#1(0)| < r, and anyd > 0,

lim inf{t > 0:[A%(t)| > c|Af(0)|e " 4 &+ O(maxa?)} = 0, a.5.(9.2.10)
I

£1—>
and
IimOP{|/\£1(t)| < A% (0)|e " + 3+ O(maxad), vt € [0,T(&1)]} = 19.2.11)
&1— 1
with
lim T(el) (9.2.12)
&—0
where
N N
ABL(t) =[Ty(t) — § dfaf,...an(t) — § dfad], (9.2.13)

Il
L
Il
.
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- 1 - *

djj %GO(QJ')W(U )

j;l G1(qj 93h; .

i $oa) ()

di | =-=" ) , (9.2.14)
dJJrl 1 53h'+1 *

Jf ZGO(qj)aujZaJqu( )

an

L J) 4

_ o2 _ g2 402 _ g2 202
and Go(j) = (1€ W), Gy(aj) = § — 3& U + e = F(1—e W)X (e W +
2
2¢ 4 43).

Several remarks are needed in order to properly interprebfiém 9.1. From
(9.2.10) and the fad\ % (t)| > ma |(i(t) — 3"\, d!;a?|, we obtain

lim inf {t >0: m,ax{
&—0 i
=00, a.S.

} > A (0)|e " + 0+ o(miaxa-3>}

N
Gi(t) — Y djjaf
=1

By taking all thea;’s small, max|Gi(t)| can be made arbitrarily small s~ .

The bias termsg’j\‘:ld}jaj2 defined by (9.2.14) appear complicated but have a
simple physical interpretation. When the game’s payoftfions are not quadratic
(not symmetric), the extremum seeking algorithms, whicplemnzero-mean (sym-
metric) perturbations, will produce a bias. According te fbrmulas (9.2.14), the
bias depends on the third derivatives of the payoff fungjaramely, on the level
of asymmetry in the payoff surfaces at the Nash equilibrilmthe trivial case of
a single player the interpretation is easy—extremum segesattles on the flatter
(more favorable) side of an asymmetric peak. In the case dfpteuplayers the in-
terpretation is more difficult, as each player contributethtio his own bias and to
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the other players’ biases. Though difficult to intuitiveyerpret in the multi-player
case, the formula (9.2.14) is useful as it quantifies thedsias

The estimate of the region of attractiooan be conservatively taken as indepen-
dentof theg;’s, for a;'s chosen sufficiently small. This fact can be only seen bygoi
through the proof of the averaging theorem for the specifitesy (3.5). Hence,is
larger than the bias terms, which means that for smalthe algorithm reduces the
distance to the Nash equilibrium for all initial conditiomscept for those within an
O(mayx a?) to the Nash equilibrium.

On the other hand, the convergence natannot be taken independently of the
a;’s, because theg;’s appear as factors on the entire right-hand side of (3.6yv-H
ever, by letting thé’s increase as thg'’s decrease, independencegdfom thea;’s
can be ensured.

In the rare case where the error system (9.2.9) may be gjobigschitz, we
obtain global convergence using the global averaging #madn Chapter 3.

9.3 Proof of the Algorithm Convergence

We apply the multi-input stochastic averaging theory pnésein Chapter 8 to an-
alyze the error system (9.2.9). First, we calculate theayesystem of (9.2.9).
Definey;(t) = ni(&t) andB;(t) = %Wl(sit). Then by (9.2.7) we have
dxi(t) = —xi(t)dt+oidBi(t), (9.3.15)

where [By(t),...,Bn(t)]T is anN-dimensional standard Brownian motion on the
spacegQ,.7,P).
Thus we can rewrite the error system (9.2.9) as

T _ ko (t/em (5 +8+ o2 ¢/ + 01+ (1 /e1)) (0.3.16)

wherepi(z) (t) =asin(xi(t)), pﬁzi) (t/e_i) =[aasin(xi(t/€1)),. .., a-1sin(xi-1(t/&-1)),
ai+15IN(Xi+1(t/&+1)), ..., ansin(Xn(t/en))]-

Denote
_a

==, i=2,...,N (9.3.17)
Ci

&
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for some positive real constardss and consider the change of variable

Zy(t) = Xa(t), Zo(t) = X2(Cat), ..., Zn(t) = X (Cnt). (9.3.18)

Then the error system (9.3.16) can be transformed as onesinigte small param-
eterg;:
ddi (t)
dt

—kip®(t/e0hi (v + i+ % (t/e0) 0+ 6+ 0T (t/81) ) (93.29)

wherepi(3) (t)=asin(z(t)), pﬁ?;) (t/&1) =[aasin(Zyi(t/€1)),..., @-1Sin(Zi_1(t/€1)),
3 1SiN(Zi41(t/€1)). ..., anSin(Zu(t/e1))]-

XZ

Since(xi(t),t > 0) is ergodic and has an invariant distributigiidx ) = fe o dx;,

by Lemma 8.2, the vector value procegs(t),...,Zy(t)]" is also ergodic with in-
variant distributionu; x --- x uny. Thus by (8.1.9), we have the following average
error system

daiRve(t)
dt

= ka /H%N sin(xi)hi (uf + G+ ay sin(x;), u* + 02{°+aisin(x_))
Ha(dxa) x -+ x pn(dx), (9.3.20)
wherea_jsin(x_j) = [@ai1sin(x1), ..., &-15iN(X-1), @&+1SiN(Xi+1), -- ., anSIN(XN)],

andy; is the invariant distribution of the procegg (t),t > 0) or (% (t),t > 0).
The equilibriumu® = [0, ..., G} ] of (9.3.20) satisfies

0= /RN sin(x )y (U + O + & sin(x;),u’; + 0% +aisin(x_;))
pr(dxg) X -+ x un(dxy) (9.3.21)
foralli={1,...,N}.

To calculate the equilibrium of the average error systemaaradyze its stability,
we postulate thai®has the form

N N N
af = Zb'jaj + Z z JkaJaH-O maxa1) (9.3.22)
i= I=1K=]

By expandingn aboutu® in (9.3.21) and substituting (9.3.22), the unknown coeffi-
cientsbj anddj, can be determined.
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The Taylor series expansion lafaboutu® in (9.3.21) for arN-player game is

h . . oo © VnN an1+...+nN hl . 9 3 23
(U4 Vi, U+ Vo) = u 3.
vy = 5 z: (augl...augw>< )(9.3.23)
wherev; = (7 +a; sin(x;) andv_j = 0°; +a_; sin(x_;). Althoughforanyi =1,...,N,
h; may not have its Taylor series expansion only by its smoathnieere we just
give the form of Taylor series expansion. In fact, we onlydigethird order Taylor

formula. 2

Since the invariant distributiom (dx ) of the OU proceséi(t),t > 0) is fe B
dx, we have
2

/sin“(xi)ui(dx):/Msin“(xi) 1 o Wax
JR

3

8

J—o0 \/_|

1 1
E ql + 8e 4q| Gl(ql) (9324)

/zsine’(xi)sin(xj-)ui (dx) x pj(dxj)

R
+o00 .
= / sin’( S|n(xj)ﬁqle @ \/%qje aizdndxj =0, (9.3.25)

2 X
00 o0 X 1 _
sir?(x;) sin(x e & e 9 dxdx
{ [ srewsitn) e € |
= Z(l—e’qi )(1—e %) £ Gy(q, ), (9.3.26)

. sintx) sir? (xg) sin(x s (6%)  py(ex;) x ()

R

e e pre . N e
= sin(x; ) sir’(x; ) sin(xq e o e ¥ e %

[ L snosigsint e ® e T o

xdxdx;dx = 0. (9.3.27)
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Based on the above calculations together with (8.2.413,48), (8.2.43), (8.2.44),
(8.2.45), substituting (9.3.23) into (9.3.21) and compgithe average of each term
gives

02h N azh
3 I ~e i «
0 = &/Go(a)) 0 2( ") + a7 Go(c ;uj Fuau V)
2
' i i a3h
+ (%Go<qi><u$>2+ %Gl<qi)) a_(” )
N 0%
°G e i %
+&Go (a0 ; 3o, (u")
S 3
i P
+J;< 2 GZ(q'qu)> duiaujz(u )
J;k>2R 1M guau;au, ),  (93.
or equivalently,
dzh- N 02h_ a1 ) a h
— el r ~e i N 1 & |
0=0; auiz(u)‘F;UJauiﬁuj(U) (2( ) 6 ) duS( )

G
N . 9°h; N (1 a3h
~e | * G | *
i Z- Touzou (u )+J; 2( "+ (@) o 0u2
+ S S GENELh'( )JrO(maxa1 (9.3.29)
;DER du.du Ju

Substituting (9.3.22) into (9.3.29) and matching first eng@wvers ofg; gives

0 bt
: (9.3.30)

which implies thaﬂoi = 0 for all i, j since = is nonsingular by Assumption 9.2.
Similarly, matching second order terragy(j > k) anda2 of aj, and substituting
b'J = 0 to simplify the resulting expressions, yields
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0 di
== |,i=1...,N, >k (9.3.31)
0 i

and

0 di; 1009 o1
_ 6 Go(d;) %?_
==z |+ , (9.3.32)

Thus,dj, = 0 for alli, j,k whenj # k, andd;; is given by (9.2.14).
Therefore, by (9.3.22), the equilibrium of the averageresystem (9.3.20) is

Z d“aJ +0( maxa1 3). (9.3.33)

By the Dominated Convergence Theorem, we obtain that thebimt ¥2'¢ =
(gij)nxn of the average error system (9.3.20M&h&s elements given by

Wij = k./ a; sin(x; d_( + 084 aysin(x), u*; + 0
+a-isin(x 2)) pa(dxg) > -+ x pn(dxy)
= kiafGo(a) 5 ;u_(U)+0(m.aX6\-3) (9.3.34)
] |
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and is Hurwitz by Assumptions 9.1 and 9.2 for sufficiently #nag which implies
that the equilibrium (9.3.33) of the average error syster.p®) is exponentially
stable. By the multi-input stochastic averaging theorewemin Theorem 8.1 of
Chapter 8, the theorem is proved.

9.4 Numerical Example

We consider two players with payoff functions

3
Ji = —ud+2uup +uf— s (9.4.35)
Jo = 2u2up — U3, (9.4.36)

Since J; is not globally concave iru;, we restrict the action space to@ =
{up >1/3, up > 1/6} in order to avoid the existence of maximizing actions at in-
finity or Nash equilibria at the boundary of the action spdtemwever, we do not
restrict the extremum seeking algorithm.#d. Such a restriction can be imposed
using parameter projection, but would complicate our eitjpmsconsiderably.)

The gaméJ;, J) yields two Nash equilibriaiu;, ust) = (0.5,0.25), and(u;?, uz?)
-1 -7 2
2 -2 6 -2/
whereZ=; is nonsingular but not Hurwitz, whil&> is nonsingular and Hurwitz, and
both matrices are not diagonally dominant. From the prodiefalgorithm conver-
gence, we know that diagonal dominance is only a sufficiendition for = to be
nonsingular and is not required in general.

The average error system for this game is

= (1.5,2.25). The corresponding matrices atg= and=, =

Q0L _ a2 Go(an) (3 — BuUj R 208+ 208°9) — kyalG (a1)

dt = K1a10(01 1 1Uz 2 1 18161(01),
(9.4.37)

9B _ g (02) (— 208"+ 208"% + 4U05"9) + 2kpa283G2 (01, G2)

dt = Koa7G0(02 2 1 1U7 2878502(01,02),

(9.4.38)

whereu; can beu;! or uj?. The equilibria(G¢, GS) of this average system are
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. Gi(n) )
B=1-uj+ 1—u*2—a2< -2G , 9.4.39
1 1 \/( 1V 1\ Go(an) o(0h) ( )
- “ G G
0 = 2 2uj+ 2\/ (1- w2 (G~ 2Go(ay) ) - atHel) + aadGo(ay),
(9.4.40)
and their postulated form is
eP — = ( (@) _ ZGo(ql)) a$ + O(maxa?), (9.4.41)
2(1 Ul) Go(qu) i

+ 1- 3u160(q1)) a%+0(miaxa,-3). (9.4.42)

The corresponding Jacobian matrices are

ave __ (_GGE_GUE"'Z)Vl 2y
Y —{ (205 +4up)y -2y (9.4.43)

wherey = kia?Go(q), i = 1,2, and their characteristic equation is given by, +
a1A + ao, = 0, where

a1 = (605 + 6U; — 2)y1 + 25, (9.4.44)
a; = (20?—1— ui — 1)y . (9.4.45)

ThusW?'€is Hurwitz if and only ifa; anda, are positive. For sufficiently smadh,
which makesi®~ (0,0), a; anda; are positive fou; = 1.5 but foru; = 0.5, az is
not positive, which is reasonable becaises not Hurwitz but=; is Hurwitz. Thus,
(uil,ust) = (0.5,0.25) is an unstable Nash equilibrium b{t;?, u3?) = (1.5,2.25)
is a stable Nash equilibrium. We employ the multi-paramstechastic extremum
seeking algorithm given in Section 9.2 to attain this stagjeilibrium.

The top picture in Figure 9.2 depicts the evolution of the gamtheu plane,
initialized at the poinfu;(0),u2(0)) = (0,3), i.e., at(i1(0), 02(0)) = (—1.5,0.75).
Note that the initial condition is outside of. This illustrates the point that the
region of attraction of the stable Nash equilibrium underélitremum seeking al-
gorithm is not a subset of/ but a large subset @&?2. The parameters are chosen
ask; =14k, = 6,39 = 0.2,a, = 0.02, &, = 0.01, &, = 0.8. The bottom two pic-
tures depict the two players’ actions in stochasticallyksegthe Nash equilibrium
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Fig. 9.2 Stochastic Nash equilibrium seeking with an OU processugeation. Top: evolution of
the game in the plane. Bottom: two players’ actions.

(uj,u3) = (1.5,2.25). From Figure 9.2, the actions of the players converge to d sma
neighborhood of the stable Nash equilibrium.

In the algorithm, bounded smooth functiofisand the excitation processes
(ni(t),t > 0), i =1,...,N, can be chosen in other forms. We can replace the
bounded excitation signal ini(t)) = sin(xi(t/&)) with the signalHT (1};(t/s)),
whererji(t) = [cogWi(t)),sin(W(t))]" is Brownian motion on the unit circle (see
[91]), andG = [g1,92]" is a constant vector.

Figure 9.3 depicts the evolution of the game in th@lane for games with
Brownian motion on the unit circle as perturbation. Thei@itonditions are the
same with the case of the OU process perturbation. The p&eesrage chosen as
k1 =5k, =9,a; =0.2,a, =0.04, &, = 0.02,&, = 0.02. From Figure 9.3, the actions
of the players also converge to a small neighborhood of ef#estNash equilibrium.
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(@ (), T (t))

1
(5. 55) =~ (0,0)
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* (@1(0), @2(0))
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Fig. 9.3 Stochastic Nash equilibrium seeking with Brownian motientlee unit circle as pertur-
bation. Top: evolution of the game in thiglane. Bottom: two players’ actions.

In these two simulations, possibly different high-passffifor each player's mea-
surement on the payoff is used to improve the asymptoticopaidnce but is not
essential for achieving stability ([137]), which also candeen from the stochastic
multi-parameter extremum seeking algorithm for static snagSection 8.2.

9.5 Notes and References

Seeking Nash equilibria in continuous games is a difficudbpem [76]. Researchers
in different fields, including mathematics, computer scesneconomics, and sys-
tem engineering, have interest and need for techniquesiidinfi Nash equilibria.



188 9 Stochastic Nash Equilibrium Seeking for Games withegarNonlinear Payoffs

Most algorithms designed to achieve convergence to Nastkitegurequire mod-
eling information for the game and assume that the player®baerve the actions
of the other players. An early algorithm is [118], in which &dient-type algo-
rithm is studied for convex games. Distributed iterativgoaithms are designed for
the computation of equilibrium in [85] for a general classnoh-quadratic convex
Nash games. In this algorithm, the agents do not have to ko ether’s cost
functionals and private information, as well as the paranseind subjective prob-
ability distributions adopted by the others, but they haveammunicate to each
other their tentative decisions during each phase of coatipat A strategy known
as fictitious play is one such strategy that depends on thenaaf the other play-
ers so that a player can devise a best response. A dynamiarvefdictitious play
and gradient response is developed in [126]. In [150], a lssorous distributed
learning algorithm is designed to the coverage optimiradifomobile visual sensor
networks. In this algorithm, players remember their owrnoast and utility values
from the previous two times steps, and the algorithm is shovaonverge in proba-
bility to the set of restricted Nash equilibria. Other dseengineering applications
of game theory include the design of communication netwarkg, 11, 98, 124],
integrated structures and controls in [114], and distddutonsensus protocols in
[12, 100, 125].

Based on the extremum seeking approach with sinusoidalnbations, in [73],
Nash equilibrium seeking is studied for noncooperativegmwith both finitely and
infinitely many players. In [133], Nash games in mobile semstworks are solved
using extremum seeking.

Compared to the deterministic case, one advantage of stiickatremum seek-
ing is that there is no need to choose different perturbdtiequencies for each
player and each player only needs to choose its own pertanbatocess indepen-
dently, which may be more realistic in a practical game wiheasarial players.

In this chapter, we propose a multi-input stochastic extrerseeking algorithm
to solve the problem of seeking Nash equilibria for an N-ptayonoperative game.
In our algorithm, each player independently employs higisgestrategy using only
the value of his own payoff but without any information abthe form of his payoff
function and other players’ actions. Our convergence tésldcal and the conver-
gence error is in proportion to the third derivatives of tlagqff functions and is
dependent on the intensity of stochastic perturbation.



Chapter 10

Nash Equilibrium Seeking for Quadratic Games
and Applications to Oligopoly Markets and
Vehicle Deployment

In this chapter, we consider a special case of Chapter 9: la {Nase with quadratic
payoffs. The general case is considered in Section 10.1pplgcations, we consider
an oligopoly market game in Section 10.2 and multi-agentayepent in the plane
in Section 10.3.

10.1 N-player Games with Quadratic Payoff Functions

10.1.1 General quadratic games

We consider static noncooperative games with N playersitisatto maximize their
quadratic payoff functions. Specifically, the payoff fupctof playeri is of the form

N

3O=33 Y Dhuu® + 5 dui(0)+G, (10.1.1)
J:

1M z
M=z

j=1k=1

where the action of playejris uj € Uj = R, D ,dj, andC; are constantD}; <0,
andDly = Dj;.

From Proposition 4.6 in [10], it is known that the N-playemgawith payoff
function (10.1.1) admits a Nash equilibriust= [uj,...,uy]" if and only if

189
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D%iui*+§D§ju]-‘+dii:O, ic{1,...,N}, (10.1.2)
J#I

admits a solution. Rewriting (10.1.2) in matrix form, we kav

Du* = —d, (10.1.3)
where
Dj; Dy, -+ Diy dj
D£ D.%l D.%Z D.%N , d2 d.g : (10.1.4)
DR: DY, -+~ iy oy

andu* is unique ifD is invertible. We consider the following stronger assuimipsi
about this matrix:

Assumption 10.1.The matrixD given by (10.1) is strictly diagonally dominant, i.e.,
N . .
§|D5j|<|Dh|, ie{l,...,N}. (10.1.5)
JF#I

By Assumption 10.1, the Nash equilibriuni exists and is unique since strictly
diagonally dominant matrices are nonsingular by the Leegfilanques theorem.
We seek a method to attairi stably in real time without any modeling information.
Let each player employ the stochastic extremum seekingegiraas (9.2.5) and

(9.2.6):

ui(t) = act) +aifi(ni(t)), (10.1.6)
dai(t)
i kigy fi (i (t))J; (1), (10.1.7)

where forany =1,...,N, & > 0is the perturbation amplitudik,> 0 is the adaptive
gain,J (t) is the measured payoff value for playeandf; is a bounded odd smooth
function that player chooses, e.g., a sine function. The independent ergodic pro
cesseq)i(t),i =1,...,N, are chosen by player e.g., as the Ornstein-Uhlenbeck
(OU) processes

_ VEG A () — — g
M= gor 1M or &dmi(t) = —ni(t)dt+ VEGidW(t), (10.1.8)
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whereq; > 0, & are small parameters satisfyingcOmax & < & for fixed & > 0,
andW(t),i=1,... N are independent 1-dimensional standard Brownian motion on
a complete probability spad&,.#,P) with the sample spac@, o-field .%#, and
probability measur®.

If the players choosé; (x) = sinx for all i = 1,...,N, andn; as OU processes
(10.1.8), we have the following convergence result.

Theorem 10.1.Consider the system (10.1.6)—(10.1.7) with (10.1.1) uAdsump-
tion 10.1, where i {1,...,N}. Then there exists a constant & 0 such that
for max<i<na € (0,a") there exist constants*» o,c > 0,y > 0 and a function
T(&1) : (0,&) — N such that for any initial conditiofA* (0)| < r, and anyd > 0,

lim inf{t > 0: IAL(t)] > c|AT(0)|e " + &+ O(maxa)} = =, a.s.(10.1.9)
|

&1—
and

Jim P{A(t)] < c|AH(0) e "+ 5+ O(maxay), ¥t € [0, T (€1)]} =(10.1.10)

with
£IliTOT(el) = oo, (10.1.11)
where
ABL(t) = [ug(t) —uf,...,un(t) —ug] " (10.1.12)

Proof. Let Gi(t) = Gi(t) — u denote the error relative to the Nash equilibrium. By
substituting (10.1.1) into (10.1.6)—(10.1.7), we obt&ia érror system

N

z

dait) .
at —Kasm(nl(t))<

1Dﬂ-k<ﬂ,— (t) U +ay sin(n; (1)) (Ge(t) + Ui

NI =

k

d}(ﬂj (t) +uj +ajsin(n;j(t))) +Ci> . (10.1.13)

J

+agsin(nk(t))) +

Mz |

1

]

Definexi(t) = ni(&t) andB;(t) = —=W (&t). Then by (10.1.8) we have

NG
dxi(t) = —xi(t)dt+ qidBi(t), (10.1.14)
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where [By(t),...,Bn(t)]T is an N-dimensional standard Brownian motion on the
spacg Q,.Z,P). Thus we rewrite the error system (10.1.13) as

=z

dii(t) o
0t —K&S'n(xl(t/&))<

NI =

Dl (0 () + uj -+ &y sin(x; (t/&)))) (T(t) + ug

X
™M=

Il
L

J

N
+agsin(xk(t/&))) + d}(ﬁj(t)+UT+ajSin(Xj(t/Sj)))+Ci>(10.1.15)
=1
Denote
ei:%, i=2... N (10.1.16)

for some positive real constardss and consider the change of variable
Zy(t) = xa(t), Zo(t) = X2(Cat), ..., Zn(t) = x(Cnt). (10.1.17)

Then the error system (10.1.15) can be transformed as oheavgiingle small pa-
rametere; :

z

NI
1]
™Mz

Il
iR

ey o 1
g = kaisinZi(t/e)) <

Dj (0 (t) + uj -+ ay sin(Z; (t/€1))) (Ci(t) + Ui

=1

+asin(Z(t/e1)))+ > d

(Gj (t) + Ui + &y sin(Z;(t/e1))) +Q>(.10.1.18)

Il
pa

Rearranging terms yields

P4

ddi (t)
dt

N

M=

DI (0 (t) + ) (Ti(t) + i) ai Sin(Zi (t/£1))

il
Z =

+k D (00} (t) + U5 )aia Sin(Zi (t/€1)) Sin(Z(t/€1))
j=1k=1
N N
+% kz Dljka.iajakSin(Zi(t/f]_))Sin(Zj(t/gl))Sin(Zk(t/El))
j=1k=1
N
+k;i d}(ﬁj(t)+u]-‘+ajsin(Zj(t/el))aisin(zi(t/sl))+hQasin(Zi(t/£1)).
=1

(10.1.19)
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By (8.2.41),(8.2.42), (8.2.43), (8.2.44), and (8.2.46ydther withDu* = —d, we
obtain the average system of (10.1.19):

d uave(
dt

= kia’Go(q) ZD (G3YE(t) + u?) + kia? Go(af )

= kia/Go(qt) (ZD., (L) + Z Diju; +d>

= ka?Go(q) ZDl [EVe(t), TPVY(0) = Gi(0), (10.1.20)
which in matrix form is

dciave(t)
dt

= AV(L), (10.1.21)

where

klagGo(ql)Dil klagGo(ql)Diz e klagGo(ql 1
k2a5Go(02)D3;  k285Go(02)D3, -+ k285Go(G2)D
A 7 21 20\ 22 ' ) 2N (10.1.22)

knag Go(an) DNy knagGo(an)DY, -+ knagGo(an) Dy

Now we determine the stability of the average system (1@)1om the Gersh-
gorin Circle Theorem [49, Theorem 7.2.1], we have

N
cUni (10.1.23)

whereA (A) denotes the spectrum Afandp; is a Gershgorin disc,
pi_lqa-zeaqi){zeCMZ—Dm < ;Dm}. (10.1.24)
J#!

SinceDEi < 0 andD is strictly diagonally dominant, the union of the Gershgori
discs lies strictly in the left half of the complex plane, anelconclude thaRe{A } <
OforallA € A(A) and thafAis Hurwitz. Thus, there exist positive definite symmetric
matricesP andQ that satisfy the Lyapunov equati®d+ATP = —Q. UsingV (t) =
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(28T P@"e as a Lyapunov function, we obtain
V = — (08T QIPY® < —Amin(Q)| V4. (10.1.25)

BoundingV and applying the Comparison Lemma [58] gives

|GRVE(t)| < ce Y |GRVE(0)], (10.1.26)
where
. Amax(P)
c= Ao (P)” (10.1.27)
_ /\min(Q)
y= g (10.1.28)

By the multi-input stochastic averaging theorem given iredtem 8.1 of Chapter
8, noticing thawi(t) — uf = Gi(t) + & sin(ni(t)) and that sin(ni(t)) is O(max &),
the proof is completed.

10.1.2 Symmetric quadratic games

If we further restrict the matrifo, we can develop a more precise expression for the
convergence rate. Specifically, we now assume the following

Assumption 10.2.

D}; =D}, foralli,j € {1,...,N}. (10.1.29)
With this additional assumption besides Assumption 1D.1Is a negative definite
symmetric matrix.

Corollary 10.1. Consider the system (10.1.6)—(10.1.7) with (10.1.1) uAdsump-
tions 10.1 and 10.2, whered {1,...,N}. Then the convergence properties of The-
orem 10.1 hold with

B max {kia?Go(ai)}

- \/ max {2ka?Go(a)} _ \/
min; { 2kia?Go(q) } mini{kia?Go(qi)}’

(10.1.30)
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. N
y = min{kia’Go(q;)} min{ —Djj — ; 1Dyl ¢ - (10.1.31)
J A

Proof. From the proof of Theorem 10.1, there exist positive defisjt@metric ma-
tricesP andQ that satisfy the Lyapunov equati®?A+ ATP = —Q sinceA, given
by (10.1.22), is Hurwitz. Under Assumption 10.2, we selégt= —D and obtain

_ i 1 1
P= d|ag(2kla%60(ql),..., 2kNa§GO(qN))' Then, we have
1
A P)=— , 10.1.32
1
Amin(P) = , 10.1.33

and using the Gershgorin Circle Theorem [49, Theorem 7,.%é]can obtain the
bound

N
IEl
where we note thaID}i < 0. From (10.1.27), (10.1.28), (10.1.32), (10.1.33), and

(10.1.34), we obtain the result.

From this corollary, the coefficiemtis determined completely by the stochastic
extremum seeking parametdrsy;, a;.

10.2 Oligopoly price games

Consider a static noncooperative game witirms in an oligopoly market struc-
ture that compete to maximize their profits by setting thequj of their product.
Assume that the profit of thi¢h firm is

3(t) = s (0)(u(t) —m), (10.2.35)

wheremy is the marginal cost of playérands is its sales volume.
We model the sales volunseas
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5 ) 53
s
R, R, R,
+ + +
U H0 H(

Fig. 10.1 A model of sales;,s,,s3 in a three-firm oligopoly with price , uz, uz and total saleS.
The desirability of producitis proportional to 1R;.

. N .
S(t) = :( UR ;%) (10.2.36)

whereSare the total sales of all the firmR, > 0 for all i, and

N 1 -1 _ N 1 -1
(B 3l e

The sales model (10.2.36) is motivated by an analogousriel@itcuit, shown in
Figure 10.1, wher&is an ideal current generatar, are ideal voltage generators,
and most importantly, the resistoR represent the “resistance” that consumers
have toward buying product This resistance may be due to quality or brand im-
age considerations—the most desirable products have Wesi® . The sales in
(10.2.36) are inversely proportional R and grow asy decreases and ag, j # i,
increases. The profit (10.2.35), in electrical analogyresponds to the power ab-
sorbed by the;, — my portion of the voltage generator

Substituting (10.2.36) into (10.2.35) yields quadratiggféfunctions of the form

J(t) = —<‘_+'Z < +S>u. mz——sm>,(1o.2.38)

7

and the Nash equilibriuma* satisfiedDu* = —d. More specifically, we have
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R1R1 12 1 ul RiRy L
RO R R || TR 4 SN
RoRy RoR» RoRn 2 — RaRp Rz . (10239)
RO R R | [ R SR
RuRI  RWR RuRN RuRy © Ry
—
D d

The matrixD has negative diagonal elements and is strictly diagonaliyidant,
satisfying Assumption 10.1, since

N

7

Thus, the Nash equilibrium of this game exists, is uniqud,@n be shown to be

R
RR;

R ‘ 2R
—< — —

"RR | RR

,ief{l,...,N}L. (10.2.40)

MR (- N mR —mR,;
= RaE (R m 3 SRR ( )
wherell;t=1— Z?‘:l % > 0. (The various parameters here are assumed to be

selected such thak is positive for alli.) Moreover,Dij = D}i, soD is a negative
definite symmetric matrix, satisfying Assumption 10.2.

Theorem 10.2.Consider the system (10.1.6)—(10.1.7), along with (16)2&hd
(10.2.36), where E {1,...,N}. Then there exists a constant & 0 such that
for max<i<n@ € (0,a") there exist constants» 0,c > 0,y > 0 and a function
T(e1) : (0,&) — N such that for any initial conditiofA5* (0)| < r, and anyd > 0,

Iimoinf{t >0: A2 ()] > A (0)|e ! + 6+ O(maxaj) } = o, a.s.
&1— |
(10.2.42)

and

lim P{AZ(t)] < clAZ(0)|e™" + 8+ O(mava), ¥ € [0, T(en)]} = 1
1 1
(10.2.43)

with
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lim T(g) = oo, (10.2.44)
&—0
where
ASE() = ug(t) —uj, ... un(t) — up]T, (10.2.45)
_ [max{kia’Go(di)} 10.2.46
N \/mini{kiaizeo(qi I (10.2.46)
_ Rymini{ka’Go(qi)}
- amax(RE]T (10.2.47)
= mn R (10.2.48)
je{1....N}, j#i

Proof. Since Assumptions 10.1 and 10.2 are satisfied for this gaorell@ry 10.1

max; {kia?Go(qi) } and the

holds. From Corollary 10.1, we obtain the coefficient i 6aG,a)]

Ry mini {kia?Go(q;)}
2max{Rii}

2 1
Amin > Rmi =5
Q) ”}'”{Fm ;‘RiRj

We further bound this decay rate to obtginy noting that ma¥ RR } < max{Ri[;}.

decay ratey = since

|
}_max{aﬁa}' (10.2.49)

10.3 Multi-agent Deployment in the Plane

In this section, we consider the problem of deployment ofcugrofN autonomous
fully actuated vehicles (agents) in a non-cooperative raaima planar signal field
using the method of stochastic extremum seeking.

10.3.1 Vehicle model and local agent cost

We consider vehicles modeled as velocity-actuated poissemg
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dx . dyi
T VXI7 dt

&= =V, (10.3.50)

where(x;,y;) is the position of the vehicle in the plane, angl vy, are the vehicle
velocity inputs. The subscripis used to denote théh vehicle.

We assume that the nonlinear map defining the distributichesignal field is
quadratic and takes the form

4, ¥1) = £ + (% —X) 2+ ay(yi —y)?, (10.3.51)

where (x*,y*) is the minimizer,f* = f(x*,y*) is the minimum, andax, qy) are
unknown positive constants. To account for the interastibetween the vehicles
we assume that each vehicle can sense the distance,

A% Y1.y)) = /(6 = X))2 + (%~ y;)2, (10.3.52)
between itself and other vehicles. The cost function

Ji(Xise s XNL Y- YN) = TG, + ENqudz(m,XJ,yi,yj) (10.3.53)
j€

includes inter-vehicle interactions, whejg > 0 is the weighting that vehicleputs
on its distance to vehiclg

10.3.2 Control design

To deploy the agents about the source position, we propasgteotscheme that uti-
lizes Brownian motion on the unit circle as the excitatiansil to perform stochas-
tic extremum seeking.

We propose the following stochastic control algorithm fehiclei:

Vii = —axif1i — Ci&inii + Vxi, (10.3.54)
Vyi = —ayiNzi — Cyi&inzi + Wi, (10.3.55)
S
& = m[a.], (10.3.56)
. 1 -
A = — =Ny — 22y, (10.3.57)
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Nai
NG

where & is the output of the washout filter for the cat (ny(t),t > 0) and
(n2i(t),t > 0) are used as perturbations in the stochastic extremum gesitieme,
axi, ayi, Cxi, Gyi, &,hi > 0 are extremum seeking design parameters,andy; € R.
We consider vehicles witlw,, vy # 0 to be the anchor agents and those with
Vxi = Wi = 0 to be the follower agents. The S|ngI denotes the white noise, and
(Wi (t),t > 0) is a 1-dimensional Brownian motion which is not necessatéydard
in the formW (0) = 0. The signald\(t),Wa(t),...,Wn(t) are independent.

The equations (10.3.57) and (10.3.58) are equivalent to

N2 = f72| —= W, (10.3.58)

o 1 . nai

dny = % nydt — \/_dW (10.3.59)
o 1 _ Nai

dnoi = % Noidt + \/_dW, (10.3.60)

which means, by the definition of Ito stochastic differelingiguation, that

Nii(t) = N1 (0 /2€| s)ds—/tnL(_s)dW(s), (10.3.61)

n2i(t) = n2i(0 /2 nai(s dS+/ M1i(S (10.3.62)
I
Thus it holds that

Nii(&t) = N1 (0 /2”1' gu)du— /'72' dW(gu), (10.3.63)

nzi(&t) = n2i(0 / Shai(gu)du+ / '71' (10.3.64)
Define
Bi(t) = %W(&t), X1i(t) = nui(&t), xa(t) =nai(&t).  (10.3.65)

Then we have

dXu = — 5 X4t~ X3 (IB(), (103.66)
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1
dxzi = —§X2i(t)dt+Xli (t)dBi(t), (10.3.67)

whereB;(t) is a 1-dimensional Brownian motion which is also not necelysstan-
dard in the fornB;(0) = 0.

The solution of stochastic differential equations (1063 #nd (10.3.67) is equiv-
alent to Brownian motion on the unit circhg(t) = [cogB;(t)),sin(Bj(t))]". Thus

ni(t) = [M1i(t), n2i(t)]" = xi(t/&i) = [cos(Bi(t/&)).sin(Bi(t/&))]" (10.3.68)
Hence, the control signals (10.3.54) and (10.3.55) become

R ISPl - RV YRR S
Vii = 2 g N1 — axi \/E\NI CxiiN1i + Vxi, (10.3.69)
Vyi = ’71| + 8y \/—W Cyi&iN2i + Wyi. (10.3.70)

10.3.3 Stability analysis

In this section, we present and prove the local stability speacific probabilistic
sense for a group of vehicles.
We define an output error variable

hi

a:

whereSF is a low-pass filter applied to the cdstwhich allows us to express(t),
the S|gna\ from the washout filter, as

&(1) = — 3] =30~ @), (10.3.72)

S+ hI

noting also thag = h;é;.
We have the following stability result for a group of fullytaated vehicles with
control laws (10.3.54) -(10.3.58).

Theorem 10.3.Consider the closed-loop system
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a .
dx =~ 5 midt axi%dw — Ca&inudt+ vydt, (10.3.73)
a . .
dy = —Z—?inzidt—k ayi%dw — cyiinzidt + wydt, (10.3.74)
dg = h&dt, (10.3.75)
dmi = —inudt— 12w (10.3.76)
2¢; NG
R S ]
dna = 2 Naidt+ \/EdW’ (10.3.77)

N
& = o —xX)?+ayi—y)?+ 3 ajd(x.xj,yi.Y;) — @, (10.3.78)
=1

Vi € {1,2,...,N}, with the parametersx = [Vy,..., V], Wy = [Wa,..., Wn]T,
axi, dyi, Cxi, Gyi, i, Ox, 0y > 0and q; > 0,Vi, j € {1,2,...,N}. If the initial conditions
x(0), y(0), &(0) are such that the quantitiels;(0) —x* — &9, |yi(0) —y* — 79,
& (0) — €, are sufficiently small, whergs*,y*) is the minimizer of (10.3.51),

10wy, (10.3.79)
o tw, (10.3.80)

1
&' = (%) + (572 + 5 (o + aya)
+3 (%= %52+ (51~ v{?2),

+ Y (%(a§i+a§j)+%(a§i+a«3j)> (10.3.81)

and the matrices Qand Q,, given by

—CIx— z _qik7 I - J
Qi , i #j
—Qy— z _qik7 I = J
Qjij = keN ki o (10.3.83)
gij, I # ]

and
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aa 0O --- 0 ayl 0O --- 0 .
0apc-- O 0ap-— O x1
ax=1|. .. . |,ea=|. .. . |,w=]: |[(10.3.84)
0 0 - aw 0 0 - an N
c B
X1 0 0 Cyj_ 0 0 Vyl
k=1 . .. . |,q=. . . |,w=| 1 ](0385)
0 0 - cxy | 0 0 - ¢ VyN

then there exist constants,Cy, y, % > 0 and a function Tez) : (0,&) — N such
that for anyd > 0

lim inf{t > 0:|x(t) — X" — x| > Cxe ¥ + 6+ O(||ay||) } = 0, a.5(10.3.86)

&—0

Jim inf{t > 0:[yi(t) —y" - ¥ > Ce ¥+ 6+ 0(ay|))} = «, a.410.3.87)
1*}
and

Jim P{ps(t) X"~ 9 < e M+ 5+ O Jaul). vt € 0.T(e)]} = 1
(10.3.88)
Jim P{y(t) —y =551 <G ¥ +5+O(Jayl). vt € [0.T(en)]} = 1.
(10.3.89)
Vie{l,2,...,N} with thelim,, o T(&1) = . The constantsCC, are dependenton
both the initial conditior(x(0), y(0),e(0)) and the parametersacy, Cy, Vx, Vy, hi(i =

1,...,N),ax, 0y. The constantg, i, are dependent on the parametegsag, cx,Cy, Vx,
v, hi (i=1,...,N),ax,qy.

Proof. We start by defining the error variables

X =X — X" —axini, (10.3.90)
Vi =Yi—Yy —a&ina. (10.3.92)

Thus

d% = dx — adn;
= —CyiéiNuidt+ vydt,
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= —CuidiX1i(t/&)dt+ vqdt, (10.3.92)
dyi = dyi — ayidny;

= —Cyifi nadt+ Vyidt

= —Gyiéixai (t/&)dt+ wyidt. (10.3.93)

Hence we obtain the following dynamics for the error varsbl

d%

gt = Casixai(t/&) + v, (10.3.94)
d"‘.

o = —Ca&iXa(t/8) + vyi (10.3.95)
d

d_? =hé&, (10.3.96)

& = qx(%i +aixw(t/&))* + ay(%i +ayixai(t/&))?
+§N0hj [(% + axixai (t/&) — &j — axjx1j (t/€)))?
i€
+(%i +ayixa(t/a) — Y — ayixej(t/€)))?] —a,  (10.3.97)
dxu(t) = _%Xli (t) — x2i(t)dBi(t), (10.3.98)

dXa(t) = ~ 3 Xa(t) + Xu (V)AB (1), (103.99)

We first calculate the average system of (10.3.94)—(10)3/8ume that

== =2\ (10.3.100)
|

&
for some positive real constargss. Denote

Z31(t) = X1a(t), Zoa(t) = X2a(t), Zai(t) = Xai(Git), Zai(t) = Xai(cit),

i=2,...,N. (10.3.101)
Then (10.3.94)—(10.3.96) become
d%
a = —CxiEiZli (t/£1)+in, (103102)
d"‘.
o= —cuEZa(t/er) + vy (10.3.103)
de

& = (10.3.104)
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& = (R +aZai(t/€1))? + oy (5 + ayiZai(t/€1))?
+ Zw Gij (% + axiZai (t/€1) — Kj — @y Zaj (t/€1))?

+(¥i +ayiZoi(t/ 1) — ¥j — ayjZo; (t /€1))?] —a. (10.3.105)

The signalsZ;j and Zy; are both components of the Brownian motion on a unit
circle, which is known to be exponentially ergodic with inizant distributionu (S) =

45 for any setSC T = {(x,y) € R2x2+y? = 1}, wherel(S) denotes the length
(Lebesgue measure) 8fThe integral over the entire space of functions of Brownian
motion on a unit circle can be reduced to the integral from BrtoSince

21T
/ P (dx dy) = / codt1(9)-Ldo—0, (10.3.106)
T 0 21
. 27T 1 1
/xzu(dxdy):/ cod(6)-do =, (10.3107)
0

21 2T
/T x1Xad (dxa, dyr) % p1(dxe, dys) = / / cos 61)cos 6s) d61d62
=0, (10.3.108)

(note that the same applies to thease) and

/xyu(dxdy) = /chos(e)sin(e)idezo, (10.3.109)
T 0 2
/ xy?p(dx,dy) = /<;2 cog0)sir?(0 )—dG 0, (10.3.110)

. 21T
/Txlyzu (dxa, dyr) x p(dxe, dys) — / / cos(Gl)smz(ez)—dBldGz

(10.3.111)
2rr 21T
[ yvdu(da.dy) x u(de,dye) = / | sinter) co3(62) ;> dordes
(10.3.112)
2 21 1
[, dy) x p(de,dye) = / || cosBr)cod(6:) 7 500.06;
- (10.3.113)

we obtain the average system



206Nash Equilibrium Seeking for Quadratic Games and Appboa to Oligopoly Markets and Vehicle Deployment

+vi,  (10.3.114)

— = ayiCxi [ OpKVE— Z aij (e — )N(?ve)

JEN,J#i

BT _ ey [—qyyﬁve- S g -F |t (10.3115)

dt JENJ#i

dqave ve vey2 Vi 2

e = N e ()T + () + qxax.+qyay.)
+. aij ( )(1ave_ X?ve)2_|_ yialve_ y?ve)z

JEN,J#i
+%(a§i+a§j)+%(a§i+a§j))]- (10.3.116)

Rewriting the above systems in the matrix form, we have

yave
d)(;at - CxaxQx)zave—F VX7 (10.3.117)

ve
ya = ¢,a, QY+ vy, (10.3.118)

&, (e R 579 qxax.+qyay.>)

dt
+h; qu” )N(?VE_;(J_VG)Z_F yave_ﬁve) )
j€
i > ay (%(a§i+a§j)+%(a§i+a$j)>- (10.3.119)
JEN,J#i

The average error system has equilibria (10.3.79), (10)3ahd (10.3.81) with
the Jacobian

caxQx O 0
Y = O cyayQy O (10.3.120)
0 —hl
where
hp 0--- 0
Ohp--- 0
h=1|. . .. (10.3.121)
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Since matrice®y andQy are given by (10.3.82) and (10.3.83), by Gershgorin Circle
Theorem ([49, Theorem 7.2.1]), we know that as long as thateaitsgy, gy > O,
the matricey, Qy have all of their eigenvalues on the left hand side. TQUy
are Hurwitz and invertible, which implies thatis Hurwitz and that the equilibria
(10.3.79), (10.3.80), and (10.3.81) are exponentiallylsta

Using the multi-input stochastic averaging theorem givermTheorem 8.1 of
Chapter 8, there exist constants 0,r >0,y > 0 and afunctiofT (&) : (0,&) — N,
such that for any > 0, and any initial condition$\&(0)| < r

lim inf{t > 0:|A%(t)| > c|A®(0)je " + 0} =, a.s,, (10.3.122)

£—0
and

lim P{IA%(t)] < cA®(0)je " +3,te[0,T(e1)]} =1, (10.3.123)
&1—

with limg, o T(€1) = o, whereA®i(t) = [K—x®9,§—y*9 e — e*qT.

The results (10.3.122) and (10.3.123) state that the northeferror vector
AZ(t) exponentially converges, both almost surely and in prditghio a point
below an arbitrarily small residual valu® over an arbitrarily long time interval,
which tends to infinity ag; goes to zero. In particular, eagkcomponent ang;~
component for all € {1,2,...,N} of the error vector converges to bel@dywhich
gives us (10.3.86)- (10.3.89).

10.3.4 Simulation

In this section, we show numerical results for a group of elelsi with the control
scheme presented in Section 10.3.2. For the following sitiars, without loss of
generality, we let the unknown location of the signal fieldabéne origin(x*,y*) =
(0,0), and let the unknown signal field parametergtpeqy) = (1,1).

In Figure 10.2 we consider 13 vehicles. We choose the desagangeters as
a=0.01,cx = ¢y = 150, h =10, and define agents 1 through 6 as the anchor agent
with the forcing terms,

(v, Wi) = 0.05 (cos(%[),sin(%[)) : (10.3.124)
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Fig. 10.2 Stochastic extremum seeking of a group of vehicles. The@sdyents are denoted by
red triangles and the follower agents are denoted by blug dbe agents start inside the dashed
line and converge to a circular formation around the source.

wherei =1,...,6. In addition to the design parameters, we picked in the iotera
gaing;j such that

Gii+1=0Gi+1i =05i€{l,...,12},i#6

i3 = 0.5, ie{7,...,12}
i = ’ ; 10.3.125
i Gii-6=0i-6i=1 1ie{7,...,12} ( )
Gi,j =0, otherwise

Figure 10.2 shows the ability of the control algorithm togwoe a circular distribu-
tion around the source with a higher density of vehicles tieasource. In this plot,
the trajectories of the vehicles are not shown, in order tidawbscuring the final
vehicle formation.
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10.4 Notes and References

In this chapter we specialize the general results of Ch&dtegames with quadratic
payoffs and illustrate the results with a solution to thelylean of seeking a Nash
equilibriumin an economic competition formulated as agatioly market, which is
treated in the game theory classic [10] and in numerouserf&s in economics. In
our solution companies compete using product pricing analsore only their own
profits, while the customers’ perceptions of their and thmpetitors’ products, and
even the competitors’ product pricing are unknown to theesjite such a lack of
model knowledge, the stochastic ES algorithms attain trehNaguilibrium.

In [32, 82, 149], multi-agent deployment is considered a&@nabled game
problem where each agent is trying to maximize its own casttion, but in these
algorithms the agents also require the cost informatiorheir tneighbors. In this
chapter, we investigate a stochastic version of non-ca@dpersource seeking by
navigating the autonomous vehicles with the help of a rangenturbation. The
vehicles have no knowledge of their own position, nor thetmrsof the source, and
are only required to sense the distances between theirbaighnd themselves.






Chapter 11
Newton-Based Stochastic Extremum Seeking

The stochastic extremum seeking algorithms presenteeiprivious chapters are
based on the gradient algorithm. In this chapter, we presBeivton-based stochas-
tic extremum seeking algorithm. The key advantage of theernomplicated New-
ton algorithm relative to the gradient algorithm is that,iletthe convergence of
the gradient algorithm is dictated by the second derivgtiessian matrix) of the
map, which is unknown, rendering the convergence rate umkrio the user, the
convergence of the Newton algorithm is independent of thestda matrix and can
be arbitrarily assigned.

This chapter is organized as follows. Section 11.1 presBatsingle-parameter
stochastic extremum seeking algorithm based on Newtomigation method. Sec-
tion 11.2 presents the multi-parameter Newton algorithmstatic maps. Section
11.3 presents the stochastic extremum seeking Newtonithigofor dynamic sys-
tems.

11.1 Single-Parameter Newton Algorithm for Static Maps

We consider the following nonlinear static map
y=1(0), (11.1.1)
wheref(-) is not known, but it is known that(-) has a maximuny* = f(6*) at

6 =06".

211
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We make the following assumption:

Assumption 11.1.f(-) is twice continuously differentiable and has a unique globa
maximum,8* € R, such that

% =0 ifandonlyif 6 =06*, (11.1.2)
?2f0)
o ’6:6* 2H <o (11.1.3)

If f(-) is known, the following Newton optimization algorithm cag bsed to
find 6*:

1
do (dzf(e)) df(e) (11.1.4)

dt de? de
If f(-) is unknown, then an estimator is needed to approxirﬁé\@ and dzféze).
The purpose of this section is to combine the continuous biewptimization algo-
rithm (11.1.4) with estimators of the first and second deitres to achieve stochas-
tic extremum seeking in such a way that the closed-loop Bysigproximates the
behavior of (11.1.4).
d?1(6)

R -1
Let 8 denote the estimate 6fand letl” be the estimate ¢ —* = (W ‘ o e*) .
We introduce the algorithm N

% = —kI" (t)M(n(t))y, k>0, (11.1.5)
dg—?) = hal (t) — a2 ON(n D)y, T(0) <O, (11.1.6)

whereM(-) andN(-) are any bounded and odd continuous functions,raftdlis an
ergodic stochastic process with an invariant distributiorthe stochastic extremum
seeking algorithm (11.1.5), we us&(n)y to estimate the first-order derivative of
f. For the estimaté of the inverse of the second-order derivativefofan alge-
braic division in the form 1H would create difficulties when the estimate of

dzdfe(ze) o is close to zero. To deal with this problem, we employ a dymassti-

mator to calculate the inverse Bfusing a Riccati equation. Consider the following
filter
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d= _ A
g —h1=+hH, (11.1.7)
whereh; > 0 is a constant, which guarantees that the siatef the stable filter

(11.1.7) converges td. Denote” = =1, Then

dr __,d=
FTaRrTE (11.1.8)
Thus by (11.1.7) we get the following differential Riccagjuation
‘fj_’_ =hM —hl?H, (11.1.9)

which has two equilibrial * = 0,H 1. Sinceh; > 0, the equilibrium/* = 0 is
unstable, whereas the equilibriufit = H—1 is exponentially stable. This shows
that after a transient, the Riccati equation (11.1.9) caye®to the actual value of
the inverse of if H is a good estimate dfi. Comparing (11.1.6) and (11.1.9), we
use the stochastic excitation sighgln) to generate the estimalte= N(n)y of H.

Now we perform an illustrative analysis of stability of atlgbm (11.1.5), (11.1.6).
Denote the estimate errér= 6 — 6%, ' = —H 1and6 = 6 +asin(n). Then we
have the error system

dé

5= —k(F +H"YYM(n)f (6" + 8 +asin(n)), (11.1.10)
dr ~ ~ .
G = m(F+HY - hy (F +HY)?N(n) f(6" + B+ asin(n)).
(11.1.11)
For simplicity and clarity, we consider a quadratic map
. f7(e") "
f(0)="f"+ 5 (0—0")2=f"+— (6 6%)2. (11.1.12)
Then the error system is
do I L H -
a:—k(F+H IM(n) | f +E(9+asm(n)) : (11.1.13)
dl' ~ -1 2
5t =h(F+H Y - (F+H DN ( +2(6+asm(r7))
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(11.1.14)

To obtain an exponentially stable average system, we chdoge,N(n) such that
Ave(M / M(x ( 2 (B+asin(x)) ) p(dx) = HA,(11.1.15)

Ave(N /N ( 6+a5|n( ))2) p(dx) = H, (11.1.16)

where it is the invariant distribution of the ergodic procesé). We choose the
ergodic process as an OU process satisfying

gdn = —ndt+/eqdW, (11.1.17)
which has invariant distributionu(dx) = —e qzdx To satisfy (11.1.15) and
(11.1.16), we chooskl(n) andN(n) that sat|sfy

(f + = H 52 x Ave(M(n)) =0, (11.1.18)
HBa x Ave(M(n)sin(n)) =HO, (11.1.19)
ga x Ave(M(n)sir?(n)) =0, (11.1.20)
<f*+gé2> x Ave(N(n)) =0, (11.1.21)
Hab x Ave(N(n)sin(n)) =0, (11.1.22)
gazxAve( (n)sird(n)) =H (11.1.23)
Since

/ SiP*“ L (x)p(dx) = /Wsinz”l(x)ieﬁ;dx_ 0 (11.1.24)

R J—c0 \/7_'[q ’

. too 1 < 1
/]Rsmz(x);.l(dx):/i00 5|n2(x)ﬁe Fdx=3
/ﬂ%sm () (dx) = /Msin“(x)ﬁeé_idx:g

—00

(1—e %) 2 Gy(g), (11.1.25)

1 2 1
—3° T g° “ L Gy(a),
(11.1.26)
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we choose

aGo(q) sin(n), (11.1.27)

= 232 (sin?(17) — Go(a)) , (11.1.28)

whereGJ(v/2q) = 2(G1(q) — G§(q)) . Thus we obtain the average system

déave nave ~avepy pave
G = KB KFHE™ (11.1.29)
d’;:ve = —hy a8 _hy(Fave)2H, (11.1.30)

which has a locally exponentially stable equilibriun{ &8¢, /" 2¢) = (0,0), as well
as an unstable equilibrium &2, —1/H). Thus, according to the averaging theorem,
we have the following result:

Theorem 11.1.Consider the quadratic map (11.1.12) under the parameteliatg
law (11.1.5)—(11.1.6). Then there exist constants@, c > 0, y > 0 and a function
T(€) : (0,&) — N such that for any initial conditiof/A (0)| < r and anyd > 0,

lim inf {t=>0:|A(t) >cA(0))e " +06} =, as. (11.1.31)
E—
and

LiLnOP{|/\(t)| <cA(0)je "+ 8,V € [0,T(e)]} = 1, with lim T(£) = o,
(11.1.32)

whereA (t) £ (B(t),F (t)T.

11.2 Multi-Parameter Newton Algorithm for Static Maps

11.2.1 Problem formulation

Consider the static map
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y=f(08), 6 R". (11.2.33)
We make the following assumption:

Assumption 11.2.There exist a constant vectf € R" such that

(6) _
W]H* —0, (11.2.34)
92(8)
6 lo-o (14:239)

Assumption 11.2 means that the map (11.2.33) has a locahmaxiat6*. The cost
function is not known in (11.2.33), but, as usual, we assumaewe can measuse
and manipulat®. The gradient-based extremum seeking scheme for thisvariiti
able static map is (shown in Fig. 11.1):

% =KM@y, 8H)=6(1)+Sn(1),  (11.236)

whereK = diagks, .., kn) with k > 0,
S(n(t) = [aasin(n1(t)),-..,ansin(na(t))]", (11.2.37)
M(N (1) = | ——— sin(na(t)),. sinma(v)] (11.2.38)

a1Go(q1) 7 anGo(0n)

are perturbation signals, and the independent proces&es = 1,...,n satisfy
gdn; = —nidt+ /&g dW. (11.2.39)

In the parameter error variable= 6 — 6%, the closed-loop system in Fig. 11.1
is given by
dot .
% =KM(nt)f(6*+S(n(t))+9). (11.2.40)
For the case of a quadratic static m&pg) = f*+ (6 — 0*)TH(6 — 67), the av-
erage system of (11.2.40) is given by

d éave(t)

G =KH 63ve(t), (11.2.41)
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2 y

Q)

sop

0 | K |G M (7(0))
S

Fig. 11.1 Gradient-based stochastic extremum seeking scheme fatiarsiap.

whereH is the Hessian matrix of the static map, and it is negativendefiThis
observation reveals two things: (i) the gradient-baseceexim seeking algorithm
is locally convergent, and (ii) the convergence rate is gose by the unknown
Hessian matribH. In the next section, we give a stochastic ES algorithm based
Newton optimization method, which eliminates the depeideri the convergence
rate on the unknowHl.

11.2.2 Algorithm design and stability analysis

The Newton-based stochastic extremum seeking algorithengtatic map is shown
in Fig. 11.2, whereh is a positive real number. There are two vital parts in the
Newton-based algorithm: the perturbation maMijq (t)), which generates an esti-
mateH = N(n)y of the Hessian matrix, and the Riccati equation, which getesr
an estimate of the inverse of Hessian matrix, even when tiraas of the Hessian
matrix is singular.

The detailed algorithm is as follows:

6 = 6 +asin(n), (11.2.42)
% = —KIM(n)y, (11.2.43)
CUREN hrN(n)yr, I (0) <0, (11.2.44)

dt
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Yy

AQ)

v

S(m(@)) M (7(1))

~

G

g LI Sl
I'=hl'-hI’HT

Fig. 11.2 Newton-based stochastic extremum seeking scheme foriarsizp.

whereK = diagks,--- ,kn) andh > 0 are design parametefd,(-) € R" is given
by (11.2.38)N(-) € R™" is to be determined; € R™" is used to approximate

-1 i\ —1
(520(29)2 ‘ = ("2;632 >) ,andn;i(t),i = 1,...,n are independent ergodic

_ov
processes. o=6

~ 2 B -1 . ~
Denote the estimate error variables= " — (‘9 dfég )) ,06=06—06*.Thenwe
have the estimate error system

fa . 2 * -1
% = —-KIrM(n)y—K <d ;gj >> M(n)y, (11.2.45)
- 22f(0")\ * - . 02f(0%)\ "
o :hl’+h( a((az )) —hrN(n)yr—hrN(n)y( a((az ))
a2f(6%)\ " . a2f(6%)\ " a2f(6%)\ "
_h<7aé2 )) N(n)yf—h( aéz )) N(n)y( aéz )) :

(11.2.46)

For the general map case, the stability analysis is condut8ection 11.3. Here
we first give the stability analysis of a quadratic static map
Consider the quadratic static map,

f(0) = f*+%(6—6*)TH(6—6*), (11.2.47)

whereH is negative definite. Then the error system (11.2.45)—(4&)becomes
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@ = —KFM(n) {f*+%(é+asin(n))TH(é+asin(n))}
—KH"*M(n) [f*+%(é+asin(n))TH(é+asin(n))] ., (11.2.48)
? = hF +hH 1= h"N(n) [f* + %(54—asin(n))TH(é+asin(n))] f

—hFN(n) [f* + %(é+asin(r7))TH(é—l—asin(n))] H!
—hH IN(n) [f* + %(é+asin(n))TH(éJrasin(n))} F
—hH™IN(n) [f* + %(é +asin(n))"H(B+ asin(n))} H 1 (11.2.49)

Similar to the single parameter case, to make the averatgnsys the error system
(11.2.48)—(11.2.49) exponentially stable, we choose thgirfunctionN as

4 .
(N)ii = m (sz(ni) - Go(Qi)) ) (11.2.50)

sin(ni) sin(n;)

Njij= ———F——, i #]. 11.2.51
i = 22 Gola)Gol))” 7] (1250
Thus we obtain the average system of the error system (B)-441.2.49)
déave . N .
T —KOe— K 2eH 62V€, (11.2.52)
dlzave N N -
T —hrave_ hraveqave (11.2.53)

whereK “2¥eH §2vejs quadratic in( 2", §2¥¢), andh/” 2eH [*aejs quadratic in” 2
The linearization of this system has all of its eigenvaludesta and—h. Hence, un-
like the gradient algorithm, whose convergence is govebyegte unknown Hessian
matrix H, the convergence rate of the Newton algorithm can be ariyjtassigned
by the designer with an appropriate choic&adndh. By the multi-input stochastic
averaging theorem given in Theorem 8.1, we arrive at thevioiig theorem:

Theorem 11.2.Consider the static map (11.2.47) under the parameter wptdat
(11.2.43)—(11.2.44). Then there exist constants@, ¢ > 0, y > 0 and a function
T(&1) : (0,&) — N such that for any initial conditiof®(0)| < r and anyd > O,
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lim inf {t>0:10(t) >c|B(0)e "+ 8} =w, as. (11.2.54)
&1—

and

|imOP{|é(t)| <cl8(0)je "+, vt €[0,T(&1)]} = 1, with lim T (&1) = oo.
&1— &1—

(11.2.55)
11.3 Newton Algorithm for Dynamic Systems
Consider a general multi-input single-output (MISO) noakr model
x = f(x,u), (11.3.56)
y = h(x), (11.3.57)

wherex € R™is the statey € R" is the inputy € R is the output, and : R™ x R" —
RMandh: R™— R are smooth. Suppose that we know a smooth control law

u=a(x,0) (11.3.58)
parameterized by a vector parameler R". Then the closed-loop system
x=f(x,a(x0)) (11.3.59)

has equilibria parameterized I As in the deterministic case [6], we make the
following assumptions about the closed-loop system.

Assumption 11.3.There exists a smooth functibn R" — R™ such that
f(x,a(x,0)) =0if and only ifx=1(6). (11.3.60)

Assumption 11.4.For eachd € R", the equilibriunx = 1(0) of system (11.3.59) is
exponentially stable uniformly if.

Assumption 11.5.There exist9* € R" such that

d(hol) oy _
o0 (0)=0 (11.3.61)
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9. i=fraxo)| ¥
y=h(x)

\

N
S(n@®) M(n()) |s+h,

DS

z=y—-¢

Fig. 11.3 Gradient-based stochastic extremum seeking scheme.

0 x=f(x,a(x,0)) y -
y=h(x) -
N
S(n(1) M(5(t)) s+h
0|k Ne h] A z=y-¢
1 1
D -T'G s+h
N(n()
- 1 H| M )
"= kT —h,CHT H s+h

Fig. 11.4 Newton-based stochastic extremum seeking scheme. Thel oundition/” (0) should
be chosen negative definite and symmetric.

d?(hol)
062

Our objective is to develop a feedback mechanism which miaeisrthe steady-state

value ofy but without requiring the knowledge of eith@t or the functions andl.

In Chapter 5, the gradient-based extremum seeking desitireisingle parameter

case achieves this objective. The multi-parameter gradiesed algorithm is shown

schematically in Fig. 11.3, whereas Newton-based algorithshown in Fig. 11.4.
We introduce error variables

(0")=H <0, H=HT. (11.3.62)

6=6-6%, 6=0+3Sn(t)), (11.3.63)
{=7-hol(6%), F=r—H71 (11.3.64)
H=H-H, (11.3.65)
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whereS(n) is givenin (11.2.37). Then we can summarize the system inlHigt as

[f(x,a(x6"+6+S(n(t)))
. —Kré
—mG+hi(y—)M(n(t))
hol” —hol HII
—hiH +hi(y— ON(n (1))
—hpd + Py
f(x a(x, 9*+9+5('7( )
—K(F+H )G
_h16+h1(y hOl(e ) ) (})) (11366)
(

o
~—
N T @)y DX

(n
ho(l_—i—H Dl = (H+H)(F +H™)
—hiH —hiH +-hi(y—hol (6%) = {N(n (1))
—ho{ +ha(y—hol(67))

Denotexi(gt) = ni(t) andx (t) = [x1(t), ..., xa(t)]". Then we change the system
(11.3.66) as

%‘ = f(xa(x,0"+8+S(x(t/¢)))), (11.3.67)
6 —K(F+HY)G
416 —h16+h1(y hol(6%) — {)M(x(t/€))
ot r|= ho(I'+H )(I—(H+H)(I’JEH* ) ,(11.3.68)
H —hgH —hiH +hy(y—hol(8%) — ON(x(t/€))
¢ ~hod +hy(y—hol (6%))
where
S(x(t/e)) = [arsin(xa(t/€1)), .-, ansin(xn(t/&n))]", (11.3.69)
1 1 T
M(x(t/e)) = ms'n()ﬁ(t/&)) ----- msm(xn(t/en))]
(11.3.70)
4 .
(N(x(t/€)))i = m(smz(Xl(t/ﬂ)) —Go(d)), (11.3.71)
(N(X(t/é‘)))” _ SIn(Xi(t/&)) (XJ( /é‘])) |7§ J (11372)

aajGo(0i)Go(q))
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Now, treatinge as large compared to the size of parametersin (11.3.67 freeze”
xin (11.3.67) at its quasisteady-state equilibrium valuel (6* + 6 + S(x(t/€)))
and substitute it into (11.3.68), getting the reduced syste

6 _K(I:r'i‘H )é‘
416G G+ m(v(§ + S(x(t/2)) - LM (x (t/2)
Al ho(F +H-Y)(1— (Fr + H)(f +H 1) :
Hr —haFr — haH -+ hy(v(B + S(x(t/£))) — &IN(x(t/8))
G —hod +hov(B + S(x(t/€)))

wherev(z) =hol (6" +2z) —hol (6*). In view of Assumption 11.54(0) = 0, g—‘Z’(O) =
0, andg—i‘z’(O) H<O.

Denoteg = 51 for some constants;. Then we get the average system of the
reduced system (11.3.73) as

62 —K(f2+H DGR

4 | G —hy G2 +hljan(6r+S(o)) (0)pa(dor) x -+ x Un(dOp)

ot /‘a = N ho(l@+H™ )(I (Ha—i—H)(I'a—i—H ) ,
Ha —hyH2 —hyH + hy [ V(B + S(0))N(0) pa(dTn) x -+ X in(d )
6 —hol@+hy fpa V(6 +S(0))p1(dor) x -+ x pn(don)

(11.3.74)
The equilibrium( 83, G2¢, ;3¢ H&€, {2°) of the average reduced system satisfies
G2® = Opy1, (11.3.75)
/ﬂ% V(82€ + S(0))M(0) 1 (dTy) x - X n(d0) = Onsz,  (11.3.76)
Fae_ /nv(éf‘-r*"’ur S(0)) (o) x - - x pn(dai), (11.3.77)
H2e 4 H = /ﬂ%nv(érax'%r S(O)N(@) 1 (dar) x - x pn(dan), (11.3.78)
(H2e+H) ([P +H Y =1. (11.3.79)

By (11.3.76), foranyp=1,...,n,

' na.e 1 ; —
'/an(e, +S(o))apG0(qp) sin(op)H1(doy) x - -+ x Un(don) = 0.(11.3.80)
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By postulating théth elemen®?° of 67 in the form
n .
= Zlb'jaj + Z z cJ @jax+0(a®), (11.3.81)
= J=1k=]
whereb! andc‘j.k are real numbers, defining

n n n 03

v . 4
Zl azaz, 0z + 3 23> 2050, 0355+ Ol
(11.3.82)

and substituting (11.3.82) into (11.3.80), we have

N1 9% . ~ .
0= . lzizléﬁwzj( 0)(85°+aisin(a)))(67° +aysin(ay))
i=1j=
AL 1 Ha.e . Ha.e ;
+ Zkz @W(O)(eﬂ +asin(ai)) (67 + ajsin(oj))
i=1j=1k=1%"
~ ) 1 .
x (07 + acsin(ak)) —|—O(|a|4)} msm(ap)m(dm) X+ X Un(dop).
(11.3.83)
By calculating the average of each term, we have
0= eae + ae }(éa,e)Z 1 2G1(CI) 03V(0)
’pdz ; " (92,)02J 2P 31 pGo( p)/) 02
~ d%v N (era"e)eraZGo(QJ) v
TS B 5o (0 + Y (0)
P ;p " 0z30z, ;p 2 0207
- 6265 (0)+O(|af®). (11.3.84)
J#PZOJKZ "k 9202 0% dzjdzk

Substituting (11.3.81) in (11.3.84) and matching first op®vers ofg; gives

N, (11.3.85)
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which implies thabij =0 foralli, j sinceH is negative definite (thus nonsingular).

Similarly, matching second order teramay(j > k) andaj2 of aj, and substitutingtpij
to simplify the resulting expressions, yields

0 Cik
l=H] 1], j=L....nj>k (11.3.86)
0 c’j‘I<
and
) , ]
5Go(0) 55,52 (©)
' 3,
0 cij %GO(QJ)#;;TJ?(O)
G1(q;) g3
=|H| |+ %6353}33—25(0) (11.3.87)
0 ch 1 N_ 9
ji 5Go qj)dzjzaz‘jﬂ (0)
' 3,
I ZGO(qJ)g_ZZ(;/_Zn(O)

Thusc,, = 0 for alli, j,k whenj # k, andc); is given by

_ 3 -
- %GO(QJ')#;T?(O)
Cii
: 1 N L
Ci”f:l. QGO(qJ() d)zjlvdzjz (O)
: _ 1 Gi(qj) 9 ..
ci:',-+jl =—H! EG;(Q;)HE(O) Vi,je{1,2,....n}. (11.3.88)
Cii 1 N_ @
J:J EGO qJ)ﬁZJzﬁZ\;H (O)
o :
L 7)) G ) 03\/ O
| 2 O(QJ)EJza—zn( )

Thus
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n .
— Zlc'“a,?+0(|a|3). (11.3.89)
J:
By (11.3.100), we have
ok /R V(B2-+ S(0))Ha(d01) x -+ X Hin(d )

lZZ ()6 + asin(o) (3 + aysin(a))

07 azJ
1 3 Ge L L mae
3_0&dzjdzk 0)(6;" +aisin(ai))(6 ;" + ajsin(aj))
asin(ok)) +O(|a] )} pp(dop) x -+ x pn(day)

n 0 1 2v
Z 29997 (0 (B8 +alColan)
_; :17 4 . 1 3V O)eaeeaeeae
£ Zzs 5202,0% 0%
n n
zizl(glgzazz 0)6/°a§Go(q;) +O(lal*) (11.3.90)
This together with (11.3.89) gives
(11.3.91)

I\)ll—‘

(8 - as(a) + O] 27 730 7 (00) ~Gola)
0

P
x p1(dor) x -+ x tn(don) — (H) pp,
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- }azv( )apsm2(0p

Jrn 2 022

(\/iqp) 57— (sif(0p) — Go(ap))

L 10% Gaey 4 .
/R" z 2 07 2 9 Slnz(ap)m(&nz(ap) - GO(qP)) - (H)ppa

n ‘93V gae
pp*Zazazz i — (H)pp

N 9%y ~ae
= . 11.3.92
2102{022 ( )

(AP€)om = [ V(8 +5(0))(N(0) s (do) -+ X pin(d).

. c 1 Hae . Hae .
- /Rn L;J;Em(o)(er,i +aysin(ai)) (67° + a; sin(0;))
n n 1 03 e . . -
+i_ leklgm(o)(er,f +asin(ai))(675° + ajsin(ay))
sSin(ayp) sin(om)
‘ apamGo(dp) Go(0m)
Xul(dazl) X -+ X Un(don) — (H) pm,
_ o°v . : sin(ayp) sin(am)
= |32 aZm(O)apanS|n(ap)3|n(am) 2 Go( a0 Golar)
X 1 dUl) >< [.ln(dan)

€+ agsin(ay)) + O(|a*)

ae sin(ap) sin(om)
/R” Z|3' 0z 52 0Zm )6 Bmap Sin(im) SIN(p) apamGOp(Qp)GO(Qm)
x pa(dar) x -+ X Ha(ddn) — (H) pm

~ (H) +n—"3v (0)82°— (H)p
- pm Zldz.dzpdzm nl m
A d3v ~a,e

This together with (11.3.89) gives

n
H® = _ZWC“aj +[0(/a*)]nxn, (11.3.94)

j=1
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whereW' is an x n matrix defined by

3v

W)k = W(O), Vi, j, andk € {1,2,...,n}. (11.3.95)

By (11.3.79), we have

—1
—HMHE+ (HH2)2 — (HTHR)3 + . )H ™1 (11.3.96)

This together with (11.3.94) gives that

n n
[[2€=— z H-lwiH1 C“aJ +[O (|a|3)]n><n, (11.3.97)
=1

Thus by (11.3.89), (11.3.76), (11.3.97) (11.3.94) and3B1L.), the equilibrium of
the average system is

Z c“aJ +0(la]®), (11.3.98)
ér' = Onx1, (11.3.99)
3¢ = =5 5 H'WH cj;af + [O(/al*)Jnxn, (11.3.100)
44
Hae = Z zw'c”aJ +[O(|al®)]nxn. (11.3.101)
=3 ZlHiiQZGO(Qi)+O(|a|4). (11.3.102)
i=

The Jacobian of the average system (11.3.74) at the eduiitiis

Jra,e _ [BAanzn C02nx(2n+1) j| 7 (113103)
(2n+1)x2n ~(2n+1)x(2n+1)
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[ Onxn —K(H71+ ,—r?a\,e)
A= ‘ : 11.3.104
Nt fan Z(OVM(0)(d)  —halnen ( )
[ Onsn Onxn
B= | h1fan Z5(VN(0))U(dD) Onn |, (11.3.105)
| h2fpn Z(V)u(do)  Op
[ —holnxn+O1 —hgH 2+ Oz Ony1
C - Onxn —hllnxn Onxl (113106)
O1xn O1xn —hy
n n
O = ho_ZlZH 'wic);a + [O(|al®)]nxn, (11.3.107)

n n )
ozzho_ZlZHfl(w'Hfl—H "WhHH e} af +[0(|a)?) |,
(11.3.108)

whereu(do) £ py(doy) x --- x pn(day). SinceJi® is block-lower-triangular, it is
Hurwitz if and only if

h1/ M(0) 2o v(62€ + S(0))pa(don) - - x pn(da) < 0. (11.3.109)

With a Taylor expansion we get thAg; = hyH + [O(|a])]nxn. Hence we have

det(AIanzn—A) .
= detA (A + hy)lnen+ K(H 1+ F28)A)
= det((A% +hA) e+ K(H 1+ [O(|af?)]nxn) (haH + [O(|a])Inxn))
= det((A% + A ) lnen -+ K 4 [O(|@])]nxn), (11.3.110)

which, in view ofH < 0, proves thaf® is Hurwitz forathat is sufficiently small in
norm. This implies that the equilibrium (11.3.98)—(11@®})of the average system
(11.3.74) is exponentially stable if all elements of vecare sufficiently small.
Then according to the multi-input stochastic average #agiven in Theorem 8.1,
we have the following result.

Theorem 11.3.Consider the reduced system (11.3.73). Then there €xisOessuch
that for all |a| € (0,a"), there exist constants* 0, c > 0, y > 0 and a function
T(&): (0,&) — N such that for any initial conditiofA (0)| < r and anyd > 0,
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lim inf{t > 0:|A(t)| > c]A (0)|e " +5+0(|a]®)} =, a.s.(11.3.111)
&1—

and

IimOP{|/\(t)| < cJA(0)|e "+ 5+ 0(|a®),vt € [0,T(&1)]} = 1, with IimOT(el) = 0.
&1— &1—
(11.3.112)

0.4(0) ()16 @0~ 31y 57y HWH1d)

where/\(t)é(énm (1), Fr (1), Fi (t
)a?).

Z| 121 :LWI JzZ 1HIIGO(

11.4 Simulation

To illustrate the results, we consider the static quadmagiat-output map:

y=f(8) = f*+%(6—6*)TH(6—6*). (11.4.113)

Figure 11.5 displays the simulation results with = 1,8 = [0,1]", H =
3421 in the static map (11.2.47) amah = 0.1,ap = 0.1,k; = 1.kp = 1,hg =
0.1,h; = 0.08,h; = 0.08,q; = gz = 40,&, = 0.25,&, = 0.01 in the parameter up-
date law (11.2.43)—(11.2.44) and initial conditié(0) = 1,8,(0) = —1,6,(0) =
—1,6,(0) = 2,111(0) = 1/100,755(0) = 1/200,15(0) = (0) = 0.

Comparing Fig. 11.5 with Figure 8.1, we see that Newton-thasechastic ex-
tremum seeking converges faster than gradient-basedsstiiclextremum seeking
by choosing proper design parameters. Note that it was sagg$or the gradient-
based simulation in Figure 8.1, to use gains that are diftdo the different com-
ponents of theé vector (with a gain ratid /k, = 3/4) to achieve balanced conver-
gence betweef; and .. In Figure 11.5 the Newton algorithm achieves balanced
convergence automatically.
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11.5 Notes and References

A Newton-based extremum seeking algorithm was introduogd4] where, for
the single-input case, an estimate of the second derivatitee map was employed
in a Newton-like continuous-time algorithm. A generaliaat employing a differ-
ent approach than in [104], was presented in [108], wherethadelogy for gen-
erating estimates of higher-order derivatives of the umkmsingle-input map was
introduced, for emulating more general continuous-timgnegation algorithms,
with a Newton algorithm being a special case.

The power of the Newton algorithm is particularly evidentilti-input opti-
mization problems. With the Hessian being a matrix, and wwitheing typically
very different from the identity matrix, the gradient algbm typically results in
different elements of the input vector converging at vasiferent speeds. The
Newton algorithm, when equipped with a convergent estimaftthe Hessian ma-
trix, achieves convergence of all the elements of the inpator at the same, or at
arbitrarily assignable, rates.

In this chapter we generate the estimate of the Hessianxnigtrgeneralizing
the idea proposed in [108] for the scalar sinusoid-peridase to the multivariable
stochastically-perturbed case.

The stochastic continuous-time Newton algorithm that weppse is novel, to
our knowledge, even in the case when the cost function bgitigmzed is known.
The state-of-the-art continuous-time Newton algorithrfBjremploys a Lyapunov
differential equation for estimating the inverse of the slas matrix—see (3.2) in
[3]. The convergence of this estimator is actually goverbgdhe Hessian matrix
itself. This means that the algorithm in [3] removes the diifiy with inverting the
estimate of the Hessian, but does not achieve independétioe @onvergence rate
from the Hessian. In contrast, our algorithm’s convergeateis independent from
the Hessian and is user-assignable.

This chapter parallels the deterministic Newton-baseceexim seeking devel-
opmentin [47].
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n
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Fig. 11.5 Newton-based stochastic extremum seeking. Top: outpuexindmum values. Others:

estimate values.



Appendix A
Some Properties ofp-limit and p-infinitesimal
Operator

Let 7F = 0{XE, Yg/e,0 <5<t} = 0{Yye,0< s <t} = 0{¥,0< s< L}, andEf
denote the expectation conditioning off. Let .#Z¢ be the linear space of real-
valued processe$(t,w) = f(t) progressively measurable with respect{t&:}
such thatf (t) has a finite expectation for &l and.Z° be one subspace o#/®
defined by.Z° = {f € .#* : sup-q E|f(t)] < @} . A function f is said to bep-
right continuous (or right continuous in the mean) if for lec

E|f(t+9)—f(t)) = 0asd |0 and (A1)
SUpPE| f(t)| < co. (A.2)
t>0

Following [78, 116], we define the-limit and thep-infinitesimal operatorszis as
follows. Let f, f8 € _Z° for eachd > 0. Then we say that = p-lims_of? if

SUpE|fo(t)| < and (A.3)
t,0
(Isim0E|f5(t)—f(t)|:O for each. (A.4)

We say thatf € 2(<7¢), the domain ofe/¢, and.«/¢f = g if f andg are in.Z*,
and

lim > = g(t). (A5)
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234 A Some Properties gf-limit and p-infinitesimal Operator
For our need, the most useful propertieszﬁ‘f are given by the following theorem:

Theorem A.1 ([78]).Let f(-) € 2(«7¢). Then
t
M () = f(t)— f(O)—/O 5 (u)du (A.6)
is a zero-mean martingale with respect{t&¢ }, and
t+s R
Eta[f(t—ks)]—f(t):/t ES [ f(u)]du, a.s.

Furthermore, ift and o are bounded{.%¢} stopping times and each takes only
countably many values aral> 1, then

EE[f(0)] — f (1) = EE {/;Uﬁsf(u)du]. (A7)

If f(-) is right continuous almost surely, we can drop the “counli&i require-
ment.



Appendix B
Auxiliary Proofs for Section 3.2.2

Lemma B.1 ([79], Lemma 4.4)Leté& (-) be ag-mixing process. Le#} = g{&(s) :
0<s<t}, #* =0{&(s):s>t}. Suppose that(h) is bounded with bound k& O,
measurable o%”. Then

|E [h(t+5)|-%] — E[h(t+9)]| < K(9). (B.1)
Lemma B.2.g5(t) € /Z5.
Proof. By (3.3.98) and (3.3.99)

_ T
Gixy) =60y~ 60 = (T ) ey a0 @2
Then we have that

~ 2 T o7 T
I (T (- + (200 2) T, (g

By (B.3), (3.2.27), (3.3.90), (3.3.90), (3.3.89), (3.2.28nd (3.2.26), we get that
there existCs > 0 such that for anx e Dg, 1 = {X € R": [X| < d + 1} and any
yeSy,

IG(xY)

=272 < Cs. B.4
2 <c (B.4)
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First, we prove that for any= [xs,...,X)] € Dgs,t > 0, ands> 0,

IEF[G(X,Ys s)] e | 9G(X, Ys/e)
— - E o (B.5)
Without loss of generality, we only need to prove that
‘9Et‘9 [é(ans/s)] -aé(XaYs/s) ]
— T Ef | —— . B.6
(9X1 t (9X1 ( )

The proofs about the partial derivatives with respeck#o..,x, are similar. By
linearity of conditional expectation, the differential arevalue theorem, and the
dominated convergence theorem for conditional expectdtb (B.4)), we obtain

(9Et£ [G(X, Ys/s)]

(9X1
_ im Etg[é(xl-i-AXl,Xz,...,Xn,YS/E)]—Etg[é(xl,XZ,...,Xn,YS/E)]
Ax—0 5 Axq
= lim Ef {E(x + 04Xy, %, ..., Xn, Y, )] (where 0< 8 < 1)
A0 t %1 1 1,425+, Is/e

. G
= Ef{ lim 0—(x1+ GAxl,xz,...,xn,Ys/s)]

Ax—0 0%
G
= Eta |:0_X1(X17X27 e ;XnaYS/S):| ) (B?)
ie., BE‘E[GB(iw =E¢ [%} holds. For simplicity, we denote
O y) 02V (X) Ta(x " da(x,y)\ " oV (x) ©.8)
Y=\ Tox Y ox ox '

Then we have that

| /SY Q(xy)u(dy) = (a;\’XQ”)T ' /SY a(x,y)u(dy) + ( /SY dag)((,y) u(dy))T a\;ix)
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_ (M)Tam (MX))T oV (x)

ox? ox ox ’
(B.9)
where in the last equality, we used
da(xy) _ g /
L Fac ey = 5 [ atyuiay), (B.10)

which can be proved by following the deduction in (B.7). By.&B (3.2.27),
(3.3.90), (3.3.89), and (3.2.26), we get that for aryR" with |x| < , andy € Sy,

QX Y)| < (c3+ Ca)ksX|. (B.11)

By (B.5), (B.3), (B.8), (B.9), the fact tha# = ﬁt\;s, (B.11), Lemma B.1, (3.3.90),
and (3.3.91), we obtain that for amye Dy,

i
/rfa)

5

~ T
OEF[G(X, Yg/e)]
ta—xs/e a(X7Yt/£)ds

< ~ T
< /Td OEEF[G(X, Ys/e)] a(x,Yye)| ds
= Tg(t) E » Tt/e
5 6% Yee) |
Jd £ 9y 'S/E
= YR alxYye)|ds
Tg(t t X ] ( t/S)
i < T

du (by change of variable

&3 [0G(X,Y,
:g/rg(l) Etg %} a(XaYt/S)

‘a(XaYt/S)‘ du

—c /;> ES -Q(x,Yu) - /& Q(x,y)u(dy)]

B.8),(B.9))

T
<
w"
w
:—/

‘a(XaYt/E)|du

) [BF Qv [ Q) Ry~ Puldy-+ ()

<& [ [EIQMYu) | 7] ~ EIQU Vo) [ )| du
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‘a(xth/S)’du

e /<> } /SY Qx.y)(Pu(dy) — u(dy))

.(S

)

&€

< f/rgm
&

E [ QU Y)| 2| — EIQU )

|a(x, Y /¢)| du
L, QUy)(Ru(ay) — (ay)

5

B
+€/ﬂ

¢ £

2 TE(Y)
< &(Ca+Ca)ks|X| - ka[x| fre) @ u——— )du

‘a(xvYI/£)|du

£

™
+£/205(Ca + Ca)ks|X| - kslX] [, € 2Udu
&

< £C,y(8)[x2, (see(3.3.92),(3.3.93),(3.3.94), (3.3.95)), (B.12)

2 2
whereCy(8) = 21 | 2VES(EHeG Honce, by (3.3.101), (B.12), (3.3.98),
(3.2.26), (3.3.90),

SUDE(|G5(0)]] < SUPE 1jecrg) - (1GOK) |+ eCo(8) ¢ )

t>0
T
< supE | sup (aV(x)> a(x)| + eCy(8)[x/?
>0  ||x<o ox
< sup {caks|x|>+€Ca(8)[x|*}
[x|<d
< (cgkg + £C2(8))8? < o,
(B.13)
and thug§(t) € 7 5.
Etg [Vg(ng(t+6,),t + 6/)] _VE(XTgS(t)at)
i 5 3 — o
LemmaB.3.p lsl/rﬂJ 5 gs(t)
Proof. We prove a stronger result
EFVE(Xfe o t+0)] = VE(XE (1)
lim () SO _get), as,  (B.14)

810 o
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from which the statement of the lemma follows. Deno{t@ﬂ) |y ngm by
VT(Xi(t ). By (3.3.87), (3.3.88), (B.2) and the definition\6f (X4 re ) t), the prop-
erty of conditional expectation, we have that
Ef[Vf(xfg(tM/ 40— VS(Xi(t) t)
5/
1
- {Et {V(er(tw/))

rg . . . .
+ Tg(t+6,)VX(XTg(I+6’))E[+6/ |:a(XT§(I+6/)’YS/£) — a<xT§(t+6/)):| ds

lv(x )+ g X0 B (80X ¥sr0) — Gy | H

- o {E [v<xrs<t+a>>l —V<er<t>)}

5/
1 [is(t+d) e
-= / WO [0, ), Yere) — BXE )] s

1 /% € Sy E
+§ ./rg(tJr(S’) {Et |:VX(XTS(I+6/)) (a(XTg(t+5')’YS/8) - a(xrg(t+5/)))

£ £ A/ Y E
— V(Xfz ) (80X Yore) — AIXE (t()t))sl} ds
T5(t+0

- (e Vo) [ oo oo

1 'Tg £lA(YE Ry E
Ty ./rS(t+5’) = [G(XTE(‘M/) Noje) = G(XTS“)’YS”)} ds

2 g50(t,8') — g5°(t,8) + 95°(t,9).

(B.15)

Following the proof of (B.7), we get

. , £
lim 67 (1,8 = lim BN (X )]~V (X))
T £ £ £ £
Vi (X zq) T 0 (Xr £(t+0) Xrgm)) (Xrg(ms/) _Xrg(t))

=limEf
510 0
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r (15
— (X0 (Ko —Xfs0) ) Sy 806 Yore)du
T80 5

r t40’
imE* A (xfg(t>+9(xrgg(t+5/)_xfg(t)))ft (X, Yuze) u<rsiau
_moEt 5
= VxT(Xrgg(t))a(xtaaYt/e) Nty
=V (X)aX Yye) sy ass, (B.16)

) 5 1 [Tt -
imes*08) =ims [ e[S 0] ds
)
1 "TEA(40) e T2 oe
:g%ﬁ/m EF [6(XGs ), Yere) | ds
)
1 ft+o

g,%g A Ef {G(X%(t)aYs/a)} |{s<r§}ds

= é(xrgg(t)aYt/s)l{Krg}
G(x[‘gaYt/E)I{t<T§}a a.s. (817)

Following the proof of (B.16) and by (B.5), we get that

. 5 1 T ~ ~
MO (0) =I5 [ B (60X o) — Gl Yo s
)
=lim K = G(X%(”‘S’)’YS/S) B G(X%(t)’YS/S) ds
o0 T5(t+5) ! o'
[&T
[T ¢ Cx (Xrgg(t) + e(xrsg(tw/) - Xrgg(w)vYS/S) (xfg(tw/) - Xrgg(w)
N ESI’TJ TE(1+5) o’ ds
AT
i [T |2 (X 80K 5) ~ X)) Vo)
3'10JtE(1+8) ! o'
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t+0' .
<[ 06 Mg ] as

.Tg N
= EE |G (XE,Ys/e)al(XE, Yy /e )l (rore1 | ds
./rg(t) t [ X (xt S e) (X[ t/s) {t<r5}}

— / [dEt (x Ys/e)]
- {t<r(5}

which together with (B.15), (B.17), (3.3.98), and (3.3.},0inplies that (B.14)
holds.

Lemma B.4.,a/,\j (Vg(xfm),t) . I{t<r,\€A}) =gy(t),ie

T
] a(XtSaYt/E)dS a.s, (818)
xX=X¢

EEIVE X 10yt +0)  Daargy] = VEOKE )00 - Tieergy

l — g5 (1).
p-lim 5 am(t)

Proof. As in the proof of Lemma B.3, we prove

i Et [Vg( £ (t+5) t+5) {t+0<1§; }] _VE(Xf’\SA(t)at)I{t<r,\€A}
m
310 o

=gy(t), as.
(B.19)

Denote(‘MX ) |y XE byV (XE (>) By the definition ofv& (X4 (1) t), follow-
ing the proof of Lemma B.3, we get that
Ets[va(xs (t+3) T 5) {t+0<15) }] —Vg(x%l( ) {t<tiy}
o
1
- 3 {Et£ [V(er (t+6)) {t+6<rM}+|{t+6<rM}/ (t+5) (XS (t+6))

Et+6 [ ( T (t+0)° 5/5) _a(xrf,l(pré))} ds} - [ (Xr,fﬂ(t))l{t<r,f,|}

it /‘g VX(X%N))EI& [a(xrg,\gﬂ(t)’YS/S) - a_(xff,l(t))] ds] }
1
= 3 {Ete [V(er t+3) ) {t+o<1)}

TE

+ Va(Xe (1) Et+6[ (Xge t3): 5/5)_5(Xf,§|(t+6))} ds}

T9(t+0)
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& Tfn & & & A(YE d
- V(Xr,\gA (t))l{t<r,\€A} + 0 Vx(xrf/l (t))Et [a(xr,\gﬂ t) 7YS/£) - a(xr,\gﬂ (t))} S

1
= 3 {Ets[\/(xre,fﬂ(H(S I{t+6<rM} XTS I{t<r£ }

1 T’\EA(I+6) & & & AIVYE
"oy Kme)E [alXf - Yoe) — AXE )] ds
1 T

"5 )i B MO 0100 (30 100 Yo0) ~ 80X 1)

— (X ) (A0 ) Yore) — AXE )| f s
(by the property of conditional expectation

1

3{ er (t+0))  Ntra<tg] — er |{t<r§,|}}
1 rM(t+6

5L fﬁ(t),vs/g)} ds

(t+9)

1 /T .
3/ Et rf (t+o) Ysre) — G(Xz: AGE Ys/e)} ds
2 M, 8) - gyM(t,8) + g3 (t,8), (B.20)

where the functiongg’M(-,-) and gg’M(-,-) are the same with the corresponding

ones in (B.15) withd replaced byM. And so we need only to considgi"\"r(t 0)
Following the proof of (B.16), we get that

1
“m gj_ (t,5) = I('{%S {Etg[V(ng t+0) ) {t+6<rM}] V(Xrgfn(t))l{Kr,\gA}}

. € V(xff/l(t+5))|{t+6<rﬁl}_ ( r,fA(t)) {t<r,f,|}]
=IlimE
3 o
|:V(Xf’\s/l (t+6)) (I{t+6<rf,|} - I{t<r,f,|}) :|
=IlimE?f
510 0
V(X )=V (X& ) ) Lipere
lim EE [( T8 (t+0) T8 (t) ) {t<my}
310 o
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=0+IimEE (V(xfm(”‘s)) V(xffﬂ(ﬂ))l{t“fn}]

310 o

T & £ £ &
- vy (er o T 9( T2 (t4+0) erﬂ(t))) (erﬂma) _er,l(t)) |
510 t > {t<tf}
. T 15 (t+9)
— (XE +9( §(t+5) Xrg,f,l(t)))jrg a(X§, Yu/e)du
B (ISTJEt o {t<r€}
t+6
VT (X ( ) T 9( e (1+0) K (t))) Jo 7 alXs, Yuye) lu<rg ydu
= I(ISTJEt > {t<tf,}

= Vi (Xge 0)a0 , Ye) - Leerg ) et}

= Vi ()X, Ve e, )
—lim g&M(t, 8). B.21
im 617 (t,9) (B.21)

Hence by the proof of Lemma B.3, we get that (B.19) holds.
Lemma B.5. ME is a martingale relative td.%¢ }.

Proof. For anys,t > 0, by (3.3.139), the property of conditional expectatiam] a
P (Vg(xf“gn(t),t) : l{t<r,\€A}) Mvs(xs ) (see Lemma B.4), we have that

E[Mtis Mt£| 8]
{ezst Vg(xa 5 (t+s) t+9)l {t+s<ty} — eVE(X (%o Ty (1) ol {t<tfy}

- [ 20 (VO ey ] 5
+E {eszV(Xr N ire <trs) —GZVTMV(Xr Mg, <t}“/t }

= [ezy”svg(xrs tre LTS Ntpsergy | F } — VX 1) e
_/tt+s [ezyu(ng+2y( (X (1) Lucrs) )’Jt}du

+E [TV (X5, ) I{T5<t+s}—e2WMV<xr )iy | 7]
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= {E {GZV(HS)VS(X%A (tre-t +S)‘9ﬂ — VA ). t)
ths y r ~ E/yE £
_./t E[ezvu(,anJrzy) (v (thgﬂ(u>,u))’<%}du}

FE| - VK0 Uty

— {E [92)7(t+s)\/£()(rsl\g/I trgptt )it rso1e)

t+s ~
—/t E {ZVeZV“Vg(XEMWU)l{uzrm yf} du}
+E [ezw'\gﬂv(xrsfﬂ)l{r,fﬂéws} - ezw'\gﬂv(xrsfﬂ)l{r,fﬂgt} «%8}
égl(tvsvw)_gzaasa w)+g3(tasv (A)) (822)
Foru>t, define
f(u,w) =E [e29<0>vs(xfﬁ (u>,u)|2ﬂ (w). (B.23)

Then for anyu > t, we have (ifu = t, we consider the right derivative)

f(u+sw)— f(u,w)

, L
f(u,w)_lsm)

S
[ V(U+S)\/E (Y E g€l _ Y(U\/E(XE g€
B[ (XE (00 U+ ONFE| — E [MOVEXE )7 |
s—0 S
_ ezy,(qus)Va(ng U+ S) _ ezwvs(xsg ’u)
_ ISiLT?JE 5 (U+S) _ rAC) Zg
[ (s M)Vt g uts)
T T (u+s)’ €
= imE - F
e (VE(XE o u+s)—VEXE, u)
_HSiL%E ( Ty (U+9) _ T8 (U) ) 7
= E [ (A +20) (VEOKG W) | 7 (B.24)

and thus
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t+8
Oi(t,s,w) = f(t+s w)— f(t,w) —/ f'(u,w)du=0, a.s. (B.25)
t
By the definitions oftf; andVé(x,t), we have
gz(t757 w) =E [eZV(IJrS)V (xf,f,l)l{tJrSZTl\gA}
t+s . .
_ /t E [2ye2V“V(XT’\gA)I -
—E [eZV(”S)V(XfﬁI Mirsore) — €MV (X% o)

t+s fu e
_/t 20627 (X )l =15,y U

gﬂ — &MV (X&) o1y

£
M

ﬁﬂ du

ﬂ?] . (B.26)

Now, we analyze the item within the conditional expectatiorthe right-hand side
of (B.26). For simplicity, let

h(t,s,w) = ezV(thV(Xf“sn) Mrssrg) — gﬁv(xfﬁ) (A
_ /t 207 (XE, ) 1 gz AU (B.27)

Case 1t +s< 15 (w). Thenh(t,s,w) = 0.
Case 2t > 1 (w). Then we have

- - t -
h(t,s, w) = ezV(”S)V(XffA) - eZVtV(XffA) - / +82f/e2V”\/(XffA ydu=0, (B.28)
Jt

since

d (e2MV(XE )
( dlf)gM))_zyeZWV(xf&). (B.29)

Case 3t < 15 (w) <t-+s. Then by (B.27) and (B.29), we have
. t+s _ .
h(t,s @) = M9V (XE ) - / 2927V (X5, Jdu= ViV (X5, ). (B.30)
LY

Hence we have

_92(tasa w) =-E [h(tvsvw” ‘%g]
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= —E[IVXE) e <trg| 7]
—_E [eZVTfAV(X%A)I (1 <trs — STV )1 {Tﬁgt}‘yﬂ ,
(B.31)

which implies that
—0o(t,s,w) +03(t,5,w) = E[0l.%’] =0, as. (B.32)
This together with (B.22) and (B.25) proves that

E[ME s— ME[FE] =0, as. (B.33)
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