
Preface

Inspiration for the book

This book was inspired by a seemingly non-mathematical question of understand-
ing the biological phenomenon of bacterial chemotaxis, where it is conjectured that
a simple extremum seeking-like algorithm, employing stochastic perturbations in-
stead of the conventional sinusoidal probing, enables bacteria to move in space to-
wards areas with higher food concentration by estimating the gradient of the un-
known concentration distribution.

While constructing stochastic algorithms that both mimic bacterial motions and
are biologically plausible in their simplicity is easy, developing a mathematical the-
ory that supports such algorithms was far from straightforward. The algorithms that
perform stochastic extremum seeking violate one or more assumptions of any of
the available theorems on stochastic averaging. As a result, we were compelled to
develop, from the ground up, stochastic averaging and stability theorems that consti-
tute significant generalizations of the existing stochastic averaging theory developed
since the 1960s. This book presents the new theorems on stochastic averaging and
then develops the theory and several applications of stochastic extremum seeking,
including applications to non-cooperative/Nash games andto robotic vehicles. The
new stochastic extremum seeking theory constitutes an alternative to established,
sinusoid-based, deterministic extremum seeking.

Stochastic averaging

The averaging method is a powerful and elegant asymptotic analysis technique for
nonlinear time-varying dynamical systems. Its basic idea can be dated back to the
late 18th century, when in 1788, Lagrange formulated the gravitational three-body
problem as a perturbation of the two-body problem. No rigorous proof of its valid-
ity was given until Fatou provided the first proof of the asymptotic validity of the
method in 1928. After the systematic research conducted by Krylov, Bogoliubov,
and Mitropolsky, in the 1930s, the averaging method gradually became one of the
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classical methods in analyzing nonlinear oscillations. Inthe past three decades, the
averaging method has been extensively applied to theoretical research and engineer-
ing applications on nonlinear random vibrations.

Stochastic averaging method was first proposed in 1963 by Stratonovich based
on physical consideration and later proved mathematicallyby Khasminskii in 1966.
Since then, extensive research interest has developed in stochastic averaging in the
fields of mathematics and mechanical engineering.

Stochastic extremum seeking

Extremum seeking is a real-time optimization tool and also amethod of adaptive
control, although it is different from the classical adaptive control in two aspects: (i)
extremum seeking does not fit into the classical paradigm or model reference and
related schemes, which deal with the problem of stabilization of a known reference
trajectory or set point; (ii) extremum seeking is not model based. Extremum seeking
is applicable in situations where there is a nonlinearity inthe control problem, and
the nonlinearity has a local minimum or a maximum. The nonlinearity may be in the
plant, as a physical nonlinearity, possibly manifesting itself through an equilibrium
map, or it may be in the control objective, added to the systemthrough a cost func-
tional of an optimization problem. Hence, one can use extremum seeking both for
tuning a set point to achieve an optimal value of the output, or for tuning parameters
of a feedback law.

With many applications of extremum seeking involving mechanical systems and
vehicles, which are naturally modeled by nonlinear continuous-time systems, much
need exists for continuous-time extremum seeking algorithms and stability theory.
Unfortunately, existing stochastic averaging theorems incontinuous time are too
restrictive to be applicable to extremum seeking algorithms. Such algorithms violate
the global Lipschitz assumptions, do not possess an equilibrium at the extremum,
the average system is only locally exponentially stable, and the user’s interest is in
infinite-time behavior (stability) rather than merely in finite-time approximation.

This book develops the framework of stochastic extremum seeking and its ap-
plications. In the first part of the book we develop the theoretical analysis tools of
stochastic averaging for general nonlinear systems (Chapters 3 and 4). In the sec-
ond part of the book, we develop stochastic extremum seekingalgorithms for static
maps or dynamical nonlinear systems (Chapters 5, 8 and 11). In the third part, we
investigate the applications of stochastic extremum seeking (Chapters 6, 7, 9 and
10).

Organization of the book

Chapter 1 is a basic introduction to the deterministic/stochastic averaging theory.
Chapter 2 provides a brief review of developments in extremum seeking in the
last 15 years and presents a basic idea of stochastic extremum seeking. Chapter
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3 presents stochastic averaging theory for locally Lipschitz systems that maintain
an equilibrium in the presence of a stochastic perturbation. Chapter 4 presents
stochastic averaging theory developed to analyze the algorithms where equilibrium
is not preserved and practical stability is achieved. Chapter 5 presents single-input
stochastic extremum seeking algorithm and its convergenceanalysis. Chapter 6
presents an application of single-parameter stochastic extremum seeking to stochas-
tic source seeking by nonholonomic vehicles with tuning angular velocity. Chapter 7
presents stochastic source seeking with tuning forward velocity. Chapter 8 presents
multi-parameter stochastic extremum seeking and slope seeking. Chapter 9 presents
the application of multi-parameter stochastic extremum seeking to Nash equilib-
rium seeking for games with general nonlinear payoffs. Chapter 10 presents some
special cases of Chapter 9: seeking of Nash equilibria for games with quadratic
payoffs and applications to oligopoly economic markets andto planar multi-vehicle
deployment. 11 introduces a Newton-based stochastic extremum seeking algorithm,
which allows the user to achieve an arbitrary convergence rate, even in multivariable
problems, despite the unknown Hessian of the cost function.
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Chapter 1
Introduction to Averaging

The basic idea of averaging theory—either deterministic orstochastic—is to ap-
proximate the original system (time-varying and periodic,almost periodic, or ran-
domly perturbed) by a simpler (average) system (time-invariant, deterministic) or
some approximating diffusion system (a stochastic system simpler than the original
one). Starting with considerations driven by applications, the averaging method has
been developed as a practical tool in mechanics/dynamics [22, 117, 120, 130, 151,
152] as well as a theoretical too in mathematics [21, 40, 54, 58, 59, 61, 129, 53],
bot for deterministic dynamics [22, 58, 120, 121] and for stochastic dynamics
[40, 61, 81, 145]. Stochastic averaging has been the cornerstone of many control
and optimization methods, such as in stochastic approximation and adaptive algo-
rithms [17, 80, 93, 131, 132].

In this chapter, we introduce some basic results about deterministic averaging
and stochastic averaging.

1.1 Averaging for Ordinary Differential Equations

1.1.1 Averaging for globally Lipschitz systems

1.1.1.1 Simple case

Consider the system

dZε
t

dt
= ε f (Zε

t ,ξt), Zε
0 = x, (1.1.1)

whereZε
t ∈ Rn, ξt is a function fromR+ ∪{0} → Rl , ε is a small parameter, and

f (x,y) = [ f1(x,y), . . . , fn(x,y)]T .
If the functions fi(x,y), i = 1, . . . ,n do not increase too fast, then the solution

of system (1.1.1) converges toZ0
t ≡ x as ε → 0, uniformly on every finite time

interval[0,T]. However, the behavior ofZ0
t on arbitrarily long time intervals or in-

1



2 1 Introduction to Averaging

finite time intervals is more interesting since as time goes on far enough, significant
changes—such as exit from the neighborhood of an equilibrium position or of a pe-
riodic trajectory— may take place in system (1.1.1). Usually time intervals of order
ε−1 or of larger order are considered [40].

Let

Xε
t = Zε

t/ε . (1.1.2)

Then the equation forXε
t assumes the form

dXε
t

dt
= f (Xε

t ,ξt/ε ), Xε
0 = x. (1.1.3)

Thus the study of this system on a finite time interval is equivalent to the study of
system (1.1.1) on time intervals of orderε−1.

We assume that

• f (x,y) is bounded, continuous inx andy, and satisfies a globally Lipschitz con-
dition in x uniformly in y: for anyx1,x2 ∈ Rn, ∀y∈ Rl , there exits a constantK
(independent ofy) such that

| f (x1,y)− f (x2,y)| ≤ K|x1−x2|. (1.1.4)

• The following limit holds

lim
T→∞

1
T

∫ T

0
f (x,ξs)ds= f (x) (1.1.5)

uniformly in x∈ Rn.

It can be shown that under the above assumptions, the function f (x) is bounded
and satisfies a globally Lipschitz condition with the same constantK as in (1.1.4).
Condition (1.1.5) can be satisfied, ifξt is periodic or is a sum of periodic functions.

Thus we obtain a simpler system, i.e., theaverage systemof the original system
(1.1.1):

dXt

dt
= f (Xt), X0 = x. (1.1.6)

Now we consider the error between the solution of the original system (1.1.1)
and that of its average system (1.1.6). By (1.1.1), (1.1.6) and (1.1.4), we have for
∀t ∈ [0,T]

|Xε
t −Xt | =

∣
∣
∣
∣

∫ t

0
[ f (Xε

s ,ξs/ε)− f (Xs)]ds

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ t

0
[ f (Xε

s ,ξs/ε)− f (Xs,ξs/ε)]ds+
∫ t

0
[ f (Xs,ξs/ε)− f (Xs)]ds

∣
∣
∣
∣

≤
∫ t

0

∣
∣ f (Xε

s ,ξs/ε)− f (Xs,ξs/ε)
∣
∣ds+

∣
∣
∣
∣

∫ t

0
[ f (Xs,ξs/ε)− f (Xs)]ds

∣
∣
∣
∣
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≤ K
∫ t

0
|Xε

s −Xs|ds+ α(ε), (1.1.7)

where

α(ε) , sup
0≤t≤T

∣
∣
∣
∣

∫ t

0
[ f (Xs,ξs/ε)− f (Xs)]ds

∣
∣
∣
∣
. (1.1.8)

By Gronwall’s inequality, from (1.1.7) we obtain that

sup
0≤t≤T

|Xε
t −Xt | ≤ α(ε)eKT . (1.1.9)

Since

α(ε) = sup
0≤t≤T

∣
∣
∣
∣
t
ε
t

∫ t
ε

0
[ f (Xuε ,ξu)− f (Xuε)]du

∣
∣
∣
∣
→ 0, asε → 0, (1.1.10)

we have

lim
ε→0

sup
0≤t≤T

|Xε
t −Xt | = 0. (1.1.11)

From this we obtain a proof of the fact that the trajectoryXε
t converges to the solu-

tion of equation (1.1.6), uniformly on every finite time interval asε → 0.
The assertion that the trajectoryXε

t is close toXt is called the averaging principle
[40]. Averaging principle supplies a kind of approximationrelation between the
original system and its average system. In some problems, analyzing the solution
property of the original system by that of its average systemis of main interest.

1.1.1.2 General case

Consider the system

Ẋε
t = f1(X

ε
t ,ξ ε

t ), Xε
0 = x, (1.1.12)

ξ̇ ε
t = ε−1 f2(X

ε
t ,ξ ε

t ), ξ ε
0 = ξ , (1.1.13)

whereXε
t ∈ R

n,ξ ε
t ∈ R

l , and f1 : R
n×R

l → R
n, f2 : R

n×R
l → R

l . The velocity
of the motion of the variablesξ ε

t has orderε−1 asε → 0. Therefore,ξ ε
t is called

the fast variable, andXε
t is called the slow variable. For equation (1.1.3), the role of

fast motion is played byξ ε
t = ξt/ε . In this case the velocity of fast motion does not

depend on the slow variable.
We consider the fast motionξt(x) for fixed slow variablesx∈ Rn:

dξt(x)
dt

= f2(x,ξt (x)), ξ0(x) = ξ , (1.1.14)
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and assume that

• Functionsf1 and f2 are bounded and continuous differentiable functions.
• The limit

lim
T→∞

1
T

∫ T

0
f1(x,ξs(x))ds= f 1(x) (1.1.15)

exists independently of the initial pointξ of the trajectoryξt(x).

The averaging principle for system (1.1.12)–(1.1.13) is the assertion that under
certain assumptions, the trajectory of the slow motion can be approximated by the
trajectory of the average system

dXt

dt
= f 1(Xt), X0 = x. (1.1.16)

Although the averaging principle has long been applied to problems of celestial
mechanics, oscillation theory and radiophysics, a mathematically rigorous justifica-
tion remained unavailable for a long time. The brief historyof the development of
mathematically rigorous theory of averaging is as follows [40]:

• The first general and rigorous proof of averaging theory was obtained by N. N.
Bogolyubov [22], who proved that if the limit (1.1.5) existsuniformly in x, then
the solutionXε

t of equation (1.1.3) converges to the solution of the averagesys-
tem (1.1.6), uniformly on every finite time interval.

• In another work [23] (see also [22]), Bogolyubov extended the above results to
some cases of systems in the form (1.1.12)–(1.1.13), such assystems in which
the fast motion is one-dimensional and the equation forξ ε

t has the formξ̇ ε
t =

ε−1 f2(Xε
t ), as well as to some more general systems.

• V. M. Volosov [139] obtained a series of results concerning the general case of
system (1.1.12)–(1.1.13). Nevertheless, in the case of multidimensional fast mo-
tions, the requirement of uniform convergence to the limit in (1.1.15), which is
usually imposed, excludes a series of interesting problems, for example, prob-
lems arising in perturbations of Hamiltonian systems.

• In [5], it is proved that for everyT > 0 andρ > 0, the Lebesgue measure of
the setFε

ρ of those initial conditions in problem (1.1.12)–(1.1.13) for which
sup0≤t≤T |Xε

t −Xt | > ρ converges to zero withε. This result was later sharpened
for systems of a special form [107].

1.1.2 Averaging for locally Lipschitz systems

In Section 1.1.1, the averaging principle is formulated forglobally Lipschitz sys-
tems. In this section, we introduce averaging results for locally Lipschitz systems,
which can be used to analyze the convergence or stability of the deterministic ex-
tremum seeking algorithm or control. Details can be found in[58, Chapter 10].
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1.1.2.1 Averaging in the periodic case

Consider the system

dXε
t

dt
= ε f (t,Xε

t ,ε), (1.1.17)

whereXε
t ∈ Rn, and f and its partial derivatives with respect to the second and

third argument up to the second order are continuous and bounded for(t,x,ε) ∈
[0,∞)×D0 × [0,ε0], for every compact setD0 ⊂ D, whereD ⊂ Rn is a domain.
Moreover,f (t,x,ε) is T-periodic int for someT > 0 andε is a positive parameter.

We associate with (1.1.17) an autonomous average system

dXt

dt
= ε fav(Xt), (1.1.18)

where

fav(x) =
1
T

∫ T

0
f (r,x,0)dr. (1.1.19)

The basic problem in the averaging method is to determine in what sense the be-
havior of the autonomous system (1.1.18) approximates the behavior of the nonau-
tonomous system (1.1.17). In fact, via a change of variables, the nonautonomous
system (1.1.17) can be represented as a perturbation of the autonomous system
(1.1.18). For details, the reader is referred to [58].

The main result is given next.

Theorem 1.1.[58, Theorem 10.4] Let f(t,x,ε) and its partial derivatives with re-
spect to(x,ε) up to the second order be continuous and bounded for(t,x,ε) ∈
[0,∞)×D0× [0,ε0], for every compact set D0 ⊂ D, where D⊂Rn is a domain. Sup-
pose f is T-periodic in t for some T> 0 andε is a positive parameter. Let Xεt and
Xt denote the solutions of (1.1.17) and (1.1.18), respectively.

1. If Xtε ∈ D,∀t ∈ [0,b/ε] and Xε
0 −X0 = O(ε), then there existsε∗ > 0, such that

for all 0 < ε < ε∗, Xε
t is defined and

Xε
t −Xtε = O(ε) on [0,b/ε], (1.1.20)

2. If the origin x= 0 ∈ D is an exponentially stable equilibrium point of the
average system (1.1.18),Ω ⊂ D is a compact subset of its region of attrac-
tion, X0 ∈ Ω , and Xε

0 −X0 = O(ε), then there existsε∗ > 0 such that for all
0 < ε < ε∗, Xε

t is defined and

Xε
t −Xtε = O(ε), for all t ∈ [0,∞), (1.1.21)

3. If the origin x= 0∈ D is an exponentially stable equilibrium point of the aver-
age system (1.1.18), then there exist positive constantsε∗ and k such that, for
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all 0 < ε < ε∗, (1.1.17) has a unique, exponentially stable, T -periodic solution
XT,ε

t with the property‖XT,ε
t ‖ ≤ kε.

If f (t,0,ε) = 0 for all (t,ε) ∈ [0,∞)× [0,ε0], the origin is an equilibrium point of
(1.1.17). By the uniqueness of theT-periodic solutionXT,ε

t , it follows that XT,ε
t

is the trivial solutionx = 0. In this case, the theorem ensures that the origin is an
exponentially stable equilibrium point of (1.1.17).

1.1.2.2 Averaging in the general case

Consider the system

dXε
t

dt
= ε f (t,Xε

t ,ε), (1.1.22)

where f and its partial derivatives with respect to(x,ε) up to the second order are
continuous and bounded for(t,x,ε) ∈ [0,∞)×D0 × [0,ε0], for every compact set
D0 ⊂ D, whereD ⊂ Rn is a domain. The parameterε is positive.

The average of nonlinear functionf (t,x,ε) is given by the following definition.

Definition 1.1. [58, Definition 10.2] A continuous, bounded functiong : [0,∞)×
D → R

n is said to have an averagegav(x) if the limit

gav(x) = lim
T→∞

1
T

∫ t+T

t
g(r,x)dr (1.1.23)

exists and
∥
∥
∥
∥

1
T

∫ t+T

t
g(r,x)dr−gav(x)

∥
∥
∥
∥
≤ kσ(T), ∀(t,x) ∈ [0,∞)×D0 (1.1.24)

for every compact setD0 ⊂ D, wherek is a positive constant (possibly dependent
onD0) andσ : [0,∞)→ [0,∞) is a strictly decreasing, continuous, bounded function
such thatσ(T) → 0 asT → ∞. The functionσ is called the convergence function.

By this definition, we obtain the average system of (1.1.22):

dXt

dt
= ε fav(Xt). (1.1.25)

For the convenience of stating the general averaging theorem, we list some details
of the deduction of the theorem.

Let

h(t,x) = f (t,x,0)− fav(x) (1.1.26)

and denote
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w(t,x,η) =

∫ t

0
h(r,x)e−η(t−r)dr (1.1.27)

for some positive constantη .
It can be shown that there is a classK functionα such that

η‖w(t,x,η)‖ ≤ kα(η), ∀(t,x) ∈ [0,∞)×D0, (1.1.28)

η
∥
∥
∥
∥

∂w(t,x,η)

∂x

∥
∥
∥
∥
≤ kα(η), ∀(t,x) ∈ [0,∞)×D0. (1.1.29)

The main result for the general averaging is as follows

Theorem 1.2.[58, Theorem 10.5] Let f(t,x,ε) and its partial derivatives with re-
spect to(x,ε) up to the second order be continuous and bounded for(t,x,ε) ∈
[0,∞)×D0 × [0,ε0], for every compact set D0 ⊂ D, whereε > 0 and D⊂ Rn is
a domain. Suppose f(t,x,0) has the average function fav(x) on [0,∞)×D and the
Jacobian of h(t,x) = f (t,x,0)− fav(x) has zero average with the same convergence
function as f . Let Xεt andXεt denote the solutions of (1.1.22) and (1.1.25), respec-
tively, andα be the classK function appearing in the estimates of (1.1.28) and
(1.1.29).

1. If Xεt ∈ D,∀t ∈ [0,b/ε] and Xε
0 −X0 = O(α(ε)), then there existsε∗ > 0, such

that for all 0 < ε < ε∗, Xε
t is defined and

Xε
t −Xεt = O(α(ε)) on [0,b/ε] (1.1.30)

2. If the origin x= 0 ∈ D is an exponentially stable equilibrium point of the av-
erage system (1.1.25),Ω ⊂ D is a compact subset of its region of attraction,
xav(0) ∈ Ω , and Xε

0 −X0 = O(α(ε)), then there existsε∗ > 0 such that for all
0 < ε < ε∗, x(t,ε) is defined and

Xε
t −Xεt = O(α(ε)) for all t ∈ [0,∞) (1.1.31)

3. If the origin x= 0∈ D is an exponentially stable equilibrium point of the aver-
age system (1.1.25) and f(t,0,ε) = 0 for all (t,ε) ∈ [0,∞)× [0,ε0], then there
existε∗ such that for all0 < ε < ε∗, the origin is an exponentially stable equi-
librium point of the original system (1.1.22).

1.2 Stochastic Averaging

Compared with mature theoretical results for the deterministic averaging principle,
stochastic averaging offers a much broader spectrum of possibilities for developing
averaging theorems (due to multiple notions of convergenceand stability, as well as
multiple possibilities for noise processes), which are farfrom have been exhausted.
On finite time intervals, in which case one does not study stability but only approxi-
mation accuracy, there have been many averaging theorems about weak convergence
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[40, 62, 88, 129], convergence in probability [40, 89], and almost sure convergence
[54, 88]. However, the study of stochastic averaging on the infinite time interval is
not complete compared to complete results for the deterministic case [58, 121].

1.2.1 Averaging for stochastic perturbation process

Consider the system

Ẋε
t = f (Xε

t ,ξt/ε ), Xε
0 = x, (1.2.32)

whereXε
t ∈ Rn, ξt , t ≥ 0, is a stochastic process with values inRl .

We assume that

• The function f (x,y) satisfies a globally Lipschitz condition: forxi ∈ Rn,yi ∈
Rl , i = 1,2, there exist a constantK such that

| f (x1,y1)− f (x2,y2)| ≤ K(|x1−x2|+ |y1−y2|), (1.2.33)

• The trajectories of the process(ξt ,t ≥ 0) are continuous with probability one or
on every finite time interval they have a finite number of discontinuities of the
first kind and there are no discontinuities of the second kind.

Under these assumptions, the solution of equation (1.2.32)exists with probability
one for any initial condition and it is defined uniquely for all t ≥ 0 [40].

Compared with the deterministic condition (1.1.5), stochastic averaging principle
has different types of convergence condition since there are different convergence
notions in stochastic case. In general, if less stringent assumptions is imposed con-
cerning the type of convergence in (1.1.5), then a weaker result holds. Here we just
list two cases (convergence with probability one and convergence in probability):

(i) If condition (1.1.5) is satisfied with probability one uniformly in x∈ Rn, then
the ordinary averaging principle implies that with probability one, the trajectory
of Xε

t converges to the solution of equation (1.1.6), uniformly onevery finite
interval (f (x) andXt may depend on sample trajectoryω in general).

(ii) Assume that there exists a vector fieldf (x) in R
n such that for anyδ > 0 and

x∈ Rn,

lim
T→∞

P

{∣
∣
∣
∣

1
T

∫ t+T

t
f (x,ξs)ds− f (x)

∣
∣
∣
∣
> δ

}

= 0, (1.2.34)

uniformly in t > 0. It follows from (1.2.34) thatf (x) satisfies a globally Lipschitz
condition (with the same constant asf (x,y)). Therefore, there exists a unique
solution of the problem

dXt

dt
= f (Xt), X0 = x. (1.2.35)
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The stochastic processXε
t can be considered as a result of stochastic perturba-

tions of the dynamical system (1.2.35), small on the average.

Theorem 1.3.[40, Theorem 7.2.1] Suppose that condition (1.2.34) is satisfied
andsupt E| f (x,ξt )|2 < ∞. Then for any T> 0 andδ > 0,

lim
ε→0

P

{

sup
0≤t≤T

|Xε
t −Xt | > δ

}

= 0. (1.2.36)

1.2.2 Averaging for stochastic differential equations

Consider the system of differential equations

dXε
t = f (Xε

t ,Yε
t )dt+g(Xε

t ,Yε
t )dWt , Xε

0 = x, (1.2.37)

dYε
t = ε−1B(Xε

t ,Yε
t )dt+ ε−1/2C(Xε

t ,Yε
t )dWt , Yε

0 = y, (1.2.38)

whereXε
t ∈ Rn, Yε

t ∈ Rl , f (x,y) = ( f1(x,y), . . . , fn(x,y)), B(x,y) = (B1(x,y), . . . ,
Bl (x,y)), Wt is an r-dimensional Wiener process andg(x,y) = (gi j )n×r , C(x,y) =
(Ci j (x,y))l×r .

We introduce a stochastic processYxy
t ,x ∈ Rn,y ∈ Rl , which is defined by the

stochastic differential equation

dYxy
t = B(x,Yxy

t )dt+C(x,Yxy
t )dWt , Yxy

0 = y. (1.2.39)

The solution of this equation form a Markov process inRl , depending onx∈ Rn as
a parameter.

We assume that

• The functionsfi(x,y),Bi(x,y),gi j (x,y),Ci j (x,y) are bounded and satisfy a glob-
ally Lipschitz condition.

• There exists a functionf (x) = ( f 1(x), . . . , f n(x)), x ∈ Rn, such that for anyt ≥
0,x∈ Rn,y∈ Rl , we have

E

∣
∣
∣
∣

1
T

∫ t+T

t
f (x,Yxy

r )dr− f (x)

∣
∣
∣
∣
< κ(T), (1.2.40)

whereκ(T) → 0 asT → ∞.

Theorem 1.4.[40, Theorem 7.9.1] Let the entries of g(x,y) = g(x) be independent
of y and let condition (1.2.40) be satisfied. Denote byXt ∈ Rn the stochastic process
governed by the differential equation

dXt

dt
= f (Xt)dt+g(Xt)dWt , X0 = x. (1.2.41)

Then for any T> 0,δ > 0,x∈ Rn,
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lim
ε→0

P{ sup
0≤t≤T

|Xε
t −Xt | > δ} = 0. (1.2.42)

In general, averaging principle on infinite time interval isconsidered under the
stability condition of average systems or diffusion approximation. The stability of
stochastic system with wide band noise disturbances under diffusion approximation
conditions is stated in [21]. The stability of dynamic systems with Markov perturba-
tions under the stability condition of the average system isstudied in [67]. Under a
condition on a diffusion approximation of a dynamical system with Markov pertur-
bations, the problem of stability is solved in [68]. Under conditions of averaging and
diffusion approximation, the stability of dynamic systemsin semi-Markov medium
was studied in [69]. All these results are established underall or almost all of the
following conditions:

• the average system or approximating diffusion system is globally exponentially
stable;

• the nonlinear vector field of the original system has boundedderivative or is
dominated by some forms of Lyapunov function of the average system;

• the nonlinear vector field of the original system vanishes atthe origin for any
value of perturbation process (equilibrium condition);

• the state space of the perturbation process is a compact space.

These conditions largely limit the application of existingstochastic averaging theo-
rems.

In Chapters 3 and 4, we remove or weaken several restrictionsin these existing
results and develop more general averaging for our stochastic extremum seeking
problems.



Chapter 2
Introduction to Extremum Seeking

In this chapter we review the motivation behind extremum seeking methodology
and the advances in the field of extremum seeking of the last 15years. Then we
present a basic introduction to stochastic extremum seeking, including how it relates
to standard deterministic extremum seeking with periodic perturbations and what
ideas are behind the study of stability of the resulting stochastic nonlinear system.

2.1 Motivation and Recent Revival

Extremum seeking is a non-model based real-time optimization approach for dy-
namic problems where only limited knowledge of a system is available, such as, that
the system has a nonlinear equilibrium map which has a local minimum or maxi-
mum. Popular in applications around the middle of the twentieth century, extremum
seeking was nearly dormant for several decades until the emergence of a proof of
its stability [74], with a subsequent resurgence of interest in extremum seeking for
further theoretical developments and applications.

The increasing complexity of engineering systems, including feedback systems,
has led to many optimization challenges since analytic solutions to optimization
problems for multi-agent, nonlinear, and infinite-dimensional systems are difficult,
if not impossible, to obtain. This difficulty arises for manyreasons, including the
presence of competing or adversarial goals, the high-dimensionality of the system,
and the inherent system uncertainty. Moreover, if a model-based solution is obtained
for these complicated optimization problems, it is likely to be conservative due to
modeling deficiencies. Hence, non-model based extremum seeking methods are an
attractive option to solve these problems.

Many works have focused on optimization/learning methods for unknown sys-
tems in a wide variety of fields. In games, most algorithms designed to achieve con-
vergence to Nash equilibria require modeling information for the game and assume
the players can observe the actions of the other players. Thefictitious play strat-
egy is one such strategy (employed in finite games) where a player devises a best

11
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response based on the history of the other players actions. Adynamic version of
fictitious play and gradient response is developed in [126] and shown to converge to
a mixed-strategy Nash equilibrium in cases where previously developed algorithms
did not converge. In [39], regret testing with random strategy switches is proved to
converge to the Nash equilibrium in finite two-player games where each player mea-
sures only its own payoffs. In [150], a synchronous distributed learning algorithm,
where players remember their own actions and utility valuesfrom the previous two
times steps, is shown to converge in probability to a set of restricted Nash equilibria.
In [8, 128, 50], game with a continuum of traders are analyzed. Additional results
on learning in games can be found in [85, 56, 38, 127, 44, 26].

The extremum seeking (ES) method has seen significant theoretical advances
during the past decade, including the proof of local convergence [6, 27, 119, 140],
PID tuning [63], slope seeking [7], performance improvement and limitations in ES
control [72], extension to semi-global convergence [137],development of scalar
Newton-like algorithms [102, 108], inclusion of measurement noise [136], ex-
tremum seeking with partial modeling information [1, 2, 34,37, 51], and learning
in noncooperative games [43, 133].

ES has also been used in many diverse applications with unknown/uncertain
systems, such as steering vehicles toward a source in GPS-denied environments
[30, 31, 146], active flow control [14, 15, 24, 55, 65, 66], aeropropulsion [105, 144],
colling systems [84, 86] wind energy [33], photovoltaics [83], human exercise ma-
chines [148], optimizing the control of nonisothermal valve actuator [113], control-
ling Tokamak plasmas [25], and enhancing mixing in magnetohydrodynamic chan-
nel flows [97], timing control of HCCI engine combustion [64], formation flight
optimization [20], control of aircraft endurance based on atmospheric turbulence
[71], beam matching adaptive control [123], optimizing bioreactors [141].

2.2 Why Stochastic Extremum Seeking?

In existing perturbation-based extremum seeking algorithms, periodic (sinusoidal)
excitation signals are primarily used to probe the nonlinearity and estimate its gra-
dient. Biological systems (such as bacterial chemotaxis) do not use periodic probing
in climbing food or light gradients. In man-made source seeking systems, the nearly
random motion of the stochastic seeker has its advantage in applications where the
seeker itself may be pursued by another pursuer. A seeker, which successfully per-
forms the source finding task but with an unpredictable, nearly random trajectory, is
a more challenging target, and is hence less vulnerable, than a deterministic seeker.
Furthermore, if the system has high dimensionality, the orthogonality requirements
on the elements of the periodic perturbation vector pose an implementation chal-
lenge. Thus there is merit in investigating the use of stochastic perturbations within
the ES architecture. The first results in that direction wereachieved in the discrete-
time case [99], using the existing theory of stochastic averaging in the discrete-time
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Fig. 2.1 A quartic static map with local minimumf (−1) = 1 and global minimumf (1) = −3.

case. Source seeking results employing deterministic perturbations in the presence
of stochastic noise have been reported in [134, 135], also indiscrete time.

Stochastic extremum seeking and its stability analysis have some ideas and tech-
niques in common with classical methods of annealing, stochastic approximation,
and stochastic adaptive control [16, 45, 46, 77, 94, 95, 96].

2.3 A Brief Introduction to Stochastic Extremum Seeking

In this section we present the basic idea of stochastic extremum seeking, make
a comparison with deterministic (periodically perturbed)extremum seeking, and
discuss a heuristic idea of stochastic averaging as a way of studying stability of a
stochastic extremum seeking algorithm.

While extremum seeking is applicable to plants with dynamics (plants modeled
by ordinary differential equations), in this section we introduce extremum seeking
on the simplest possible problem—the optimization of a static map f (θ ). Without
loss of generality we assume thatf has a minimum atθ = θ ∗ and we seek that
minimum.

For the purpose of illustration, we use the following quartic map

f (θ ) = θ 4 + θ 3−2θ 2−3θ , (2.3.1)

which is depicted in Fig. 2.1 and has a local minimumf (−1) = 1 and a global
minimum f (1) = −3. The second derivatives at the two minima aref ′′(−1) = 2 <



14 2 Introduction to Extremum Seeking

( )f
y

sin( )t

k

s

yˆ

sin( )a t

hs

s

* *
f

Plant

Fig. 2.2 Block diagram fordeterministicextremum seeking scheme for a static map.

14 = f ′′(1), which is consistent with the global minimum atθ = 1 being much
“deeper” and “sharper” than the local minimum atθ = −1.

2.3.1 A basic deterministic ES scheme

Let us consider first the deterministic ES scheme shown in Fig. 2.2. The scheme
employs a sinusoidal perturbation sin(ωt), which enters additively the mapf (θ ).
The measured outputy= f (θ ) is then passed through a washout filter and multiplied
by the same perturbation signal, sin(ωt), generating an estimate of the derivative
(scalar gradient)f ′(θ ) at the input of the integrator. The integrator then updates
the estimatêθ (t) in the direction of driving the gradient to zero. Fork > 0 the ES
scheme driveŝθ (t) towards the nearest local minimum off (θ ), whereas fork < 0
the scheme converges towards the nearest maximum. The washout filter s

s+h is not
required but it somewhat helps performance. The logic behind the use of the washout
filter is to kill the DC component of the map,f (θ ∗), although the multiplication of
the outputy with the zero-mean perturbation sin(ωt) also performs that role. The
washout filter is just more effective in eliminating the DC component ofy, without
requiring that the perturbation frequencyω be relatively high.

The scheme in Fig. 2.2 has four design parameters,a, k, ω , andh. The amplitude
a provides a trade-off between asymptotic performance and the region of attrac-
tion of the algorithm. The smallera, the smaller the residual error at the minimum
achieved, but also the larger the possibility of getting stuck at a local minimum. Con-
versely, the largera, the larger both the residual error and the possibility of reach-
ing the global minimum. The gain parameterk controls the speed of convergence,
jointly with a which also influences the speed of convergence. The perturbation fre-
quencyω controls the separation between the time scale of the estimation process,
conducted by the integrator, and of the gradient estimationprocess, perfumed by the
additive and multiplicative perturbation. The higher the frequencyω , the cleaner the
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Fig. 2.3 Time response of a discrete-time version of the deterministic extremum seeking algorithm
in Figure 2.2, starting from the local minimum,θ̂(0) = −1. The parameters are chosen asω = 5,
a = 0.4,k = 1.

estimate of the gradient and the smaller the effect of the perturbations introduced by
the higher-order harmonics and of the DC component ofy. The washout filter fre-
quencyh should be smaller thanω , so that the filter eliminates the DC component
in y without corrupting the estimation of the gradientf ′(θ ).

Figure 2.3 shows the time response of a discrete-time version of the determin-
istic ES algorithm in Figure 2.2. Even though the algorithm starts from the local
minimumθ =−1, it does not remain stuck in the local minimum but it converges to
the global minimumθ = 1. However, if the amplitudea and the gaink were chosen
smaller, the algorithm would be unable to overcome the “hump” betweenθ = −1
andθ = 1 and it would remain stuck at the local minimum.
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for a static map.

2.3.2 A basic stochastic ES scheme

Limitations of the deterministic ES scheme include the factthat the perturbation
is uniformly bounded (bya), which may highly restrict the algorithm’s region of
attraction, and the fact that learning using a single-frequency sinusoidal perturba-
tion is rather simple-minded and rare in probing-based learning and optimization
approaches encountered in biological systems.

To overcome such limitations of deterministic probing signals, we consider using
stochastic probing signals. Sinusoidal signals have two properties that are crucial for
extremum seeking: (1) their mean is zero and (2) when squared, the mean is positive.
Such properties are similar to the properties of Gaussian white noise signals, namely,
zero expectation and positive variance.

Hence, we consider replacing the signals sin(ωt) in Figure 2.2 by white noise
Ẇ(t), whereW(t) is the standard Brownian motion process (also referred to asthe
Wiener process). However, such a perturbation is overly aggressive and makes the
mathematical analysis intractable, because it enters the differential equation in a
nonlinear manner (it gives rise to quadratic and other functions ofẆ).

To soften the impact of the white noise perturbations, whileintroducing random-
ness and making the resulting dynamics mathematically tractable, we replace the
signals sin(ωt) in Figure 2.2 by the signalη(t) obtained by passing white noise

Ẇ(t) through a low-pass filter
√

εq
εs+1 for some positive constantsε andq, or, given in

terms of an Ito differential equation, we employ the perturbationη(t) governed by

εdη = −ηdt+
√

εqdW. (2.3.2)

The resulting stochastic ES scheme is shown in Fig. 2.4.
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Fig. 2.5 Time response of a discrete-time version of the stochastic extremum seeking algorithm in
Figure 2.4, starting from the local minimum,θ̂(0) = −1. The parameters are chosen asq = 1,ε =
0.25,a = 0.8,k = 10.

Figure 2.5 shows the time response of a discrete-time version of the stochastic
ES algorithm in Figure 2.4. Starting from the local minimumθ =−1, the algorithm
converges to the global minimumθ = 1.

2.3.3 A heuristic analysis of a simple stochastic ES algorithm

To provide the reader with some intuition and motivation, inthis section we provide
a preliminary and completely informal analysis of the extremum seeking algorithm
in Figure 2.4. We present a series of calculations which, though not reflective of
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the rigorous methods pursued in the book, do illustrate heuristically the basic ideas
behind establishing stability and quantifying the convergence rates of ES schemes.

To simplify our analysis, we eliminate the washout filter from the ES scheme,
namely, we replaces

s+h in Figure 2.4 by a unity gain block. This approximation is
certainly justified forh that is small relative to other parameters, particularly relative
to k. The elimination of the washout filter results in a first-order system, whose sole
state is the statêθ of the integrator in Figure 2.4, and which is driven by another first-
order linear stochastic system with stateη . Despite the low order, the analysis of the
closed-loop system is not trivial because the system is nonlinear, time-varying, and
stochastic.

We start by introducing notation to describe the system in Figure 2.4. We note
that

θ (t) = θ̂ (t)+aη(t) (2.3.3)

and denote the estimation error as

θ̃(t) = θ ∗− θ̂(t) . (2.3.4)

Combining (2.3.3) and (2.3.4) we get

θ (t) = aη(t)− θ̃(t) . (2.3.5)

Then, from the integrator block we observe that the estimation error is governed
by

˙̃θ (t) = − ˙̂θ (t)

= kη(t)y(t)

= kη(t) f (θ (t)) . (2.3.6)

Using (2.3.5) and applying the Taylor expansion tof (θ ) aroundθ ∗ up to second
order we get

f (θ ) = f
(
aη − θ̃

)

≈ f (θ ∗)+ f ′(θ ∗)
(
aη − θ̃

)
+

1
2

f ′′(θ ∗)
(
aη − θ̃

)2
. (2.3.7)

Given the assumption that the mapf (θ ) has a minimum atθ ∗, it follows that
f ′(θ ∗) = 0, which yields

f (θ ) ≈ f (θ ∗)+
1
2

f ′′(θ ∗)
(
aη − θ̃

)2

= f (θ ∗)+
1
2

f ′′(θ ∗)
[
a2η2−2aηθ̃ + θ̃ 2] . (2.3.8)

Substituting (2.3.8) into (2.3.6) we get
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˙̃θ ≈ kη
{

f (θ ∗)+
1
2

f ′′(θ ∗)
[
a2η2−2aηθ̃ + θ̃ 2]

}

= kη
[

f (θ ∗)+
a2

2
f ′′(θ ∗)η2−a f ′′(θ ∗)ηθ̃ +

1
2

f ′′(θ ∗)θ̃ 2
]

. (2.3.9)

Grouping the terms in powers ofη we obtain

˙̃θ (t) ≈ k

{

η(t)

[

f (θ ∗)+
1
2

f ′′(θ ∗)θ̃ 2(t)

]

−η2(t)a f ′′(θ ∗)θ̃ (t)

+η3(t)
a2

2
f ′′(θ ∗)

}

. (2.3.10)

The signalη(t) is a stochastic perturbation governed by the stochastic linear
differential equation (2.3.2), whereW(t) is the Wiener process. With smallε, the
signalη is a close approximation of white noise. Using elementary Ito calculus, it
is easy to calculate the expectations of the three powers ofη appearing in (2.3.10).
These expectations have the properties that

lim
t→∞

E{η(t)} = 0

lim
t→∞

E
{

η2(t)
}

=
q2

2
lim
t→∞

E
{

η3(t)
}

= 0. (2.3.11)

To illustrate how these relations are obtained, we considerthe case ofη2, namely,
(2.3.11), which is obtained by applying Ito’s differentiation rule toη2 with the help
of (2.3.2), which yields the ODE

ε
dE{η2}

dt
= −E{η2}+ ε

q2

2
(2.3.12)

The solution of the linear ODE (2.3.12) is

E{η2(t)} = e−t/ε E{η2(0)}+
q2

2

(

1−e−t/ε
)

(2.3.13)

→ q2

2
ast → ∞ . (2.3.14)

Whenε is small, it is clear from (2.3.13) that the convergence in timet is very fast.
This is the case with the convergence rates of all three expectations given in (2.3.11),
(2.3.11), and (2.3.11).

Approximating now theη-terms in (2.3.10) by their respective expectations, after
a short transient whose length isO(ε), the estimation error is governed by



20 2 Introduction to Extremum Seeking
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Fig. 2.6 Block diagram forstochasticextremum seeking scheme with bounded perturbations for
a static map.

˙̃θ (t) ≈ −kaq2

2
f ′′(θ ∗)θ̃ (t) . (2.3.15)

This completes our heuristic preliminary study of stability of the stochastic ES
scheme in Figure 2.4. Local stability is expected, in a suitable probabilistic sense,
providedka > 0 and provided the map has a minimum atθ ∗. Moreover, the con-
vergence speed is governed by the values of the parametersk,a,q and also by the
value of f ′′(θ ∗) > 0. The “flatter” the extremum, the slower the convergence and,
conversely, the “sharper” the extremum the faster the convergence towards it.

Rigorous stability analysis of stochastic ES algorithms ispresented in Chapters 5
and 6. However, the scheme Figure 2.4 with the unbounded stochastic perturbation
η(t) is not amenable to rigorous analysis. To make analysis feasible, using averaging
theorems that we develop in Chapter 4, we replaceη in the algorithm in Figure 2.4
by a bounded stochastic perturbation sin(η), obtaining the algorithm in Figure 2.6.

Algorithms in Figures 2.4 and 2.6 have very similar local convergence properties.
The convergence speeds of the two algorithms are related as

speedsin(η)

speedη
=

(

1−e−q2
)

q2 . (2.3.16)



Chapter 3
Stochastic Averaging for Asymptotic Stability

In this chapter, we remove or weaken the restrictions in the existing averaging
theory and develop stochastic averaging theorems for studying the stability of a
general class of nonlinear systems with a stochastic perturbation. This chapter fo-
cuses on the asymptotic stability because the original system considered here is
required to satisfy an equilibrium condition. When such condition does not hold for
the original system, practical stability is studied in Chapter 4.

In this chapter, if the perturbation process satisfies a uniform strong ergodic con-
dition and the equilibrium of the average system is exponentially stable, we show
that the original system is exponentially practically stable in probability. Under the
condition that the equilibrium of the average system is exponentially stable, if the
perturbation process isφ -mixing with exponential mixing rate and exponentially
ergodic, and the original system satisfies an equilibrium condition, we show that
the equilibrium of the original system is asymptotically stable in probability. For
the case where the average system is globally exponentiallystable and all the other
assumptions are valid globally, a global result is obtainedfor the original system.

The chapter is organized as follows. Section 3.1 describes the problem inves-
tigated. Section 3.2 presents results for two cases: uniform strong ergodic pertur-
bation process, and exponentiallyφ -mixing and exponentially ergodic perturbation
process, respectively. In Section 3.3, we give the detailedproofs for the results in
Section 3.2. In Section 3.4 we give three examples. Section 3.5 contains some notes
and references.

3.1 Problem Formulation

Consider the system

dXε
t

dt
= a(Xε

t ,Yt/ε ), Xε
0 = x, (3.1.1)

21
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whereXε
t ∈ Rn, and the stochastic perturbationYt ∈Rm is a time homogeneous con-

tinuous Markov process defined on a complete probability space(Ω ,F ,P), where
Ω is the sample space,F is theσ -field, P is the probability measure, andε is a
small positive parameter, whereε ∈ (0,ε0) for some fixedε0 > 0.

The average system corresponding to system (3.1.1) can be defined in various
ways, depending on assumptions on the perturbation process(Yt ,t ≥ 0). For exam-
ple, the average system of (3.1.1) can be defined as

dX̄t

dt
= ā(X̄t), X̄0 = x, (3.1.2)

whereā(x) is a function such that (1.2.34) holds, i.e., for anyδ > 0 andx∈ Rn,

lim
T→∞

P

{∣
∣
∣
∣

1
T

∫ t+T

t
a(x,Ys)ds− ā(x)

∣
∣
∣
∣
> δ} = 0 (3.1.3)

uniformly in t ≥ 0.
From Theorem 1.3, we know that on a finite time interval[0,T], under certain

conditions, the solution of the original system (3.1.1) canbe approximated in prob-
ability by the solution of the average system (3.1.2) as the small parameterε goes
to zero.

In this chapter, we explore the averaging principle whent belongs to the infinite
time interval[0,∞). First, in the case where the original stochastic system maynot
have an equilibrium, but the average system has an exponentially stable equilibrium
at the origin, a stability-like property of the original system is established forε suf-
ficiently small. Second, whena(0,y) ≡ 0, namely, when the original system (3.1.1)
maintains an equilibrium at the origin, despite the presence of noise, we establish
stability of this equilibrium for sufficiently smallε.

3.2 Main Theorems

3.2.1 Uniform strong ergodic perturbation process

In the time scales= t/ε, defineZε
s = Xε

εs = Xε
t , Ys =Yt/ε . Then we transform system

(3.1.1) into

dZε
s

ds
= ε a(Zε

s ,Ys), (3.2.4)

with the initial valueZε
0 = x. Let SY be the living space of the perturbation process

(Yt , t ≥ 0). Notice thatSY may be a proper (e.g., compact) subset ofRm.

Assumption 3.1.The vector fielda(x,y) is separable, i.e., it can be written as
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a(x,y) =
l

∑
i=1

ai(x)bi(y), (3.2.5)

where the functionsbi : OY → R, i = 1, . . . , l , are continuous (the setOY, which
containsSY, is an open subset ofRn) and bounded onSY; the functionsai : D →
Rn, i = 1, . . . , l , and their partial derivatives up to the second order are continuous on
some domain (open connected set)D ⊂ Rn.

Assumption 3.2.For i = 1, . . . , l , there exists a constantb̄i such that

lim
T→∞

1
T

∫ t+T

t
bi(Ys)ds= b̄i , a.s. (3.2.6)

uniformly in t ∈ [0,∞).

By Assumption 3.2 we obtain the average system of (3.2.4) as

dZ̄ε
s

ds
= εā(Z̄ε

s ), (3.2.7)

with the initial valueZ̄ε
0 = x, where

ā(x) =
l

∑
i=1

ai(x)b̄i . (3.2.8)

Theorem 3.1.Suppose that Assumptions 3.1 and 3.2 hold. Let Zε
s (ω) andZ̄ε

s denote
the solutions of system (3.2.4) and the average system (3.2.7), respectively. If the
origin Z̄ε

s ≡ 0 is an exponentially stable equilibrium point of the averagesystem,
K ⊂ D is a compact subset of its region of attraction, andZ̄ε

0 = x∈ K, then for any
ς ∈ (0,1), there exists a measurable setΩς ⊂ Ω with P(Ως ) > 1− ς , a classK
functionας , and a constantε∗(ς) > 0 such that if Zε0 − Z̄ε

0 = O(ας ), then for all
0 < ε < ε∗(ς),

Zε
s(ω)− Z̄ε

s = O(ας (ε)) for all s∈ [0,∞) (3.2.9)

uniformly inω ∈ Ως , which implies

P

{

sup
s∈[0,∞)

|Zε
s (ω)− Z̄ε

s | = O(ας (ε))

}

> 1− ς . (3.2.10)

Next we extend the finite-time result (1.2.36) of [40, Theorem 7.2.1] to infinite
time.

Theorem 3.2.Suppose that Assumptions 3.1 and 3.2 hold. Let Zε
s (ω) andZ̄ε

s denote
the solutions of system (3.2.4) and the average system (3.2.7), respectively. If the
origin Z̄ε

s ≡ 0 is an exponentially stable equilibrium of the average system, K⊂ D
is a compact subset of its region of attraction, andZ̄ε

0 = Zε
0 = x ∈ K, then for any

δ > 0,



24 3 Stochastic Averaging for Asymptotic Stability

lim
ε→0

P

{

sup
s∈[0,∞)

|Zε
s (ω)− Z̄ε

s | > δ

}

= 0, (3.2.11)

i.e.sups∈[0,∞) |Zε
s(ω)− Z̄ε

s | converges to 0 in probability asε → 0.

The above two theorems are about systems in the time scales = t/ε. Now we
turn to theX-system (3.1.1) and its average system (3.1.2), whereX̄t = Z̄ε

t/ε , and
Xε

t = Zε
t/ε . Theorems 3.1 and 3.2 yield the following corollaries.

Corollary 3.1. Suppose that Assumptions 3.1 and 3.2 hold. If the originX̄t = 0 is
an exponentially stable equilibrium point of the average system (3.1.2), K⊂ D is a
compact subset of its region of attraction,X̄0 = x∈ K, then for anyς ∈ (0,1), there
exists a classK functionας and a constantε∗(ς) > 0 such that if Xε

0 − X̄0 = O(ας ),
then for all0 < ε < ε∗(ς),

P

{

sup
t∈[0,∞)

|Xε
t (ω)− X̄t | = O(ας (ε))

}

> 1− ς . (3.2.12)

Corollary 3.2. Suppose that Assumptions 3.1 and 3.2 hold. If the originX̄t = 0 is
an exponentially stable equilibrium point of the average system (3.1.2), K⊂ D is a
compact subset of its region of attraction, and Xε

0 = X̄0 = x∈ K, then for anyδ > 0,

lim
ε→0

P

{

sup
t∈[0,∞)

|Xε
t (ω)− X̄t | > δ

}

= 0. (3.2.13)

From Theorem 3.1 and the definition of exponential stabilityof deterministic
systems, we obtain the following stability result.

Theorem 3.3.Suppose that Assumptions 3.1 and 3.2 hold. If the originX̄t ≡ 0 is
an exponentially stable equilibrium point of the average system (3.1.2), K⊂ D is a
compact subset of its region of attraction, andX̄0 = x∈ K, then for anyς ∈ (0,1),
there exists a measurable setΩς ⊂ Ω with P(Ως ) > 1− ς , a classK functionας ,
and a constantε∗(ς) > 0 such that if Xε

0 − X̄0 = O(ας (ε)), then for all 0 < ε <
ε∗(ς),

|Xε
t (ω)| ≤ c|x|e−γt +O(ας (ε)) for all t ∈ [0,∞) (3.2.14)

uniformly inω ∈ Ως for some constantsγ,c > 0.

Remark 3.1.Notice that for any givenς ∈ (0,1), ας is a classK function of ε.
Then by (3.2.14), we obtain that for anyδ > 0 and anyς > 0, there exists a constant
ε∗(ς ,δ ) > 0, such that for all 0< ε < ε∗(ς ,δ ),

P
{
|Xε

t (ω)| ≤ c|x|e−γt + δ , ∀ t ∈ [0,∞)
}

> 1− ς , (3.2.15)

for Xε
0 = X̄0 = x∈ K and some positive constantsγ,c. This can be viewed as a form

of exponential practical stability in probability.
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Remark 3.2.SinceYt is a time homogeneous continuous Markov process, ifa(x,y) is
globally Lipschitz in(x,y), then the solution of equation (3.1.1) exists with probabil-
ity 1 for anyx∈ R

n and it is defined uniquely for allt ≥ 0 (see Section 2 of Chapter
7 of [40]). Here, by Assumption 3.1,a(x,y) is, in general, locally Lipschitz instead
of globally Lipschitz. Notice that the solution of equation(3.1.1) can be defined for
every trajectory of the stochastic process(Yt ,t ≥ 0). Then by Corollary 3.1, for any
sufficiently small positive numberς , there exists a measurable setΩς ⊂ Ω and a
positive numberε∗(ς) such thatP(Ως ) > 1− ς (which can be sufficiently close to
1) and for any 0< ε < ε∗(ς) and anyω ∈ Ως , the solution{Xε

t (ω),t ∈ [0,∞)} ex-
ists. The uniqueness of{Xε

t (ω),t ∈ [0,∞)} is ensured by the local Lipschitzness of
a(x,y) with respect tox.

Remark 3.3.Assumptions 3.1 and 3.2 guarantee that there exists a deterministic vec-
tor functionā(x) such that

lim
T→∞

1
T

∫ t+T

t
a(x,Ys(ω))ds= ā(x), a.s. (3.2.16)

uniformly in (t,x) ∈ [0,∞)×D0 for any compact subsetD0 ⊂ D. This uniform con-
vergence condition is critical in the proof and a similar condition is required in the
deterministic general averaging on infinite time interval for aperiodic functions (see
(1.1.23), (1.1.24) or [58, Chapter 10]).

In weak convergence methods of stochastic averaging on finite time interval,
some uniform convergence with respect to(t,x) of some integral ofa(x,Ys) is re-
quired [59, (3.2)], [40, (9.3), p. 263] and there the boundedness ofa(x,y) is assumed.
Here we don’t need the boundedness ofa(x,y) but need a stronger convergence
(3.2.16) to obtain a better result—“exponential practicalstability” on infinite time
interval.

The separable form in Assumption 3.1 is to guarantee the limit (3.2.16) is uni-
form with respect tox, while the uniform convergence (3.2.6) in Assumption 3.2 is
to guarantee that the limit (3.2.16) is uniform with respectto t. For the following
stochastic processes(Ys,s≥ 0), we can verify that the uniform convergence (3.2.6)
holds.

1. dYs = pYsds+qYsdWs, p < q2

2 ;
2. dYs = −pYsds+qe−sdWs, p,q > 0;
3. Ys = eξs +c, wherec is a constant andξs satisfiesdξs = −ds+dWs.

In these three examples,Ws is a 1-dimensional standard Brownian motion defined
on some complete probability space andY0 is independent of(ws,s≥ 0). In fact, for
these three kinds of stochastic process, it holds that

lim
s→∞

Ys = c, a.s. for some constantc, (3.2.17)

which together with the fact limT→∞
1
T

∫ t+T
t bi(Ys)ds= lims→∞ bi(Ys), a.s., when the

later limit exists, gives that for any continuous functionbi ,
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lim
T→∞

1
T

∫ t+T

t
bi(Ys)ds= lim

s→∞
bi(Ys) = bi(c), a.s., (3.2.18)

uniformly in t ∈ [0,∞). If bi has the formbi(y1+y2)= bi1(y1)+bi2(y2)+bi3(y1)bi4(y2)
for anyy1,y2 ∈ SY andbi j , j = 1, . . . ,4, are continuous functions, and

Ys = sin(s)+g(s)sin(ξs), (3.2.19)

where(ξs,s≥ 0) is any continuous stochastic process andg(s) is a function decay-
ing to zero, e.g.,e−s or 1

1+s, then

lim
T→∞

1
T

∫ t+T

t
bi(Ys)ds

= lim
T→∞

1
T

{∫ t+T

t
[bi1(sin(s))+bi2(g(s)sin(ξs))+bi3(sin(s))bi4(g(s)sin(ξs))]ds

}

=
1

2π

∫ 2π

0
bi1(sin(s))ds+bi2(0)+bi4(0) · 1

2π

∫ 2π

0
bi3(sin(s))ds, a.s. (3.2.20)

uniformly in t ∈ [0,∞).
If the process(Ys,s ≥ 0) is ergodic with invariant measureµ , then (cf., e.g.,

Theorem 3 on Page 9 of [129])

lim
T→∞

1
T

∫ T

0
bi(Ys)ds= b̄i , a.s., (3.2.21)

whereb̄i =
∫

SY
bi(y)µ(dy). While one might expect the averaging under condition

(3.2.21) to be applicable on the infinite interval, this is not true. A stronger condition
(3.2.6) on the perturbation process is needed (note the difference between the inte-
gration limits; that is the reason why we refer to this kind ofperturbation processes
as “uniform strong ergodic”). Uniform convergence, as opposed to ergodicity, is es-
sential for averaging principle on the infinite time interval. The same requirement
of uniformity in time is needed for general averaging on the infinite time in the
deterministic case. Only under the ergodicity (3.2.21) of the perturbation process,
can we obtain a weaker averaging principle on the infinite time interval, which is
investigated in the next chapter.

In Sections 3.4.1 and 3.4.2 we give examples illustrating the theorems of this
section.

3.2.2 φ -mixing perturbation process

Let F s
t denote the smallestσ -algebra that measures{Yu,t ≤ u ≤ s}. If there is a

functionφ(s) → 0 ass→ ∞ such that

sup
A∈F∞

t+s,B∈F t
0

|P{A|B}−P{B}|≤ φ(s), (3.2.22)
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then(Yu,u≥ 0) is said to beφ -mixing with mixing rateφ(·) (see [79]).
In this subsection, we assume that the perturbation(Yt ,t ≥ 0) is φ -mixing and

also ergodic with invariant measureµ . The average system of (3.1.1) is (3.1.2),
where

ā(x) =
∫

SY

a(x,y)µ(dy), (3.2.23)

andSY is the living space of the perturbation process(Yt ,t ≥ 0).

Assumption 3.3.The process(Yt ,t ≥ 0) is continuous,φ -mixing with exponential
mixing rateφ(t) and also exponentially ergodic with invariant measureµ .

Remark 3.4.(i) In the weak convergence methods (e.g., [79]), the perturbation pro-
cess is usually assumed to beφ -mixing with mixing rateφ(t) (

∫ ∞
0 φ

1
2 (s)ds< ∞).

Here we consider infinite time horizon, so exponential ergodicity is needed. (ii) Ac-
cording to [111], ergodic Markov processes on compact statespace are examples
of φ -mixing processes with exponential mixing rates, e.g., theBrownian motion on
the unit circle [36](Yt , t ≥ 0):

dYt = −1
2

Ytdt+BYtdWt , Y0 = [cos(ϑ),sin(ϑ)]T , ∀ϑ ∈ R, (3.2.24)

whereB =

[
0 −1
1 0

]

andWt is a 1-dimensional standard Brownian motion.

Assumption 3.4.For the average system (3.1.2), there exists a functionV(x) ∈ C2,
positive constantsci (i = 1, . . . ,4),δ ,γ such that for|x| ≤ δ ,

c1|x|2 ≤V(x) ≤ c2|x|2, (3.2.25)
∣
∣
∣
∣

∂V(x)
∂x

∣
∣
∣
∣
≤ c3|x|, (3.2.26)

∣
∣
∣
∣

∂ 2V(x)
∂x2

∣
∣
∣
∣
≤ c4, (3.2.27)

dV(x)
dt

=

(
∂V(x)

∂x

)T

ā(x) ≤−γV(x), (3.2.28)

i.e., the average system (3.1.2) is exponentially stable.

Assumption 3.5.The vector fielda(x,y) satisfies

1. a(x,y) and its first-order partial derivatives with respect tox are continuous and
a(0,y) ≡ 0;

2. For any compact setD ⊂ Rn, there is a constantkD > 0 such that for allx∈ D

andy∈ SY,
∣
∣
∣

∂a(x,y)
∂x

∣
∣
∣≤ kD.
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Theorem 3.4.Consider the system (3.1.1) satisfying Assumptions 3.3, 3.4, 3.5. Then
there existsε∗ > 0 such that for all0 < ε ≤ ε∗, the solution Xεt ≡ 0 of the original
system is asymptotically stable in probability, i.e., for any r > 0 andς > 0, there is
a constantδ0 > 0 such that if|Xε

0 | = |x| < δ0, then

P
{

supt≥0 |Xε
t | ≤ r

}
≥ 1− ς , (3.2.29)

and moreover,

limx→0 P{limt→∞ |Xε
t | = 0} = 1. (3.2.30)

Remark 3.5.This is the first local stability result based on the stochastic averaging
approach for locally Lipschitz nonlinear systems, which isan extension from the
deterministic general averaging for aperiodic functions [121].

If the local conditions in Theorem 3.4 hold globally, we get global results under
the following set of assumptions.

Assumption 3.6.The average system (3.1.2) is globally exponentially stable, i.e.
Assumption 3.4 holds with “for|x| ≤ δ ” replaced by “for anyx∈ Rn”.

Assumption 3.7.The vector fielda(x,y) satisfies

1. a(x,y) and its first-order partial derivatives with respect tox are continuous and
a(0,y) ≡ 0;

2. There is a constantk > 0 such that for allx∈ Rn andy∈ SY,
∣
∣
∣

∂a(x,y)
∂x

∣
∣
∣≤ k.

Assumption 3.8.The vector fielda(x,y) satisfies

1. a(x,y) and its first-order partial derivatives with respect tox are continuous and
supy∈SY

|a(0,y)| < ∞;

2. There is a constantk > 0 such that for allx∈ R
n andy∈ SY,

∣
∣
∣

∂a(x,y)
∂x

∣
∣
∣≤ k.

Theorem 3.5.Consider the system (3.1.1) satisfying Assumptions 3.3, 3.6, 3.7. Then
there existsε∗ > 0 such that for0 < ε ≤ ε∗, the solution Xεt ≡ 0 of the original
system is globally asymptotically stable in probability, i.e., for anyη1 > 0 andη2 >
0, there is a constantδ0 > 0 such that if|Xε

0 | = |x| < δ0, then

P
{
|Xε

t | ≤ η2e−γ̃t ,t ≥ 0
}
≥ 1−η1 (3.2.31)

with a constant̃γ > 0, and moreover, for any x∈ R
n,

P
{

lim
t→∞

|Xε
t | = 0

}

= 1. (3.2.32)

If, on the other hand, (3.1.1) has no equilibrium, we obtain the following result.
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Theorem 3.6.Consider the system (3.1.1) satisfying Assumptions 3.3, 3.6, 3.8. Then
there existsε∗ > 0 such that for0 < ε ≤ ε∗, the solution process Xεt of the original
system is bounded in probability, i.e.,

lim
r→∞

sup
t≥0

P{|Xε
t | > r} = 0. (3.2.33)

Remark 3.6.Theorems 3.5 and 3.6 are aimed at globally Lipschitz systemsand
can be viewed as an extension from deterministic averaging principle [121] to the
stochastic case. We present the results for the global case not only for the sake of
completeness but also because of the novelty relative to [21]: (i) ergodic Markov
process on some compact space is replaced by an exponentialφ -mixing and expo-
nentially ergodic process; (ii) for the case without equilibrium condition the weak
convergence is considered in [21], while here we obtain the result on boundedness
in probability.

In Section 3.4.3 we present an example that illustrates the theorems of this sec-
tion.

3.3 Proofs of the Theorems

3.3.1 Proofs for the case of uniform strong ergodic perturbation
process

3.3.1.1 Technical lemma

To prove Theorem 3.1 and Theorem 3.2, we first prove one technical lemma. To-
wards that end, denote

Fi(T,λ ,ω) =
1
T

∫ λ+T

λ
bi(Yu(ω))du, (3.3.34)

for T > 0,λ ≥ 0,ω ∈ Ω , i = 1, . . . , l . We can verify thatFi(T,λ ,ω) is continuous
with respect to(T,λ ) for anyi = 1, . . . , l .

Lemma 3.1.Suppose that Assumptions 3.1 and 3.2 hold. Then, for anyς > 0, there
exists a measurable setΩς ⊂ Ω such that P(Ως ) > 1− ς , and for any i= 1, . . . , l,

lim
T→∞

1
T

∫ λ+T

λ
bi(Yu(ω))du= b̄i , uniformly in(ω ,λ ) ∈ Ως × [0,∞). (3.3.35)

Moreover, there exists a strictly decreasing, continuous,bounded functionσ ς (T)
such thatσ ς (T) → 0 as T→ ∞, and for any compact subset D0 ⊂ D,
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∣
∣
∣
∣

1
T

∫ λ+T

λ
a(x,Yu(ω))du− ā(x)

∣
∣
∣
∣
≤ kD0σ ς (T), ∀(ω ,λ ,x) ∈ Ως × [0,∞)×D0,

(3.3.36)

where kD0 is a positive constant.

Proof. Step 1. (Proof of (3.3.35))
From (3.2.6) we know that for anyi = 1, . . . , l ,

for a.e.ω ∈ Ω , lim
T→∞

Fi(T,λ ,ω) = b̄i uniformly in λ ≥ 0. (3.3.37)

Noticing that
{

ω
∣
∣
∣ lim
T→∞

Fi(T,λ ,ω) = b̄i uniformly in λ ≥ 0
}

=
∞⋂

k=1

⋃

t>0

⋂

T≥t

⋂

λ≥0

{

|Fi(T,λ ,ω)− b̄i| <
1
k

}

, (3.3.38)

by (3.3.37), we get that

P

(
∞⋃

k=1

⋂

t>0

⋃

T≥t

⋃

λ≥0

{

|Fi(T,λ ,ω)− b̄i| ≥
1
k

})

= 0. (3.3.39)

SinceFi(T,λ ,ω) is continuous with respect to(T,λ ) , we can easily prove that∀k≥
1,∀t > 0, the sets

⋃

λ≥0

{
|Fi(T,λ ,ω)− b̄i| ≥ 1

k

}
,
⋃

T≥t
⋃

λ≥0

{
|Fi(T,λ ,ω)− b̄i| ≥ 1

k

}

and
⋂

t>0
⋃

T≥t
⋃

λ≥0

{
|Fi(T,λ ,ω)− b̄i| ≥ 1

k

}
are measurable. Then by (3.3.39) we

obtain that for anyk≥ 1,

P

(
⋂

t>0

⋃

T≥t

⋃

λ≥0

{

|Fi(T,λ ,ω)− b̄i| ≥
1
k

})

= 0. (3.3.40)

Since the set
⋃

T≥t
⋃

λ≥0

{
|Fi(T,λ ,ω)− b̄i| ≥ 1

k

}
is decreasing ast increases, it

follows from (3.3.40) that

lim
t→∞

P

(
⋃

T≥t

⋃

λ≥0

{

|Fi(T,λ ,ω)− b̄i| ≥
1
k

})

= 0. (3.3.41)

Thus, for anyς > 0 and anyk≥ 1, there existst(i)k > 0 such that

P






⋃

T≥t
(i)
k

⋃

λ≥0

{

|Fi(T,λ ,ω)− b̄i| ≥
1
k

}




<

ς
2kl

. (3.3.42)

Define
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Ως =
l⋂

i=1

∞⋂

k=1

⋂

T≥t
(i)
k

⋂

λ≥0

{

|Fi(T,λ ,ω)− b̄i| <
1
k

}

. (3.3.43)

Then by (3.3.42),P(Ως ) ≥ 1− ς . Further, by the construction ofΩς , we know that
for anyi = 1, . . . , l ,

lim
T→∞

1
T

∫ λ+T

λ
bi(Yu(ω))du= b̄i, uniformly in (ω ,λ ) ∈ Ως × [0,∞), (3.3.44)

i.e., (3.3.35) holds.
Step 2. (Proof of (3.3.36))

By (3.3.44), for anyk ≥ 1, there existstk(ς) > 0 (without loss of generality,we
can assume thattk(ς) is increasing with respect tok) such that for anyT ≥ tk(ς),
any(ω ,λ ) ∈ Ως × [0,∞), and anyi = 1, . . . , l , we have that

∣
∣
∣
∣

1
T

∫ λ+T

λ
bi(Yu(ω))du− b̄i

∣
∣
∣
∣
<

1
k
. (3.3.45)

By Assumption 3.1 and (3.2.6), there exists a constantM > 1 such that for any
i = 1, . . . , l ,

sup
y∈SY

|bi(y)| ≤ M and |b̄i | ≤ M. (3.3.46)

Now we define a functionHς (T) as

Hς (T) =

{
2M , if T ∈ [0,t1(ς));

1
k , if T ∈ [tk(ς),tk+1(ς)),k = 1,2, . . . .

(3.3.47)

Then by (3.3.45), for any(ω ,λ ) ∈ Ως × [0,∞), and anyi = 1, . . . , l , we have

∣
∣
∣
∣

1
T

∫ λ+T

λ
bi(Yu(ω))du− b̄i

∣
∣
∣
∣
≤ Hς (T), (3.3.48)

and Hς (T) ↓ 0 asT → ∞. Noticing that the functionHς (T) is a piecewise con-
stant (and thus piecewise continuous) function, we construct a strictly decreasing,
continuous, bounded functionσ ς (T):

σ ς (T) =







− 1
t1(ς)

T +(2M +1) , if T ∈ [0,t1(ς));

− 2M−1
t2(ς)− t1(ς)

(T − t1(ς))+2M , if T ∈ [t1(ς),t2(ς));

−
1

k−1 − 1
k

tk+1(ς)− tk(ς)
(T − tk(ς))+

1
k−1

, if
T ∈ [tk(ς),tk+1(ς)),
k = 2,3, . . . ,

(3.3.49)

which satisfiesσ ς (T) ≥ Hς (T),∀T ≥ 0, andσ ς (T) ↓ 0 asT → ∞.
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For any compact setD0 ⊂ D, by Assumption 3.1, there exists a positive constant
MD0 > 0 such that for anyi = 1, . . . , l ,

|ai(x)| ≤ MD0, ∀x∈ D0. (3.3.50)

DefinekD0 = lMD0. Then, by Assumption 3.1, (3.3.48), (3.3.50) and the facts that
ā(x) = ∑l

i=1ai(x)b̄i andσ ς (T) ≥ Hς (T),∀T ≥ 0, we get that∀ (ω ,λ ,x) ∈ Ως ×
[0,∞)×D0,

∣
∣
∣
∣

1
T

∫ λ+T

λ
a(x,Yu(ω))du− ā(x)

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

l

∑
i=1

ai(x)

(
1
T

∫ λ+T

λ
bi(Yu(ω))du− b̄i

)
∣
∣
∣
∣
∣

≤
l

∑
i=1

|ai(x)|
∣
∣
∣
∣

1
T

∫ λ+T

λ
bi(Yu(ω))du− b̄i

∣
∣
∣
∣

≤ kD0σ ς (T), (3.3.51)

i.e. (3.3.36) holds.

3.3.1.2 Proof of Theorem 3.1

The basic idea of the proof comes from [58, Section 10.6]. Fixς and Ως as in
Lemma 3.1. For anyω ∈ Ως , define

â(s,x,ω) = a(x,Ys(ω)). (3.3.52)

Then we simply rewrite the system (3.2.4) as

dz
ds

= ε â(s,z,ω). (3.3.53)

Let

h(s,z,ω) = â(s,z,ω)− ā(z), (3.3.54)

w(s,z,ω ,η) =
∫ s

0
h(τ,z,ω)exp[−η(s− τ)]dτ (3.3.55)

for someη > 0. For any compact setD0 ⊂ D, by (3.3.51), we get that forz∈ D0,

|w(s+ δ ,z,ω ,0)−w(s,z,ω ,0)| =

∣
∣
∣
∣

∫ s+δ

0
h(τ,z,ω)dτ −

∫ s

0
h(τ,z,ω)dτ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ s+δ

s
h(τ,z,ω)dτ

∣
∣
∣
∣

≤ kD0δ σ ς (δ ). (3.3.56)

This implies, in particular, that



3.3 Proofs of the Theorems 33

|w(s,z,ω ,0)| ≤ kD0 sσ ς (s), ∀(s,z) ∈ (0,∞)×D0, (3.3.57)

sincew(0,z,ω ,0) = 0. Integrating the right-hand side of (3.3.55) by parts, we obtain

w(s,z,ω ,η) =w(s,z,ω ,0)−η
∫ s

0
exp[−η(s− τ)]w(τ,z,ω ,0)dτ

=exp(−ηs)w(s,z,ω ,0)

−η
∫ s

0
exp[−η(s− τ)][w(τ,z,ω ,0)−w(s,z,ω ,0)]dτ, (3.3.58)

where the second equality is obtained by adding and subtracting

η
∫ s

0
exp[−η(s− τ)]dτ w(s,z,ω ,0) (3.3.59)

to the right-hand side. Using (3.3.56) and (3.3.57), we obtain that

|w(s,z,ω ,η)| ≤ kD0 sexp(−ηs)σ ς (s)+kD0 η
∫ s

0
exp[−η(s−τ)](s−τ)σ ς (s−τ)dτ.

(3.3.60)
For (3.3.60), we now show that there is a classK functionας such that

η |w(s,z,ω ,η)| ≤ kD0 ας (η), ∀(s,z,ω) ∈ [0,∞)×D0×Ως . (3.3.61)

Let z∈ D0. Firstly, fors≤ 1√
η , by (3.3.60) and the property of the functionσ ς ,

η |w(s,z,ω ,η)|
≤ kD0

(

ηse−ηsσ ς (s)+ η2
∫ s

0
exp[−η(s− τ)](s− τ)σ ς (s− τ)dτ

)

= kD0

(

ηse−ηsσ ς (s)+ η2
∫ s

0
exp(−ηu)uσ ς (u)du

)

≤ kD0

(

η
1√
η

σ ς (0)+ η2
∫ 1√

η

0
e−ηu 1√

η
σ ς (0)du

)

≤ kD0

(√
ησ ς (0)+

√
η
(

1−e−
√η
)

σ ς (0)
)

≤ kD0 (2
√

ησ ς (0)). (3.3.62)

Then, fors≥ 1√
η , by (3.3.60), (3.3.62) and the property of the functionσ ς , we

obtain

η |w(s,z,ω ,η)|
≤ kD0

{

ηse−ηsσ ς (s)+ η2
∫ s

0
exp[−η(s− τ)](s− τ)σ ς (s− τ)dτ

}

= kD0

{

ηse−ηsσ ς (s)+ η2
∫ s

0
exp(−ηu)uσ ς (u)du

}



34 3 Stochastic Averaging for Asymptotic Stability

= kD0

{

ηse−ηsσ ς (s)+ η2

[
∫ 1√η

0
exp(−ηu)uσ ς (u)du

+

∫ s

1√
η

exp(−ηu)uσ ς (u)du

]}

≤ kD0

{

ηse−ηsσ ς
(

1√
η

)

+
√

η
(

1−e−
√η
)

σ ς (0)

+η2σ ς
(

1√η

)∫ s

0
exp(−ηu)udu

}

≤ kD0

{√
η σ ς (0)+ ηse−ηsσ ς

(
1√η

)

+η2σ ς
(

1√
η

)[

− 1
η

se−ηs+
1

η2 (1−e−ηs)

]}

≤ kD0

(√
η σ ς (0)+ σ ς

(
1√
η

))

. (3.3.63)

Thus we define

ας (η) =

{

2
√

ησ ς (0)+ σ ς
(

1√η

)

, if η > 0;

0, if η = 0.
(3.3.64)

Thenας (η) is a classK function ofη , and forη ∈ [0,1],ας (η) ≥ 2σ ς (0)η . By
(3.3.62) and (3.3.63), we obtain that for anyη ≥ 0, (3.3.61) holds.

The partial derivatives∂w
∂s and ∂w

∂z are given by

∂w(s,z,ω ,η)

∂s
= h(s,z,ω)−ηw(s,z,ω ,η), (3.3.65)

∂w(s,z,ω ,η)

∂z
=

∫ s

0

∂h
∂z

(τ,z,ω)exp[−η(s− τ)]dτ. (3.3.66)

Noticing that

∂ ā(x)
∂x

=
l

∑
i=1

∂ai(x)
∂x

b̄i =
l

∑
i=1

∂ai(x)
∂x

lim
T→∞

∫ t+T

t
bi(Ys)ds

= lim
T→∞

∫ t+T

t

∂a(x,Ys)

∂x
ds, a.s., (3.3.67)

we can build results similar to (3.3.35) and (3.3.36) in Lemma 3.1 for
(

∂a(x,y)
∂x , ∂ ā(x)

∂x

)

instead of(a(x,y), ā(x)). Furthermore, forς > 0, we can take the same measurable

set Ως ⊂ Ω . Hence, for ∂ â(s,z,ω)
∂z = ∂a(z,Ys(ω))

∂z , we can obtain the same property

(3.3.51) as ˆa(s,z,ω) = a(z,Ys(ω)). Consequently,∂h
∂z(s,z,ω) = ∂ â

∂z(s,z,ω)− ∂ ā
∂z(z)

possesses the same properties ash(s,z,ω). Thus we can repeat the above derivations
to obtain that (3.3.61) also holds for∂w

∂z , i.e.
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η
∣
∣
∣
∣

∂w
∂z

(s,z,ω ,η)

∣
∣
∣
∣
≤ kD0 ας (η), ∀(s,z,ω) ∈ [0,∞)×D0×Ως . (3.3.68)

There is no loss of generality in using the same positive constantkD0 in both (3.3.61)
and (3.3.68). SincekD0 = l MD0 will differ only in the boundMD0 in (3.3.50), we
can defineMD0 by using the larger of the two constants.

Define the change of variable

z= ζ + ε w(s,ζ ,ω ,ε), (3.3.69)

whereεw(s,ζ ,ω ,ε) is of orderO(ας (ε)) by (3.3.61). By (3.3.68), for sufficiently

smallε, the matrix
[

I + ε ∂w
∂ζ

]

is nonsingular. Differentiating both sides with respect

to s, we obtain

dz
ds

=
dζ
ds

+ ε
∂w(s,ζ ,ω ,ε)

∂s
+ ε

∂w(s,ζ ,ω ,ε)

∂ζ
dζ
ds

. (3.3.70)

Substituting fordz
ds from (3.3.53), by (3.3.69), (3.3.65), and (3.3.54), we find that the

new state variableζ satisfies the equation
[

I + ε
∂w
∂ζ

]
dζ
ds

= ε â(s,ζ + εw,ω)− ε
∂w(s,ζ ,ω ,ε)

∂s
= εâ(s,ζ + εw,ω)− ε[â(s,ζ ,ω)− ā(ζ )]+ ε2w(s,ζ ,ω ,ε)
= εā(ζ )+ p(s,ζ ,ω ,ε), (3.3.71)

where

p(s,ζ ,ω ,ε) = ε [â(s,ζ + εw,ω)− â(s,ζ ,ω)]+ ε2w(s,ζ ,ω ,ε). (3.3.72)

Using the mean value theorem, there exists a functionf such thatp(s,ζ ,ω ,ε) is
expressed as

p(s,ζ ,ω ,ε) = ε2 f (s,ζ ,εw,ω)w(s,ζ ,ω ,ε)+ ε2w(s,ζ ,ω ,ε)
= ε2[ f (s,ζ ,εw,ω)+1]w(s,ζ ,ω ,ε). (3.3.73)

Notice that
[

I + ε
∂w
∂ζ

]−1

= I +O(ας (ε)), (3.3.74)

andας (ε)≥ 2σ ς (0)ε for ε ∈ [0,1]. Then by (3.3.71) and (3.3.73), the state equation
for ζ is given by

dζ
ds

=
[
I +O(ας (ε))

]
×
[
εā(ζ )+ ε2( f (s,ζ ,εw,ω)+1)w(s,ζ ,ω ,ε)

]

, εā(ζ )+ εας (ε)q(s,ζ ,ω ,ε), (3.3.75)
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whereq(s,ζ ,ω ,ε) is uniformly bounded on[0,∞)×D0×Ως for sufficiently small
ε. The system (3.3.75) is a perturbation of the average system

dζ
ds

= ε ā(ζ ). (3.3.76)

Notice that for any compact setD0 ⊂ D, q(s,ζ ,ω ,ε) is uniformly bounded on
[0,∞)×D0×Ως for sufficiently smallε. Then by the definition ofΩς and the av-
eraging principle of deterministic systems (see Theorem 10.5 and Theorem 9.1 of
[58]), we obtain the result of Theorem 3.1. The proof is completed.

3.3.1.3 Proof of Theorem 3.2

For anyς > 0, by Theorem 3.1, there exists a measurable setΩς ⊂ Ω with P(Ως ) >
1− ς , a classK function ας , and a constantε∗(ς) > 0 such that for all 0< ε <
ε∗(ς),

sup
s∈[0,∞)

|Zε
s (ω)− Z̄ε

s | = O(ας (ε)), (3.3.77)

uniformly in ω ∈ Ως . So there exists a positive constantCς > 0 such that for any
ω ∈ Ως and any 0< ε < ε∗(ς),

sup
s∈[0,∞)

|Zε
s (ω)− Z̄ε

s | ≤Cς ·ας (ε). (3.3.78)

Sinceας (ε) is continuous andας (0) = 0, for anyδ > 0, there exists anε ′(ς) > 0
such that for any 0< ε < ε ′(ς),

Cς ·ας (ε) < δ . (3.3.79)

Denoteε̄(ς) = min{ε∗(ς),ε ′(ς)}. Then for anyω ∈ Ως and any 0< ε < ε̄(ς), it
holds that

sup
s∈[0,∞)

|Zε
s (ω)− Z̄ε

s | < δ , (3.3.80)

which means that
{

sup
s∈[0,∞)

|Zε
s(ω)− Z̄ε

s | > δ

}

⊂ (Ω\Ως ). (3.3.81)

Thus, we obtain that for any 0< ε < ε̄(ς),

P

{

sup
s∈[0,∞)

|Zε
s − Z̄ε

s | > δ

}

≤ P(Ω\Ως ) < ς . (3.3.82)
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Hence the limit (3.2.11) holds. The proof is completed.

3.3.2 Proofs for the case of φ -mixing perturbation process

3.3.2.1 Proof of Theorem 3.4

Throughout this part, we suppose that the initial valueXε
0 = x satisfies|x| < δ (δ

is stated in Assumption 3.4). DefineDδ = {x′ ∈ Rn : |x′| ≤ δ}. For anyε > 0 and
t ≥ 0, define two stopping timesτε

δ andτε
δ (t) by

τε
δ = inf{s≥ 0 : Xε

s /∈ Dδ} = inf{s≥ 0 : |Xε
s | > δ} andτε

δ (t) = τε
δ ∧ t.(3.3.83)

Hereafter, we make the convention that inf /0= ∞.
Define the truncated processesXε,δ

t by

Xε,δ
t = Xε

t∧τε
δ

= Xε
τε

δ (t), t ≥ 0. (3.3.84)

Then for anyt ≥ 0, we have that

Xε,δ
t = x+

∫ τε
δ (t)

0
a(Xε

s ,Ys/ε)ds. (3.3.85)

For anyt ≥ 0, define aσ -field F
ε,δ
t as follows:

F
ε,δ
t = σ

{

Xε,δ
s ,Ys/ε : 0≤ s≤ t

}

= σ
{
Ys/ε : 0≤ s≤ t

}
, F

Y
t/ε . (3.3.86)

SinceF
ε,δ
t = FY

t/ε is independent ofδ , for simplicity, throughout the rest part of

this paper we useF ε
t instead ofF ε,δ

t .
Step 1. (Lyapunov estimates for Theorem 3.4)

For anyx∈ Rn with |x| ≤ δ , andt ≥ 0, defineVε(x,t) by

Vε(x,t) = V(x)+Vε
1 (x,t), (3.3.87)

where

Vε
1 (x, t) =

∫ τε
δ

τε
δ (t)

(
∂V(x)

∂x

)T

E
[
a(x,Ys/ε)− ā(x)|F ε

t

]
ds

= ε
∫ τε

δ
ε

τε
δ (t)

ε

(
∂V(x)

∂x

)T

E [a(x,Yu)− ā(x)|F ε
t ]du

= ε
∫ τε

δ
ε

τε
δ (t)

ε

(
∂V(x)

∂x

)T [

E[a(x,Yu)|F ε
t ]
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−
∫

SY

a(x,y)[Pu(dy)−Pu(dy)+ µ(dy)]

]

du

= ε
∫ τε

δ
ε

τε
δ (t)

ε

(
∂V(x)

∂x

)T

(E[a(x,Yu)|F ε
t ]−E[a(x,Yu)])du

+ε
∫ τε

δ
ε

τε
δ (t)

ε

(
∂V(x)

∂x

)T (∫

SY

a(x,y)(Pu(dy)− µ(dy))

)

du

, εVε
1,1(x, t)+ εVε

1,2(x,t), (3.3.88)

and wherePu is the distribution of the random variableYu. Next we give some esti-
mates ofεVε

1,1(x, t) andεVε
1,2(x,t), which imply thatVε

1 (x,t) is well defined.
By Assumption 3.5, there exists a positive constantkδ such that that for any

x∈ Rn with |x| ≤ δ , andy∈ SY,

a(0,y) ≡ 0,

∣
∣
∣
∣

∂a(x,y)
∂x

∣
∣
∣
∣
≤ kδ . (3.3.89)

Then by Taylor’s expansion and (3.2.23), for anyx∈ Rn with |x| ≤ δ andy∈ SY,

|a(x,y)| ≤ kδ |x|, |ā(x)| ≤ kδ |x|. (3.3.90)

Without loss of generality, we assume that the initial condition Y0 = y is deter-
ministic. By Assumption 3.3, we have

var(Pt − µ)≤ c5 e−αt , (3.3.91)

for two positive constantsc5 andα, where “var” denotes the total variation norm
of a signed measure over the Borelσ -field, and the mixing rate functionφ(·) of the
processYt satisfiesφ(s) = c6 e−β s for two positive constantsc6 andβ .

Thus, by (3.3.86), (3.2.26), (3.3.90), Lemma B.1, and the mixing rate function
φ(s) = c6e−β s of the processYt , we obtain that fort < τε

δ ,

ε
∣
∣Vε

1,1(x, t)
∣
∣ = ε

∣
∣
∣
∣
∣
∣

∫ τε
δ
ε

τε
δ (t)

ε

(
∂V(x)

∂x

)T

(E[a(x,Yu)|F ε
t ]−E[a(x,Yu)])du

∣
∣
∣
∣
∣
∣

≤ ε
∫ τε

δ
ε

t
ε

∣
∣
∣
∣

∂V(x)
∂x

∣
∣
∣
∣
·
∣
∣
∣E
[

a(x,Yu)|FY
t/ε

]

−E[a(x,Yu)]
∣
∣
∣du

≤ ε
∫ τε

δ
ε

t
ε

c3|x| ·kδ |x| ·φ
(

u− t
ε

)

du

≤ εc3c6kδ |x|2
∫ τε

δ
ε

t
ε

e−β (u− t
ε )du

≤ ε
c3c6kδ

β
|x|2, (3.3.92)
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and fort ≥ τε
δ ,

ε
∣
∣Vε

1,1(x, t)
∣
∣ = ε

∣
∣
∣
∣
∣
∣

∫ τε
δ
ε

τε
δ
ε

(
∂V(x)

∂x

)T

(E[a(x,Yu)|F ε
t ]−E[a(x,Yu)])du

∣
∣
∣
∣
∣
∣

= 0.

(3.3.93)

Thus for anyt ≥ 0,

ε
∣
∣Vε

1,1(x,t)
∣
∣≤ ε

c3c6kδ
β

|x|2. (3.3.94)

By Hölder’s inequality, (3.2.26), (3.3.90), and (3.3.91), we get that

ε
∣
∣Vε

1,2(x, t)
∣
∣ = ε

∣
∣
∣
∣
∣
∣

∫ τε
δ
ε

τε
δ (t)

ε

(
∂V(x)

∂x

)T(∫

SY

a(x,y)(Pu(dy)− µ(dy))

)

du

∣
∣
∣
∣
∣
∣

≤ ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣
∣
∣

∫

SY

(
∂V(x)

∂x

)T

a(x,y)(Pu(dy)− µ(dy))

∣
∣
∣
∣
∣
du

≤ ε
∫ τε

δ
ε

τε
δ (t)

ε





∫

SY

∣
∣
∣
∣
∣

(
∂V(x)

∂x

)T

a(x,y)

∣
∣
∣
∣
∣

2

[Pu(dy)+ µ(dy)]





1
2

·
(∫

SY

|Pu− µ |(dy)

) 1
2

du

≤ ε
∫ τε

δ
ε

τε
δ (t)

ε

(∫

SY

(kδ c3)
2|x|4[Pu(dy)+ µ(dy)]

) 1
2

(var(Pu− µ))
1
2 du

≤ εc3kδ |x|2
∫ τε

δ
ε

τε
δ (t)

ε

(∫

SY

[Pu(dy)+ µ(dy)]

) 1
2 (

c5e−αu)
1
2 du

= ε
√

2c5c3kδ |x|2
∫ τε

δ
ε

τε
δ (t)

ε

e−
α
2 udu

≤ ε
2
√

2c5c3kδ
α

|x|2. (3.3.95)

Therefore, by (3.3.88), (3.3.94) and (3.3.95), for anyx ∈ Rn with |x| ≤ δ , and
t ≥ 0,

−εC1(δ )|x|2 ≤Vε
1 (x,t) ≤ εC1(δ )|x|2, (3.3.96)

whereC1(δ ) =
2
√

2c5c3kδ
α +

c3c6kδ
β . By (3.2.25), (3.3.87) and (3.3.96), there exists an

ε1 > 0 such thatε1C1
c1

< 1, and for 0< ε ≤ ε1, x∈ R
n with |x| ≤ δ , andt ≥ 0,
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k1(δ )V(x) ≤Vε(x,t) ≤ k2(δ )V(x), (3.3.97)

wherek1(δ ) = 1− ε1C1(δ )
c1

> 0, k2(δ ) = 1+
ε1C1(δ )

c1
> 0.

Step 2. (Action of thep-infinitesimal operator on Lyapunov function in the case
with local conditions)

We discuss the action of thep-infinitesimal operator ˆA ε
δ of the vector process

(Xε,δ
t ,Yt/ε ) on the perturbed Lyapunov functionVε(x,t).
Recall thatτε

δ (t) is defined by (3.3.83). By the continuity of the processXε
t , we

know that for anyt ≥ 0, Xε
τε

δ (t) ∈ Dδ = {x′ ∈ Rn : |x′| ≤ δ}. Define

G(x,y) =

(
∂V(x)

∂x

)T

a(x,y), Ḡ(x) =

(
∂V(x)

∂x

)T

ā(x), (3.3.98)

G̃(x,y) = G(x,y)− Ḡ(x). (3.3.99)

Notice thatXε
τε

δ (t) is measurable with respect to theσ -field F ε
t . Then by the

definition in (3.3.87),

Vε(Xε
τε

δ (t),t) = V(Xε
τε

δ (t))+Vε
1 (Xε

τε
δ (t),t). (3.3.100)

Now we prove that for 0< ε ≤ ε1, Vε(Xε
τε

δ (t),t) ∈ D( ˆA ε
δ ), the domain ofp-

infinitesimal operator ˆA ε
δ (for definitions of p-limit and p-infinitesimal operator,

please see Appendix A), and

ˆA
ε

δ Vε(Xε
τε

δ (t), t)

= I{t<τε
δ } ·






Ḡ(Xε

t )+

∫ τε
δ

τε
δ (t)




∂Eε

t [G̃(x,Ys/ε)]

∂x

∣
∣
∣
∣
∣
x=Xε

t





T

a(Xε
t ,Yt/ε )ds






, gε

δ (t),

(3.3.101)

whereEε
t [ · ] stands for the conditional expectationE[ · |F ε

t ], i.e.E[ · |FY
t/ε ].

Since Xε
t and Yt are both continuous processes, we know thatVε(Xε

τε
δ (t),t)

and gε
δ (t) are progressively measurable with respect to{F ε

t }. In order to prove
(3.3.101), we need only to prove the following three claims for 0< ε ≤ ε1:
(i) Vε(Xε

τε
δ (t), t) ∈ M

ε
δ , whereM

ε
δ is defined with respect to the vector process

(Xε,δ
t ,Yt/ε ) similarly asM

ε
defined in Appendix A.

(ii) gε
δ (t) ∈ M

ε
δ .

(iii)

p- lim
δ ′↓0

Eε
t [Vε(Xε

τε
δ (t+δ ′),t + δ ′)]−Vε (Xε

τε
δ (t),t)

δ ′ = gε
δ (t). (3.3.102)

By (3.3.97) and the definition ofτε
δ (t), we get that for 0< ε ≤ ε1,
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sup
t≥0

E
[∣
∣
∣Vε(Xε

τε
δ (t),t)

∣
∣
∣

]

≤ sup
t≥0

E
[

k2(δ )V(Xε
τε

δ (t))
]

≤ k2(δ ) · sup
x∈Dδ

V(x) < ∞. (3.3.103)

Thus (i) holds. For the proofs of (ii) and (iii), see Lemmas B.2 and B.3.
Hence, by (3.3.101), (3.2.28), (B.12), and (3.2.25), for any t ≥ 0 and 0< ε ≤ ε1,

ˆA
ε

δ Vε(Xε
τε

δ (t), t) ≤ I{t<τε
δ }

(

−γV(Xε
τε

δ (t))+ ε
C2(δ )

c1
V(Xε

τε
δ (t))

)

= −
(

γ − ε
C2(δ )

c1

)

V(Xε
τε

δ (t)) · I{t<τε
δ }. (3.3.104)

Takeε ′1 > 0 such thatγ − ε ′1
C2(δ )

c1
> 0. Let ε2 = min{ε1,ε ′1}. Then for 0< ε ≤ ε2

and anyt ≥ 0,

ˆA
ε

δ Vε(Xε
τε

δ (t),t) ≤ 0. (3.3.105)

Step 3. (Proof of stability in probability (3.2.29))
Supposeε ∈ (0,ε2], r ∈ (0,δ ), andXε

0 = x satisfying that|x| ≤ r. Fort ≥ 0, define
two stopping timesτε

r andτε
r (t) by

τε
r = inf{s≥ 0 : |Xε

s | > r} and τε
r (t) = τε

r ∧ t. (3.3.106)

Then for anyt ≥ 0,

|Xε
τε
r (t)| ≤ r < δ , τε

r (t) ≤ τε
δ (t), (3.3.107)

and

τε
δ (τε

r (t)) = τε
δ ∧ τε

r (t) = τε
δ ∧ (τε

r ∧ t)
= (τε

δ ∧ t)∧ (τε
r ∧ t)

= τε
δ (t)∧ τε

r (t) = τε
r (t). (3.3.108)

Thus by Theorem A.1, the property of conditional expectation, and (3.3.105),

E
[

Vε (Xε
τε
r (t),τ

ε
r (t))−Vε(x,0)

]

= E
[

Vε (Xε
τε

δ (τε
r (t)),τ

ε
r (t))−Vε(x,0)

]

= E
[

E
[

Vε (Xε
τε

δ (τε
r (t)),τ

ε
r (t))−Vε(x,0)

∣
∣
∣F

ε
0

]]

= E
[

Eε
0

[

Vε(Xε
τε

δ (τε
r (t)),τ

ε
r (t))

]

−Vε (x,0)
]

= E

[

Eε
0

[∫ τε
r (t)

0

ˆA
ε

δ Vε(Xε
τε

δ (u),u)du

] ]

= E

[∫ τε
r (t)

0

ˆA
ε

δ Vε(Xε
τε

δ (u),u)du

]

≤ 0. (3.3.109)

By (3.3.97) and (3.3.109),
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E
[

k1(δ )V(Xε
τε
r (t))

]

≤ E
[

Vε (Xε
τε
r (t),τ

ε
r (t))

]

≤ E[Vε(x,0)] ≤ k2(δ )V(x). (3.3.110)

Denote

Vr = inf
r≤|x|≤δ

V(x). (3.3.111)

Then for anyT > 0, we have

E[V(Xε
τε
r (T))] =

∫

{τε
r <T}

V(Xε
τε
r (T))dP+

∫

{τε
r ≥T}

V(Xε
τε
r (T))dP

≥
∫

{τε
r <T}

V(Xε
τε
r (T))dP≥

∫

{ sup
0≤t≤T

|Xε
t |>r}

V(Xε
τε
r (T))dP

≥Vr ·P
{

sup
0≤t≤T

|Xε
t | > r

}

, (3.3.112)

which, together with (3.3.110), implies

P

{

sup
0≤t≤T

|Xε
t | > r

}

≤
E[V(Xε

τε
r (T))]

Vr
≤ k2(δ )V(x)

k1(δ )Vr
. (3.3.113)

LettingT → ∞, we get

P

{

sup
t≥0

|Xε
t | > r

}

≤ k2(δ )V(x)
k1(δ )Vr

. (3.3.114)

Hence

P

{

sup
t≥0

|Xε
t | ≤ r

}

> 1− k2(δ )V(x)
k1(δ )Vr

. (3.3.115)

SinceV(0) = 0 andV(x) is continuous, for anyς > 0, there existsδ1(r,ς) ∈ (0,δ )

such thatV(x) < k1(δ )Vr
k2(δ ) ς for all |x| < δ1(r,ς). Thus we obtain that for any 0<

ε ≤ ε∗ with ε∗ = min{ε1,ε2} = ε2, for any givenr > 0,ς > 0, there existsδ0 =
δ1(min(r,δ/2),ς) ∈ (0,δ ) such that for all|x| < δ0,

P

{

sup
t≥0

|Xε
t | ≤ r

}

≥ P

{

sup
t≥0

|Xε
t | ≤ min(r,δ/2)

}

> 1− ς , (3.3.116)

equivalently, for any 0< ε ≤ ε∗, and any givenr > 0,

lim
x→0

P

{

sup
t≥0

|Xε
t | > r

}

= 0. (3.3.117)

Step 4. (Proof of asymptotic convergence property (3.2.30))
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Let 0< ε < ε∗ (= ε2). By Theorem A.1, for any 0≤ s≤ t,

E
[

Vε(Xε
τε

δ (t), t)|F ε
s

]

= Vε (Xε
τε

δ (s),s)+

∫ t

s
E
[

ˆA
ε

δ Vε (Xε
τε

δ (u),u)|F ε
s

]

du, a.s.,

(3.3.118)

whereF ε
s is defined by (3.3.86). By (3.3.97), we know that for anyt ≥ 0,Vε(Xε

τε
δ (t),t)

is integrable. By (3.3.105) and (3.3.118), we obtain that for any 0≤ s≤ t,

E
[

Vε(Xε
τε

δ (t),t)|F ε
s

]

≤Vε(Xε
τε

δ (s),s) a.s. (3.3.119)

Hence by definition{Vε(Xε
τε

δ (t),t) : t ≥ 0} is a nonnegative supermartingale with

respect to{F ε
t }. By Doob’s theorem,

lim
t→∞

Vε(Xε
τε

δ (t),t) = ξ , a.s., (3.3.120)

andξ is finite almost surely. LetBε
x denote the set of sample paths of(Xε

t : t ≥ 0)
with Xε

0 = x such thatτε
δ = ∞. SinceXε

t ≡ 0 is stable in probability, by (3.3.117),

lim
x→0

P(Bε
x) = 1. (3.3.121)

Note thatε∗ = ε2 = min{ε1,ε ′1}, andε ′1 > 0 satisfyingγ − ε ′1
C2(δ )

c1
> 0. Then by

(3.3.104), we get that for any 0< ε ≤ ε∗,

ˆA
ε

δ Vε(Xε
τε

δ (t),t) ≤−cεV(Xε
τε

δ (t)) · I{t<τε
δ }, (3.3.122)

wherecε = γ − ε C2(δ )
c1

> 0. For any 0< ς < δ , let cς
ε = cεc1ς2. Notice that for any

t ≥ 0, |Xε
τε

δ (t)| ≤ δ . Then by (3.2.25) and (3.3.122), we obtain that if 0< ε ≤ ε∗ and

|Xε
τε

δ (t)| ≥ ς , then

ˆA
ε

δ Vε (Xε
τε

δ (t),t) ≤−cς
ε · I{t<τε

δ }. (3.3.123)

For 0< ε ≤ ε∗, 0 < ς < δ and anyt ≥ 0, define two stopping timesτε
ς ,δ andτε

ς ,δ (t)
by

τε
ς ,δ = inf{t : |Xε

t | /∈ [ς ,δ ]} = inf{t : |Xε
t | < ς or |Xε

t | > δ} andτε
ς ,δ (t) = τε

ς ,δ ∧ t.

(3.3.124)

Then for anyt ≥ 0, we have thatτε
ς ,δ (t) ≤ τε

δ (t). Suppose thatXε
0 = x and |x| ∈

(ς ,δ ). Then for anyt ∈ [0,τε
ς ,δ ], |Xε

t | ∈ [ς ,δ ]. If u∈ [0,τε
ς ,δ (t)], then

0≤ τε
δ (u) = τε

δ ∧u≤ u≤ τε
ς ,δ (t) ≤ τε

ς ,δ , (3.3.125)



44 3 Stochastic Averaging for Asymptotic Stability

and thus|Xε
τε

δ (u)
| ∈ [ς ,δ ]. Hence by Theorem A.1, the property of conditional expec-

tation, and (3.3.123), we obtain that

E

[

Vε(Xε
τε

δ (τε
ς ,δ (t)),τ

ε
ς ,δ (t))

]

−E[Vε (x,0)]

= E

[

Vε(Xε
τε

δ (τε
ς ,δ (t)),τ

ε
ς ,δ (t))−Vε(x,0)

]

= E

[

E

[

Vε(Xε
τε

δ (τε
ς ,δ (t)),τ

ε
ς ,δ (t))−Vε(x,0)

∣
∣
∣
∣
F

ε
0

]]

= E

[

Eε
0

[

Vε(Xε
τε

δ (τε
ς ,δ (t)),τ

ε
ς ,δ (t))

]

−Vε(x,0)

]

= E

[

Eε
0

[∫ τε
ς ,δ (t)

0

ˆA
ε

δ Vε(Xε
τε

δ (u),u)du

]]

= E

[∫ τε
ς ,δ (t)

0

ˆA
ε

δ Vε(Xε
τε

δ (u),u)du

]

≤ E

[∫ τε
ς ,δ (t)

0
(−cς

ε · I{t<τε
δ })du

]

= −cς
ε E
[

τε
ς ,δ (t) · I{t<τε

δ }
]

. (3.3.126)

whereEε
0 [·] means the conditional expectationE

[
· |F ε

0

]
.

Thus by (3.3.126) and (3.3.97),

E
[

τε
ς ,δ (t) · I{t<τε

δ }
]

≤ E[Vε (x,0)]

cς
ε

≤ k2(δ )V(x)

cς
ε

. (3.3.127)

By the definitions ofτε
ς ,δ andτε

δ , we have thatτε
ς ,δ ≤ τε

δ . Thus by the property of
expectation and (3.3.127), we have

P
{

t < τε
ς ,δ

}

= P
{

t < τε
ς ,δ ,t < τε

δ

}

≤
E
[

τε
ς ,δ (t) · I{t<τε

δ }
]

t

≤ k2(δ )V(x)

cς
ε t

,

(3.3.128)

which means that the solution processXε
t beginning in the domainς < |x| < δ ,

almost surely reaches the boundary of this domain in a finite time. Then by the
definition of the setBε

x, for all paths contained in the setBε
x, except for a set of paths

of probability zero, we have inft>0 |Xε
t | = 0. Sincea(0,y) ≡ 0, if Xε

s = 0 for some
s≥ 0, thenXε

t = 0 for all t ≥ s. Hence we obtain

liminf
t→∞

|Xε
t | = 0, (3.3.129)
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and then by (3.2.25) and (3.3.97), for any 0< ε ≤ ε∗, we have

liminf
t→∞

Vε(Xε
t ,t) = 0. (3.3.130)

But by (3.3.120) and the definition of the setBε
x, the limit

lim
t→∞

Vε(Xε
τε

δ (t),t) = lim
t→∞

Vε(Xε
t ,t) (3.3.131)

exists for almost all paths inBε
x. By the above discussion this limit is equal to zero.

Thus by (3.3.97) and (3.3.121), we obtain

lim
x→0

P
{

lim
t→∞

|Xε
t | = 0

}

= 1. (3.3.132)

The proof is completed.

3.3.2.2 Proof of Theorem 3.5

For brevity and to avoid overlap, we refer to parts of the proof of Theorem 3.4 that
are adapted in the proof of Theorem 3.5.
Step 1. (Action of thep-infinitesimal operator on Lyapunov function in the case
with global conditions)

In the proof of Theorem 3.4, takeδ = M for some positive integerM. Then
similar to (3.3.97) and (3.3.104), we obtain that there exists anε1 > 0 such that for
any 0< ε < ε1,x∈ Rn with |x| ≤ M, andt ≥ 0,

k1V(x) ≤Vε (x,t) ≤ k2V(x), (3.3.133)

ˆA
ε

MVε(Xε
τε
M(t),t) ≤−

(

γ − ε
C2

c1

)

V(Xε
τε
M(t)) · I{t<τε

M}, (3.3.134)

wherek1 = 1− ε1C1
c1

> 0,k2 = 1+ ε1C1
c1

, C1 = 2
√

2c5c3k
α + c3c6k

β , C2 = c6(c3+c4)k
2

β +

2
√

2c5(c3+c4)k
2

α (independent ofM used in the truncation).
Step 2. (Proof of global asymptotical stability in probability)

Let 0< ε ′0 < min{ c1
C2

γ,ε1} and denote

γ̂ =
1

2k2

(

γ − ε ′0
C2

c1

)

. (3.3.135)

Then by (3.3.133), (3.3.134), we get that for anyε ∈ (0,ε ′0],

ˆA
ε

MVε(Xε
τε
M(t),t) ≤ −2γ̂ k2V(Xε

τε
M(t)) · I{t<τε

M}
≤ −2γ̂ Vε(Xε

τε
M(t),t) · I{t<τε

M}. (3.3.136)

By Lemma B.4,
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ˆA
ε

M

(

Vε (Xε
τε
M(t),t) · I{t<τε

M}
)

= ˆA
ε

MVε(Xε
τε
M(t),t), (3.3.137)

which together with (3.3.136) implies that

(
ˆA
ε

M +2γ̂
)(

Vε(Xε
τε
M(t),t) · I{t<τε

M}
)

≤ 0. (3.3.138)

For t ≥ 0, define

Mε
t = e2γ̂tVε(Xε

τε
M(t), t) · I{t<τε

M} +e2γ̂τε
MV(Xε

τε
M
) · I{τε

M≤t}−Vε(x,0)

−
∫ t

0
e2γ̂s( ˆA

ε
M +2γ̂)

(

Vε(Xε
τε
M(s),s) · I{s<τε

M}
)

ds. (3.3.139)

Then by the fact thatτε
M > 0, a.s., we know thatMε

0 = 0, a.s. By the definition
of Vε(x, t), we can verify thate2γ̂tVε (Xε

τε
M(t),t) · I{t<τε

M} + e2γ̂τε
MV(Xε

τε
M
) · I{τε

M≤t} is

continuous int, and thusMε
t is continuous. By (3.3.133), (3.3.98), the definition of

ˆA ε
MVε(Xε

τε
M(t), t) (replaceδ by M in (3.3.101)), (B.13) withδ replaced byM, and

the fact that|Xε
τε
M
| ≤ M, we know that for anyt ≥ 0, Mε

t is integrable. By Lemma

B.5, we know thatMε
t is a martingale relative to{F ε

t }, and thus it is a zero-mean,
continuous martingale relative to{F ε

t }.
By (3.3.133), (3.3.138) and (3.3.139), we get that

0 ≤ k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M} ≤ e2γ̂tVε (Xε
τε
M(t),t) · I{t<τε

M}

≤ e2γ̂tVε(Xε
τε
M(t), t) · I{t<τε

M} +e2γ̂τε
MV(Xε

τε
M
) · I{τε

M≤t} (sinceV(x) ≥ 0)

= Vε(x,0)+Mε
t +

∫ t

0
e2γ̂s( ˆA

ε
M +2γ̂)

(

Vε(Xε
τε
M(s),s) · I{s<τε

M}
)

ds

≤ Vε(x,0)+Mε
t

≤ k2V(x)+Mε
t , (3.3.140)

which meansk2V(x)+Mε
t is a nonnegative continuous martingale relative to{F ε

t }.
By (3.3.140), and Doob’s inequality (cf. Section 2.III.9 of[35]), we have that for any
η > 0, andT > 0,

P

{

sup
0≤t≤T

k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M} > η
}

≤ P

{

sup
0≤t≤T

{k2V(x)+Mε
t } > η

}

≤ k2V(x)
η

. (3.3.141)

LettingT ↑ ∞ in (3.3.141) yields

P

{

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M} > η
}

≤ k2V(x)
η

. (3.3.142)

Notice that under Assumption 3.7, the original system (3.1.1) is globally Lipschitz.
Then we know that the solution processXε

t is regular (c.f. Section 7.2 of [40]), i.e.
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lim
M→∞

τε
M = ∞, a.s. (3.3.143)

Notice thatk1,k2 andγ̂ are independent ofM, andτε
M(t) = t∧τε

M. Then by (3.3.143),

sup
t≥0

k1e2γ̂tV(Xε
t ) ≤ lim inf

M→∞
sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M}, a.s. (3.3.144)

In fact, letΩ ε = {ω ∈ Ω |limM→∞ τε
M = ∞} . Then by (3.3.143), we have

P(Ω ε) = 1. (3.3.145)

For anyω ∈ Ω ε , let

λ (ω) = sup
t≥0

k1e2γ̂tV(Xε
t )(ω). (3.3.146)

Firstly, we assume thatλ (ω) < ∞. Then for any 0< δ < λ (ω), there exists a con-
stantt0 = t0(δ ,ω) ≥ 0 such that

λ (ω) ≥ k1e2γ̂t0V(Xε
t0)(ω) > λ (ω)− δ . (3.3.147)

By the definition ofΩ ε , there existsM0 = M0(t0,ω) > 0 such that for anyM > M0,
we have thatτε

M(ω) > t0, and thus for anyM > M0,

k1e2γ̂t0V(Xε
τε
M(t0)

(ω)) · I{t0<τε
M}(ω) = k1e2γ̂t0V(Xε

t0)(ω). (3.3.148)

By (3.3.147) and (3.3.148), we get that for anyM > M0,

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)(ω)) · I{t<τε

M}(ω) > λ (ω)− δ , (3.3.149)

and thus

liminf
M→∞

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)(ω)) · I{t<τε

M}(ω) ≥ λ (ω)− δ . (3.3.150)

Sinceδ can be any positive constant, we obtain that

liminf
M→∞

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)(ω)) · I{t<τε

M}(ω) ≥ λ (ω). (3.3.151)

Secondly, ifλ (ω) = ∞, then for anyM > 0, there exists a constantt1 = t1(δ ,ω)≥ 0
such that

k1e2γ̂t1V(Xε
t1)(ω) > M. (3.3.152)

Following the proofs of (3.3.148)–(3.3.151), we can obtainthat

liminf
M→∞

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)(ω)) · I{t<τε

M}(ω) ≥ M, (3.3.153)
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and thus by the arbitrariness ofM, it holds that

liminf
M→∞

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)(ω)) · I{t<τε

M}(ω) = ∞. (3.3.154)

By (3.3.146), (3.3.151), and the fact thatP(Ω ε) = 1, we obtain that (3.3.144) holds.
Now, by (3.3.144), Fatou’s lemma and (3.3.142), we obtain

P

{

sup
t≥0

k1e2γ̂tV(Xε
t ) > η

}

= E

[

I(η,∞]

(

sup
t≥0

k1e2γ̂tV(Xε
t )

)]

≤ E

[

lim inf
M→∞

I(η,∞]

(

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M}

)]

≤ lim inf
M→∞

E

[

I(η,∞]

(

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M}

)]

= lim inf
M→∞

P

{

sup
t≥0

k1e2γ̂tV(Xε
τε
M(t)) · I{t<τε

M} > η
}

≤ k2V(x)
η

. (3.3.155)

By Assumption 3.6, we have
{

c1|Xε
t |2 ≤ e−2γ̂t η

k1
,t ≥ 0

}

⊇
{

V(Xε
t ) ≤ e−2γ̂t η

k1
,t ≥ 0

}

, (3.3.156)

which together with (3.3.155) implies

P

{

|Xε
t | ≤ e−γ̂t

(
η

k1c1

) 1
2

, t ≥ 0

}

≥ 1− k2V(x)
η

. (3.3.157)

Let η1 > 0 andη2 > 0 be given. Chooseη such that
(

η
k1c1

) 1
2 ≤ η2, and then choose

δ0 > 0 such that if|x| < δ0, then k2V(x)
η ≤ η1. Thus we have

P
{

|Xε
t | ≤ η2e−γ̂t , t ≥ 0

}

≥ 1−η1. (3.3.158)

Now, we prove for anyx ∈ R
n, P{limt→∞ |Xε

t | = 0} = 1. Notice that for any
H > 0,

{

lim
t→∞

|Xε
t | = 0

}

=
{

lim
t→∞

V(Xε
t ) = 0

}

⊇
{

sup
t≥0

k1e2γ̂tV(Xε
t ) ≤ H

}

.(3.3.159)

Then by (3.3.155), we obtain

P
{

lim
t→∞

|Xε
t | = 0

}

≥ 1− k2V(x)
H

, (3.3.160)
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and lettingH ↑ ∞ yieldsP{limt→∞ |Xε
t | = 0} = 1. The proof is completed.

3.3.2.3 Proof of Theorem 3.6

The only condition of Theorem 3.6 that is different from the conditions in Theorem
3.5 isa(0,y) ≡ 0 replaced with supy∈SY

|a(0,y)| < ∞. Thus here we use the same
approach as in the proof of Theorem 3.5.
Step 1. (Lyapunov estimates for Theorem 3.6)

Let c =
(
supy∈SY

|a(0,y)|
)
∨ 1. Then by Assumption 3.8 (assumek ≥ 1, other-

wise, replacek by k∨1), we get that for anyx∈ R
n andy∈ SY,

|a(x,y)| ≤ c+k|x| ≤ k(c+ |x|). (3.3.161)

By (3.2.23) and (3.3.161), we get that for anyx∈ Rn,

|ā(x)| ≤ k(c+ |x|). (3.3.162)

Then following the proofs of Theorem 3.4, we obtain that forx∈ Rn with |x| ≤ M,
andt ≥ 0,

−εC1|x|(c+ |x|) ≤Vε
1 (x,t) ≤ εC1|x|(c+ |x|), (3.3.163)

whereC1 = 2
√

2c5c3k
α + c3c6k

β (the same with the one in the proof of Theorem 3.5).
By Assumption 3.6, the definition ofVε (x,t), and (3.3.163), we get that for any

ε > 0, x∈ Rn with |x| ≤ M, andt ≥ 0,

V(x)− εC1|x|(c+ |x|) ≤Vε(x,t) ≤V(x)+ εC1|x|(c+ |x|). (3.3.164)

It follows from (3.3.164) andc≥ 1 that if |x| ≤ 1, then

V(x)−2εcC1 ≤Vε(x,t) ≤V(x)+2εcC1. (3.3.165)

By Assumption 3.6 andc≥ 1, we have that if|x| ≥ 1, then|x|(c+ |x|) ≤ 2c|x|2 ≤
2c
c1

V(x), and thus by (3.3.164), if|x| ≥ 1, then

(

1− 2εcC1

c1

)

V(x) ≤Vε(x,t) ≤
(

1+
2εcC1

c1

)

V(x). (3.3.166)

Take a positive constantε ′
1 < c1

2cC1
, and define

k
′
1 = 1− 2cC1

c1
ε
′
1, k

′
2 = 1+

2cC1

c1
ε
′
1. (3.3.167)

Then by (3.3.166), we get that for any 0< ε ≤ ε ′
1 and|x| ≥ 1,
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k
′
1V(x) ≤Vε(x,t) ≤ k

′
2V(x). (3.3.168)

Step 2. (Action of the p-infinitesimal operator on Lyapunov function without
equilibrium condition)

By (3.3.161) and Assumptions 3.6, 3.8, we get that for anyx∈ Rn,y∈ SY,

|Q(x,y)| ≤ c4k(c+ |x|)+c3k|x|, (3.3.169)

whereQ(x,y) is given by (B.8). Then by (3.3.161) and (3.3.169), following the proof
of (B.12), we obtain that

∣
∣
∣
∣
∣
∣

∫ τε
M

τε
M(t)

[

∂Eε
t [G̃(x,Ys/ε)]

∂x

]T

a(x,Yt/ε)ds

∣
∣
∣
∣
∣
∣

≤ ε
∫ τε

M
ε

τε
M (t)

ε

∣
∣
∣E[Q(x,Yu)|FY

t/ε ]−E[Q(x,Yu)]
∣
∣
∣

∣
∣a(x,Yt/ε)

∣
∣du

+ε
∫ τε

M
ε

τε
M(t)

ε

∣
∣
∣
∣

∫

SY

Q(x,y)(Pu(dy)− µ(dy))

∣
∣
∣
∣

∣
∣a(x,Yt/ε )

∣
∣du

≤ ε
[
(c4k(c+ |x|)+c3k|x|) ·k(c+ |x|)

β

+
2
√

2c5(c4k(c+ |x|)+c3k|x|) ·k(c+ |x|)
α

]

≤ ε k2
[

c6

β
+

2
√

2c5

α

]

·
[
c4c2 +(c3 +2c4)c|x|+(c3+c4)|x|2

]
. (3.3.170)

By Assumption 3.6 andc≥ 1, we have that if|x| ≥ 1, then

c4c2 +(c3+2c4)c|x|+(c3 +c4)|x|2
≤ [c4c2 +(c3+2c4)c+(c3+c4)]|x|2

=
c4c2 +(c3+2c4)c+(c3+c4)

c1
c1|x|2

≤ c4c2 +(c3+2c4)c+(c3+c4)

c1
V(x). (3.3.171)

Denote

C
′
2 = k2

[
c6

β
+

2
√

2c5

α

]
c4c2 +(c3 +2c4)c+(c3+c4)

c1
. (3.3.172)

Then by (3.3.170), we obtain that if|x| ≥ 1, then
∣
∣
∣
∣
∣
∣

∫ τε
M

τε
M(t)

[

∂Eε
t [G̃(x,Ys/ε )]

∂x

]T

a(x,Yt/ε)ds

∣
∣
∣
∣
∣
∣

≤ εC
′
2V(x); (3.3.173)
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if |x| < 1, then
∣
∣
∣
∣
∣
∣

∫ τε
M

τε
M(t)

[

∂Eε
t [G̃(x,Ys/ε)]

∂x

]T

a(x,Yt/ε )ds

∣
∣
∣
∣
∣
∣

≤ εc1C
′
2. (3.3.174)

By the definition of ˆA ε
MVε(Xε

τε
M(t),t), Assumption 3.6, (3.3.173) and (3.3.174), for

anyt ≥ 0,

ˆA
ε

MVε(Xε
τε
M(t), t)

≤







(

−γV(Xε
τε
M(t))+ εc1C

′
2

)

· I{t<τε
M}, if |Xε

τε
M(t)| < 1;

−(γ − εC
′
2)V(Xε

τε
M(t)) · I{t<τε

M}, if |Xε
τε
M(t)| ≥ 1.

(3.3.175)

Step 3. (Proof of boundedness in probability)

Let 0< ε∗ < min{ γ
C
′
2
,ε ′

1} and denotêγ =
γ−ε∗C′

2
k′2

. Then by (3.3.175) and (3.3.168),

we get that for anyε ∈ (0,ε∗], if |Xε
τε
M(t)| ≥ 1, then

ˆA
ε

MVε(Xε
τε
M(t), t) ≤−γ̂k′2V(Xε

τε
M(t)) · I{t<τε

M} ≤−γ̂Vε(Xε
τε
M(t),t) · I{t<τε

M}.(3.3.176)

By ˆA ε
M

(

Vε(Xε
τε
M(t), t) · I{t<τε

M}
)

= ˆA ε
MVε(Xε

τε
M(t),t) (see Lemma B.4) and (3.3.176),

we get that if|Xε
τε
M(t)| ≥ 1, then

(
ˆA
ε

M + γ̂
)(

Vε(Xε
τε
M(t),t) · I{t<τε

M}
)

≤ 0. (3.3.177)

For t ≥ 0, define

Mε
t = eγ̂tVε(Xε

τε
M(t), t) · I{t<τε

M} +eγ̂τε
MV(Xε

τε
M
) · I{τε

M≤t}−Vε(x,0)

−
∫ t

0
eγ̂s( ˆA

ε
M + γ̂)

(

Vε (Xε
τε
M(s),s) · I{s<τε

M}
)

ds. (3.3.178)

As in the proof of Theorem 3.5, we can prove thatMε
t is a zero-mean, continuous

martingale relative to{F ε
t }. Thus by ˆA ε

M

(

Vε(Xε
τε
M(t),t) · I{t<τε

M}
)

= ˆA ε
MVε (Xε

τε
M(t),t),

(3.3.165), (3.3.175), (3.3.177), and the fact thatγ > γ̂, we have for any 0< ε ≤ ε∗,

E
[

eγ̂tVε (Xε
τε
M(t), t)I{t<τε

M}
]

≤ E
[

eγ̂tVε(Xε
τε
M(t), t) · I{t<τε

M} +eγ̂τε
MV(Xε

τε
M
)I{τε

M≤t}
]

= Vε(x,0)+

∫ t

0
E
[

eγ̂s( ˆA
ε

M + γ̂)
(

Vε (Xε
τε
M(s),s) · I{s<τε

M}
)]

ds

= Vε(x,0)+

∫ t

0
E

[

eγ̂s( ˆA
ε

M + γ̂)
(

Vε(Xε
τε
M(s),s) · I{s<τε

M}
)

I{|Xε
τε
M(s)

|<1}

]

ds
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+

∫ t

0
E

[

eγ̂s( ˆA
ε

M + γ̂)
(

Vε(Xε
τε
M(s),s) · I{s<τε

M}
)

I{|Xε
τε
M(s)

|≥1}

]

ds

≤Vε(x,0)+

∫ t

0
E

[

eγ̂s( ˆA
ε

M + γ̂)
(

Vε(Xε
τε
M(s),s) · I{s<τε

M}
)

I{|Xε
τε
M(s)

|<1}

]

ds

≤Vε(x,0)+
∫ t

0
E
[

eγ̂s
(

−γV(Xε
τε
M(s))+ εc1C

′
2

+γ̂Vε(Xε
τε
M(s),s)

)

I{s<τε
M}I{|Xε

τε
M(s)

|<1}

]

ds

≤Vε(x,0)+

∫ t

0
E
[

eγ̂s
(

−γV(Xε
τε
M(s))+ εc1C

′
2

+γ̂
(

V(Xε
τε
M(s))+2εcC1

))

I{s<τε
M}I{|Xε

τε
M(s)

|<1}

]

ds

≤Vε(x,0)+

∫ t

0
E
[

eγ̂s
(

εc1C
′
2 +2γ̂εcC1

)]

ds

= Vε(x,0)+
εc1C

′
2 +2γ̂εcC1

γ̂

(

eγ̂t −1
)

≤Vε(x,0)+
εc1C

′
2 +2γ̂εcC1

γ̂
eγ̂t . (3.3.179)

where in the first equality, we used Fubini’s theorem and the integrability condition

∫ t

0
E
[∣
∣
∣eγ̂s( ˆA

ε
M + γ̂)Vε(Xε

τε
M(s),s)

∣
∣
∣

]

ds< ∞, (3.3.180)

which can be verified by (3.3.101)(δ is changed toM), (3.3.98), (3.3.99), (B.8),
(3.3.165), and (3.3.168). Thus we have that

E
[

Vε (Xε
τε
M(t), t) · I{t<τε

M}
]

≤ e−γ̂tVε(x,0)+
εc1C

′
2 +2γ̂εcC1

γ̂
. (3.3.181)

By (3.3.168), Assumption 3.6 and the property of expectation, we get that for any
r > 1,

P
{

|Xε
τε
M(t)| > r, t < τε

M

}

= P
{

|Xε
τε
M(t)| > r,k

′
1V(Xε

τε
M(t)) ≤Vε(Xε

τε
M(t),t) ≤ k

′
2V(Xε

τε
M(t)),t < τε

M

}

= P
{

|Xε
τε
M(t)| > r,V(Xε

τε
M(t)) > c1r2,k

′
1V(Xε

τε
M(t)) ≤Vε (Xε

τε
M(t),t)

≤ k
′
2V(Xε

τε
M(t)),t < τε

M

}

≤ P
{

|Xε
τε
M(t)| > 1,V(Xε

τε
M(t)) > c1r2,k

′
1V(Xε

τε
M(t)) ≤Vε(Xε

τε
M(t),t)

≤ k
′
2V(Xε

τε
M(t)),t < τε

M

}

≤ P
{

|Xε
τε
M(t)| > 1,Vε(Xε

τε
M(t),t) > c1k

′
1r2,t < τε

M

}
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≤ 1

c1k
′
1r2

E

[

Vε(Xε
τε
M(t),t) · I{t<τε

M} · I{|Xε
τε
M(t)

|>1}

]

. (3.3.182)

Thus by (3.3.181), (3.3.165), and (3.3.168), we obtain for any 0< ε ≤ ε∗, and any
t ≥ 0,

E

[

Vε(Xε
τε
M(t), t) · I{t<τε

M} · I{|Xε
τε
M(t)

|>1}

]

= E
[

Vε(Xε
τε
M(t), t) · I{t<τε

M}
]

−E

[

Vε(Xε
τε
M(t),t) · I{t<τε

M} · I{|Xε
τε
M(t)

|≤1}

]

≤ e−γ̂tVε(x,0)+
εc1C

′
2 +2γ̂εcC1

γ̂

−E

[(

V(Xε
τε
M(t))−2εcC1

)

· I{t<τε
M} · I{|Xε

τε
M(t)

|≤1}

]

≤ e−γ̂tVε(x,0)+
εc1C

′
2 +2γ̂εcC1

γ̂
+2εcC1

≤ max
{

V(x)+2ε∗cC1,k
′
2V(x)

}

+
ε∗c1C

′
2

γ̂
+4ε∗cC1 , C, (3.3.183)

whereC is a positive constant dependent onx,ε∗,c,c1,C1,C
′
2,k

′
2 and γ̂. Thus by

(3.3.182) and (3.3.183), we get that for any 0< ε ≤ ε∗, anyr > 1, and anyt ≥ 0,

P
{

|Xε
τε
M(t)| > r,t < τε

M

}

≤ C

c1k
′
1r2

. (3.3.184)

By the fact that limM→∞ τε
M = ∞, a.s. (see (3.3.143)), the dominated convergence

theorem, and (3.3.184), we get that for any 0< ε ≤ ε∗ and anyr > 1,

sup
t≥0

P{|Xε
t | > r} = sup

t≥0
E
[
I(r,∞](|Xε

t |)
]

= sup
t≥0

E
[

lim
M→∞

I(r,∞](|Xε
τε
M(t)|) · I{t<τε

M}
]

= sup
t≥0

(

lim
M→∞

E
[

I(r,∞](|Xε
τε
M(t)|) · I{t<τε

M}
])

= sup
t≥0

(

lim
M→∞

P
{

|Xε
τε
M(t)| > r,t < τε

M

})

≤ C

c1k
′
1r2

, (3.3.185)

which implies that

lim
r→∞

sup
t≥0

P{|Xε
t | > r} = 0, (3.3.186)

i.e. the solution processXε
t is bounded in probability. The proof is completed.
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3.4 Examples

3.4.1 Perturbation process is asymptotically periodic

Consider the following system

dxε
t

dt
= ξ 2

t/ε (x
ε
t +1)− 1

2
(xε

t +1)2, (3.4.187)

where the perturbation process is

dYt = −pYtdt+qdWt , ξt = sint +e−at sinYt (3.4.188)

with p,q,a > 0,Wt is a 1-dimensional standard Brownian motion defined on some
complete probability space. Noticing that for anyt ≥ 0

lim
T→∞

1
T

∫ t+T

t
ξ 2

s ds= lim
T→∞

1
T

∫ t+T

t

(
sin2s+2sinse−assinYs+e−2assin2Ys

)
ds

= lim
T→∞

1
T

∫ t+T

t
sin2sds

=
1

2π

∫ 2π

0
sin2sds

=
1
2

a.s., (3.4.189)

we obtain the average system of (3.4.187) as

dx̄t

dt
= −1

2

(
x̄t + x̄2

t

)
, x̄0 = x, , (3.4.190)

which is locally exponentially stable at ¯xt = 0. Figure 3.1 shows the simulation
results with ¯x0 = xε

0 = 0.5, p = 1,q = 2,a = 0.01,ε = 0.09, from which we can
see that the solution of the original system (3.4.187) converges (in probability) to
the solution of the average systemdx̄t

dt =−
(
x̄t + x̄2

t

)
/2 (see (3.2.11) in Theorem 3.2)

and the solution of system (3.4.187) is exponentially practically stable in probability
(Theorem 3.3).

3.4.2 Perturbation process is almost surely exponentially stable

Consider the following system

dxε
t

dt
= −sin2(ξt/ε )+

(

sin(ξt/ε )−
1
2

)

(xε
t )2−xε

t , dξt = pξtdt+qξtdWt ,

(3.4.191)



3.4 Examples 55

0 50 100 150 200 250 300 350
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(sec)

xǫ

s

x̄s

Fig. 3.1 States of the original and average systems for system (3.4.187)–(3.4.188) to illustrate
Theorems 3.2 and 3.3.

wherep< q2/2. We know thatξt = ξ0e(p− q2
2 )t+qWt . By the law of iterated Logarithm

of Brownian motion (see Theorem 2.9.23 of [57]), we know thatξt → 0, a.s. as
t → ∞. Noticing that

lim
T→∞

1
T

∫ t+T

t
f (s)ds= lim

s→∞
f (s) (3.4.192)

for continuous functionf when the latter limit exists, we have that for anyt ≥ 0

lim
T→∞

1
T

∫ t+T

t
sin2(ξs)ds= 0, a.s., (3.4.193)

lim
T→∞

1
T

∫ t+T

t

((

sin(ξs)−
1
2

)

x2−x

)

ds= −1
2

x2−x, a.s. (3.4.194)

Thus we obtain the average system of (3.4.191) as

dx̄t

dt
= −x̄t −

1
2

x̄2
t , x̄0 = x, (3.4.195)

which is locally exponentially stable at ¯xt = 0. Figure 3.2 shows the simulation
results with ¯x0 = xε

0 = 0.2,ξ0 = 1, p = 0.4,q = 1, from which we can see that the
solution of the original system (3.4.191) converges (in probability) to the solution of
the average systemdx̄t

dt = −x̄t − x̄2
t /2 (see (3.2.13) in Corollary 3.2) and the solution

of system (3.4.191) is exponentially practically stable inprobability (Theorem 3.3).
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Fig. 3.2 States of the original and average systems for system (3.4.191). Top: forε = 0.01, which
is small (the average approximation is tight). Bottom: forε = 0.64, which is large (the average ap-
proximation is qualitatively correct, but it is not very accurate since the condition on the smallness
of ε in Corollary 3.2 and Theorem 3.3 is not met).

3.4.3 Perturbation process is Brownian motion on the unit circle

While in Sections 3.4.1 and 3.4.2 we illustrated the theorems in Section 3.2.1 for
uniform strong ergodic perturbation processes, in this section we illustrate the theo-
rems in Section 3.2.2 forφ -mixing perturbation process. Consider the system

dxε
t

dt
= −

[
0 1
][

Y2
1 (t/ε) Y2

2 (t/ε)
]T

xε
t
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+

(
[

0 1
][

Y1(t/ε) Y2(t/ε)
]T − 1

2

)

(xε
t )

2
, (3.4.196)

where the perturbation processY(t) = [Y1(t),Y2(t)]T is Brownian motion on the unit
circle,

dYt = −1
2

Ytdt+BYtdWt , Y0 = [cos(ϑ),sin(ϑ)]T for all ϑ ∈ R, (3.4.197)

with B=

[
0 −1
1 0

]

. In fact, we have the simple expression [109, Example 5.4, p. 63]

Y(t) = [cos(ϑ +Wt),sin(ϑ +Wt)]
T = ei(ϑ+Wt). (3.4.198)

We know that the stochastic process(Y(t),t ≥ 0) is φ -mixing with exponential

mixing rate and exponentially ergodic with invariant distribution µ(dS) = l(S)
2π for

any setS⊂ T, whereT = {(x,y) ∈ R2|x2 + y2 = 1}, and l(S) denotes the length
(Lebesgue measure) ofS. Corresponding to system (3.4.196), we have the function

a(x,y1,y2) = −y2
2x+

(

y2−
1
2

)

x2. (3.4.199)

Noticing that

∫

T
−y2

2µ(dy1,dy2) = −
∫ 2π

0
sin2(θ )

1
2π

dθ = −1
2
, (3.4.200)

and
∫

T

(

y2−
1
2

)

µ(dy1,dy2) =

∫ 2π

0

(

sinθ − 1
2

)
1

2π
dθ = −1

2
, (3.4.201)

we obtain the average system of (3.4.196) as

dx̄t

dt
= −1

2

(
x̄t + x̄2

t

)
, x̄0 = x, (3.4.202)

which is locally exponentially stable at ¯xt = 0. Figure 3.3 shows the simulation
results with ¯x0 = xε

0 = 0.1,ε = 0.64,Y0 = [1,0]T , from which we can see that the
solutionxε

t ≡ 0 of the system (3.4.196) is asymptotically stable (in probability) (see
(3.2.29) and (3.2.30) in Theorem 3.4).

3.5 Notes and References

In this chapter, which is based on results that we introducedin [90] we developed
several basic theorems of stochastic infinite-time averaging for a class of nonlinear
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Fig. 3.3 States of the original and average systems for system (3.4.196), (3.4.198) to illustrate
Theorem 3.4.

systems with uniform strong ergodic stochastic perturbations andφ -mixing pertur-
bations. For the former class, under the condition of exponential stability of average
equilibrium, the original system is exponentially practically stable in probability.
For the latter class, under the condition of exponential stability of average equilib-
rium, which is also an equilibrium of the original system, the original system is
asymptotically stable in probability. This is the first set of results on infinite-time
stochastic averaging for locally (rather than globally) Lipschitz systems and repre-
sents an extension of the deterministic general averaging for systems with aperiodic
vector fields.



Chapter 4
Stochastic Averaging for Practical Stability

In this chapter, we present new stochastic averaging theorems that relax the key
limiting conditions in the existing stochastic averaging theory. We first introduce the
notion of weak stability under random perturbation for general nonlinear systems.
This stability notion is a stability robustness property for a deterministic system,
relative to perturbations involving a stochastic process,and in the presence of a
small parameter. Then we formulate and study some stability-like properties for the
original system by investigating the weak stability under the random perturbation of
the equilibrium of the average system. We present the detailed proofs for the general
theorems.

4.1 General Stochastic Averaging

4.1.1 Problem formulation

Consider the following system

dXε
t

dt
= a(Xε

t ,Yt/ε), Xε
0 = x, (4.1.1)

whereXε
t ∈ R

n, Yt ∈ R
m is a time homogeneous continuous Markov process defined

on a complete probability space(Ω ,F ,P), whereΩ is the sample space,F is the
σ -field, andP is the probability measure. The initial conditionXε

0 = x is determin-

59
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istic. ε is a small parameter in(0,ε0) with fixed ε0 > 0. LetSY ⊂ Rm be the living
space of the perturbation process(Yt ,t ≥ 0) and note thatSY may be a proper (e.g.,
compact) subset ofRm.

The following assumptions are made.

Assumption 4.1.The vector fielda(x,y) is a continuous function of(x,y), and for
anyx ∈ R

n, it is a bounded function ofy. Furthermore,a(x,y) satisfies the locally
Lipschitz condition inx∈ Rn uniformly in y∈ SY, i.e., for any compact subsetD ⊂
Rn, there is a constantkD such that for allx1,x2 ∈ D and ally∈ SY,

|a(x1,y)−a(x2,y)| ≤ kD |x1−x2|. (4.1.2)

Assumption 4.2.The perturbation process(Yt ,t ≥ 0) is ergodic with invariant dis-
tribution µ .

Assumption 4.2 is in contrast to most of the stochastic averaging theory, where,
in addition to this assumption, the perturbation process isrequired to satisfy some
form of a strong mixing property. The meaning of ergodicity,in simple terms, is
that the time average of a function of the process along the trajectories exists almost
surely and equals the space average:

lim
T→∞

1
T

∫ T

0
f (Ys)ds=

∫

SY

f (y)µ(dy), a.s. (4.1.3)

for any integrable functionf (·). The following are two examples of ergodic stochas-
tic processes (one is a 1-dimensional process and the other is a 2-dimensional pro-
cess):

1. The Ornstein-Uhlenbeck (OU) process(Yt ,t ≥ 0):

dYt = −pYtdt+qdWt , (4.1.4)

whereWt is a 1-dimensional standard Brownian motion on some probability
space(Ω ,F ,P). It is known [112] that the OU process is ergodic with invariant

distributionµ(dx) =
√

p√
πq

e
− px2

q2 dx.

2. Brownian motion on the unit circle(Yt ,t ≥ 0):

Yt = ejWt = [cos(Wt),sin(Wt)]
T , (4.1.5)
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wherej is the imaginary unit andWt is a 1-dimensional Brownian motion which
is not necessarily standard in the formW0 = 0. By Ito’s formula, its coordinates
Y1t andY2t satisfy

{
dY1t = − 1

2 cos(Wt)dt−sin(Wt)dWt ,
dY2t = − 1

2 sin(Wt)dt+cos(Wt)dWt .
(4.1.6)

Thus the processYt = [Y1t ,Y2t ]
T is the solution of the following stochastic dif-

ferential equations with initial conditionY10 = cos(W0) andY20 = sin(W0) :

{
dY1t = − 1

2Y1tdt−Y2tdWt ,

dY2t = − 1
2Y2tdt+Y1tdWt ,

(4.1.7)

or, in matrix notation,

dYt = −1
2

Ytdt+BYtdWt , (4.1.8)

whereB=

[
0 −1
1 0

]

. On the other hand, the solution of (4.1.8) with initial value

Y0 = [cos(ϑ),sin(ϑ)]T (ϑ ∈ R) is

Yt = e(−
1
2 I− 1

2B2)t+BWtY0

= eBWtY0 =
∞

∑
k=0

BkWk(t)
k!

Y0 (B2 = −I)

= (I cos(Wt)+Bsin(Wt))Y0

= [cos(ϑ +Wt),sin(ϑ +Wt)]
T

= ej(ϑ+Wt). (4.1.9)

Therefore Brownian motion on the unit circleYt = [cos(Wt),sin(Wt)]
T is equiv-

alent to the solution of stochastic differential equation

dYt = −1
2

Ytdt+BYtdW̌t , (4.1.10)

with initial conditionY0 = [cos(W0),sin(W0)]
T , whereW̌t is a 1-dimensional

standard Brownian motion witȟW0 = 0. It is known [13] that Brownian motion
on the unit circle(Yt , t ≥ 0) is exponentially ergodic and its invariant distribution
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µ is the uniform measure onT = {(x,y) ∈ R2|x2+y2 = 1}, i.e.,µ(S) = l(S)
2π for

any setS⊂ T, andl(S) denotes the length (Lebesgue measure) ofS.

In the extremum seeking applications in this book, we use theergodic processes
(4.1.4) and (4.1.10) as the excitation signals to develop stochastic extremum seeking
algorithms.

Assumption 4.3.For anyx ∈ Rn and the perturbation process(Yt ,t ≥ 0), system
(4.1.1) has a unique (almost surely) continuous solution on[0,∞).

SinceYt is a time homogeneous continuous Markov process, ifa(x,y) is globally
Lipschitz in (x,y), then the solution of system (4.1.1) exists with probability 1 for
anyx∈Rn and it is defined uniquely for allt ≥ 0 (see Section 2 of Chapter 7 of [40]).
Here, we firstly don’t emphasize how to guarantee or prove theexistence of the
solution of system (4.1.1) but just assume that system (4.1.1) has a unique (almost
surely) continuous solution on[0,∞). In fact, by Assumption 4.1, we know that for
any trajectory of the perturbing process(Yt ,t ≥ 0) and for anyε > 0, system (4.1.1)
has a unique solution up to a possible explosion time. Assumption 4.3 implies that
there is no finite explosion time for system (4.1.1), so that (4.1.1) has a continuous
solution defined on the whole time interval[0,+∞).

Under Assumption 4.2, we obtain the average system of system(4.1.1) as fol-
lows:

dX̄t

dt
= ā(X̄t), X̄0 = x. (4.1.11)

where

ā(x) =

∫

SY

a(x,y)µ(dy). (4.1.12)

By Assumption 4.1,a(x,y) is bounded with respect toy, thusy → a(x,y) is µ-
integrable. So ¯a is well defined. For the average system (4.1.11), we make the fol-
lowing assumption.

Assumption 4.4.The average system (4.1.11) has a solution on[0,∞).

For the original system (4.1.1) and the average system (4.1.11), we introduce the
following definitions.

Definition 4.1. A solutionXε
t of system (4.1.1) is said to satisfy the property of
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1. weak boundednessif there exists a constantM > 0 such that

lim
ε→0

inf {t ≥ 0 : |Xε
t | > M} = +∞, a.s. (4.1.13)

2. weak attractivityif there exists a pointx∗ ∈ Rn such that for anyδ > 0, there
exists a constantTδ > 0 such that

lim
ε→0

inf {t ≥ Tδ : |Xε
t −x∗| > δ} = +∞, a.s. (4.1.14)

By convention, inf /0= +∞.
Since it is not assumed that system (4.1.1) has an equilibrium, we cannot nec-

essarily study the stability of an equilibrium solution of system (4.1.1). However,
the average system (4.1.11) may have stable equilibria. We consider system (4.1.1)
as a perturbation of the average system (4.1.11) and analyzesuitably defined stabil-
ity properties by studying equilibrium stability of (4.1.11). To this end, we rewrite
system (4.1.1) as

dXε
t

dt
= ā(Xε

t )+R(Xε
t ,Yt/ε ), Xε

0 = x, (4.1.15)

whereR(Xε
t ,Yt/ε ) = a(Xε

t ,Yt/ε )− ā(Xε
t ), and consider system (4.1.15) as a random

perturbation of the average system (4.1.11). We assume thatā(0) = 0, andX̄t ≡ 0
is a stable (resp., asymptotically stable, exponentially stable) solution of system
(4.1.11).

Definition 4.2. The solutionX̄t ≡ 0 of system (4.1.11) is called

1. weakly stableunder random perturbationR(·,Yt/ε ), if for anyδ > 0, there exists
a constantrδ > 0 such that for any initial conditionx∈ {x̌∈ Rn : |x̌| < rδ}, the
solution of system (4.1.1) satisfies

lim
ε→0

inf {t ≥ 0 : |Xε
t | > δ} = +∞, a.s. (4.1.16)

2. weakly asymptotically stableunder random perturbationR(·,Yt/ε ), if it is weakly
stable under random perturbationR(·,Yt/ε ) and there existsr > 0 such that for
any initial conditionx∈ {x̌∈ Rn : |x̌| < r}, the solutionXε

t of system (4.1.1) is
weakly attracted to the point 0.

3. weakly exponentially stableunder random perturbationR(·,Yt/ε ), if there exist
constantsr > 0, c> 0 andγ > 0 such that for any initial conditionx∈ {x̌∈ Rn :
|x̌| < r} and anyδ > 0, the solution of system (4.1.1) satisfies
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lim
ε→0

inf
{
t ≥ 0 : |Xε

t | > c|x|e−γt + δ
}

= +∞, a.s. (4.1.17)

In Definitions 4.1 and 4.2, we use the term “weakly” because the properties in
question involve lim

ε→0
and are defined through the first exit time from a set. In [60],

stability concepts that are similarly defined under random perturbations are intro-
duced for a nonlinear system perturbed by a stochastic process. In this chapter, the
system perturbation also comes from a small parameterε.

4.1.2 Statements of general results on stochastic averaging

Lemma 4.1.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.3 and4.4. Then
for any T> 0,

lim
ε→0

sup
0≤t≤T

|Xε
t − X̄t | = 0, a.s. (4.1.18)

This result extends the stochastic averaging for globally Lipschitz systems [88] to
locally Lipschitz systems. The result (4.1.18) means that sup

0≤t≤T
|Xε

t − X̄t | converges

to 0 almost surely asε → 0, and thus it converges to 0 in probability asε → 0, i.e.,
for anyδ > 0,

lim
ε→0

P

{

sup
0≤t≤T

|Xε
t − X̄t | > δ

}

= 0, (4.1.19)

which is a stochastic averaging result on finite time in [40] for globally Lipschitz
systems. Here we obtain a stronger result (4.1.18) for locally Lipschitz systems by
using ergodic perturbation process but assuming the existence and uniqueness of the
solution.

Let ρ be the metric in the spaceC([0,∞),Rn) of all the continuous vector func-
tions f ,g∈ C([0,∞),Rn), defined as

ρ( f ,g) =
∞

∑
k=1

1
2k

(

1∧ ( sup
0≤t≤k

| f (t)−g(t)|)
)

. (4.1.20)

Suppose that the conditions of Lemma 4.1 hold, and denoteXε(ω) = (Xε
t (ω),t ≥0),

X̄ = (X̄t , t ≥ 0). Then by (4.1.18) we have
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lim
ε→0

ρ(Xε(ω), X̄) = 0, a.s., (4.1.21)

i.e.,Xε converges almost surely tōX asε → 0. By [79], Xε also converges weakly
to X̄ asε → 0.

Next, we extend the finite-time approximation result in Lemma 4.1 to arbitrarily
long time intervals.

Theorem 4.1.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.3 and4.4.
Then

(i) for anyδ > 0,

lim
ε→0

inf{t ≥ 0 : |Xε
t − X̄t | > δ} = +∞, a.s.; (4.1.22)

(ii) there exists a function T(ε) : (0,ε0) → N such that for anyδ > 0,

lim
ε→0

P

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

= 0, (4.1.23)

where

lim
ε→0

T(ε) = +∞. (4.1.24)

This is an “approximation theorem” of stochastic averagingfor locally Lipschitz
systems: asε tends to zero, the solutions to the original and average systems will
remainδ -close for arbitrarily long time in the sense of both almost surely (4.1.22)
and in probability (4.1.23). Based on this result, we investigate the solution property
of the original system (4.1.1) under the stability of the average system (4.1.11).

Theorem 4.2.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.3 and4.4.
Then

(i) (Boundedness) if the solution of the average system (4.1.11) with initial con-
dition X̄0 = x is bounded, then the solution of system (4.1.1) with Xε

0 = x is
weakly bounded, more precisely, for any c> 0,

lim
ε→0

inf {t ≥ 0 : |Xε
t | > M +c} = +∞, a.s., (4.1.25)
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where M= sup
t≥0

|X̄t | < +∞.

(ii) (Attractivity) if the solution of the average system (4.1.11) with initial condition
X̄0 = x converges to x∗ ∈ Rn, i.e., lim

t→∞
X̄t = x∗, then for the system (4.1.1) with

Xε
0 = x, whose solution is Xεt , the point x∗ is weakly attractive, i.e., for any

δ > 0, there exists a constant Tδ > 0 such that the solution of system (4.1.1)
satisfies

lim
ε→0

inf {t ≥ Tδ : |Xε
t −x∗| > δ} = +∞, a.s. (4.1.26)

(iii) (Stability) if the equilibriumX̄t ≡ 0 of the average system (4.1.11) is stable,
then it is weakly stable under random perturbation R(·,Yt/ε ), i.e., for anyδ > 0,
there exists a constant rδ > 0 such that for any initial condition x∈ {x̌∈ Rn :
|x̌| < rδ}, the solution of system (4.1.1) satisfies

lim
ε→0

inf {t ≥ 0 : |Xε
t | > δ} = +∞, a.s. (4.1.27)

(iv) (Asymptotic stability) if the equilibrium̄Xt ≡ 0 of the average system (4.1.11)
is asymptotically stable, then it is weakly asymptoticallystable under random
perturbation R(·,Yt/ε ), i.e., for anyδ > 0, there exists a constant rδ > 0, such
that for any initial condition x∈ {x̌ ∈ Rn : |x̌| < rδ}, the solution of system
(4.1.1) satisfies

lim
ε→0

inf {t ≥ 0 : |Xε
t | > δ} = +∞, a.s., (4.1.28)

and moreover, for any0 < c < δ , there exists a constant Tc
δ > 0 such that

lim
ε→0

inf
{

t ≥ Tc
δ : |Xε

t | > c
}

= +∞, a.s. (4.1.29)

(v) (Exponential stability) if the equilibrium̄Xt ≡ 0 of the average system (4.1.11)
is exponentially stable, then it is weakly exponentially stable under random
perturbation R(·,Yt/ε ), i.e., there exist constants r> 0, c > 0 and γ > 0 such
that for any initial condition x∈ {x̌∈ Rn : |x̌|< r}, and anyδ > 0, the solution
of system (4.1.1) satisfies

lim
ε→0

inf
{
t ≥ 0 : |Xε

t | > c|x|e−γt + δ
}

= +∞, a.s. (4.1.30)
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Moreover, there exists a function T(ε) : (0,ε0) → N such that under the conditions
of (i)–(v), the respective results (4.1.25)–(4.1.30) can be replaced by

(i) the boundedness result

lim
ε→0

P

{

sup
0≤t≤T(ε)

|Xε
t | > M +c

}

= 0, (4.1.31)

(ii) the attractivity result

lim
ε→0

P

{

sup
Tδ≤t≤T(ε)

|Xε
t −x∗| > δ

}

= 0, (4.1.32)

(iii) the stability result

lim
ε→0

P

{

sup
0≤t≤T(ε)

|Xε
t | > δ

}

= 0, (4.1.33)

(iv) the asymptotic stability result

(4.1.33) and lim
ε→0

P

{

sup
Tc

δ ≤t≤T(ε)

|Xε
t | > c

}

= 0, (4.1.34)

(v) the exponential stability result

lim
ε→0

P

{

sup
0≤t≤T(ε)

{
|Xε

t |−c|x|e−γt}> δ

}

= 0. (4.1.35)

Furthermore, (4.1.35) is equivalent to

lim
ε→0

P
{
|Xε

t | ≤ c|x|e−γt + δ ,∀t ∈ [0,T(ε)]
}

= 1.

According to the approximation result (4.1.22), we obtain the almost sure stabil-
ities: (4.1.25)–(4.1.30) in Theorem 4.2, while by the approximation result (4.1.23),
we obtain the stabilities in probabilities: (4.1.31)–(4.1.35) in Theorem 4.2. It should
be pointed out that the two approximation results (4.1.22),(4.1.23) together with the
corresponding two kinds of stability results in Theorem 4.2are independent, but to
make the content more compact, we combine them in one theorem.
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The stability results in Theorem 4.2 are weaker than the stability in probability
results in Chapter 3, where stronger conditions, not satisfied in stochastic extremum
seeking applications, are imposed. Compared with other results on stochastic aver-
aging on the infinite time interval [21, 67, 70], we remove or weaken the following
restrictions: global Lipschitzness of the nonlinear vector field, equilibrium condi-
tion, global exponential stability of the average system, and compactness of the
state space of the perturbation process, but impose the assumption of the existence
and uniqueness of the solution of the original system.

4.2 Proofs of the General Theorems on Stochastic Averaging

4.2.1 Proof of Lemma 4.1

Fix T > 0, and denote

M′ = sup
0≤t≤T

|X̄t |. (4.2.36)

Since(X̄t , t ≥ 0) is continuous and[0,T] is a compact set, we have thatM′ < +∞.
DenoteM = M′ +1. For anyε ∈ (0,ε0), define a stopping timeτε by

τε = inf{t ≥ 0 : |Xε
t | > M}. (4.2.37)

By the definition ofM (noting that|x|= |X̄0| ≤ M′) and the continuity of the sample
path of(Xε

t , t ≥ 0), we know that 0< τε ≤ +∞, and ifτε < +∞, then

|Xε
τε | = M. (4.2.38)

From (4.1.1) and (4.1.11), we have that for anyt ≥ 0,

Xε
t − X̄t =

∫ t

0

[
a(Xε

s ,Ys/ε)− ā(X̄s)
]
ds

=

∫ t

0

[
a(Xε

s ,Ys/ε)−a
(
X̄s,Ys/ε

)]
ds+

∫ t

0

[
a
(
X̄s,Ys/ε

)
− ā(X̄s)

]
ds.

(4.2.39)

By Assumption 4.1, we obtain that for anys≤ τε ∧T,
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∣
∣a(Xε

s ,Ys/ε)−a
(
X̄s,Ys/ε

)∣
∣≤ kM|Xε

s − X̄s|, (4.2.40)

wherekM is the Lipschitz constant ofa(x,y) with respect to the compact subset
{x∈ R

n : |x| ≤ M} of R
n.

Thus by (4.2.39) and (4.2.40), we have that ift ≤ τε ∧T, then

|Xε
t − X̄t | ≤ kM

∫ t

0
|Xε

s − X̄s|ds+

∣
∣
∣
∣

∫ t

0

[
a
(
X̄s,Ys/ε

)
− ā(X̄s)

]
ds

∣
∣
∣
∣
. (4.2.41)

Define

∆ ε
t = |Xε

t − X̄t |, (4.2.42)

α(ε) = sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

[
a
(
X̄s,Ys/ε

)
− ā(X̄s)

]
ds

∣
∣
∣
∣
. (4.2.43)

Then by (4.2.41) and Gronwall’s inequality, we have

sup
0≤t≤τε∧T

∆ ε
t ≤ α(ε)ekM(τε∧T) ≤ α(ε)ekMT . (4.2.44)

Since (X̄t , t ≥ 0) is a deterministic continuous function, by Assumption 4.1 and
Birkhoff ergodic theorem (see e.g., Liptser and Shiryaev [87]), we have that

lim
ε→0

α(ε) = 0, a.s. (4.2.45)

For the reader’s convenience, we give the detailed proof of (4.2.45) in Section 4.2.6.
It follows from (4.2.42), (4.2.44) and (4.2.45) that

limsup
ε→0

sup
0≤t≤τε∧T

|Xε
t − X̄t | = 0, a.s. (4.2.46)

Thus by (4.2.36) and (4.3.130), we have

limsup
ε→0

sup
0≤t≤τε∧T

|Xε
t |

≤ limsup
ε→0

[

sup
0≤t≤τε∧T

|Xε
t − X̄t |+ sup

0≤t≤τε∧T
|X̄t |
]

≤ limsup
ε→0

sup
0≤t≤τε∧T

|Xε
t − X̄t |+M′

= M′ < M, a.s. (4.2.47)
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By (4.2.38) and (4.2.47), we obtain that for almost everyω ∈ Ω , there exists an
ε0(ω) > 0 such that for any 0< ε < ε0(ω),

τε (ω) > T. (4.2.48)

Thus by (4.3.130) and (4.3.131), we obtain that

limsup
ε→0

sup
0≤t≤T

|Xε
t − X̄t | = 0, a.s. (4.2.49)

Hence (4.1.18) holds. The proof is completed.

4.2.2 Proof of approximation result (4.1.22) of Theorem 4.1

Define

Ω ′ =

{

ω : limsup
ε→0

sup
0≤t≤T

|Xε
t (ω)− X̄t | = 0, ∀T ∈ N

}

. (4.2.50)

Then by Lemma 4.1, we have

P(Ω ′) = 1. (4.2.51)

Let δ > 0. Forε ∈ (0,ε0), define a stopping timeτδ
ε by

τδ
ε = inf{t ≥ 0 : |Xε

t − X̄t | > δ}. (4.2.52)

By the fact thatXε
0 − X̄0 = 0, and the continuity of the sample paths of(Xε

t ,t ≥ 0)

and(X̄t , t ≥ 0), we know that 0< τδ
ε ≤ +∞, and ifτδ

ε < +∞, then

|Xε
τδ

ε
− X̄τδ

ε
| = δ . (4.2.53)

For anyω ∈ Ω ′, by (4.3.134) and (4.3.138), we get that for anyT ∈ N, there exists
ε0(ω ,δ ,T) > 0 such that for any 0< ε < ε0(ω ,δ ,T),

τδ
ε (ω) > T, (4.2.54)

which implies that
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lim
ε→0

τδ
ε (ω) = +∞. (4.2.55)

Thus it follows from (4.3.135) and (4.3.139) that

lim
ε→0

τδ
ε = +∞, a.s. (4.2.56)

The proof is completed.

4.2.3 Preliminary lemmas for the proof of approximation result
(4.1.23) of Theorem 4.1

Lemma 4.2.Consider system (4.1.1) under Assumptions 4.1, 4.2, 4.3 and4.4. Then
for any δ > 0, 0 < δ̌ < 1, there exists a decreasing sequence{εT}T∈N of positive
real numbers satisfyingεT ↓ 0 as T→ ∞, such that

P





∞⋂

T=1

⋂

ε∈(0,εT ]

{

sup
0≤t≤T

|Xε
t − X̄t | ≤ δ

}


> 1− δ̌ , (4.2.57)

or equivalently,

P

{

sup
T∈N

sup
0<ε≤εT

sup
0≤t≤T

|Xε
t − X̄t | > δ

}

< δ̌ . (4.2.58)

Proof: Letτδ
ε be defined by (4.2.52). Since

{

lim
ε→0

τδ
ε = +∞

}

=
+∞⋂

T=1

⋃

ε̌∈(0,ε0)

⋂

ε∈(0,ε̌]

{

τδ
ε ≥ T

}

, (4.2.59)

by Theorem 4.1, we have

P





+∞
⋃

T=1

⋂

ε̌∈(0,ε0)

⋃

ε∈(0,ε̌]

{

τδ
ε < T

}



= 0. (4.2.60)
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We show that the set
⋃

ε∈(0,ε̌]

{
τδ

ε < T
}

is measurable. LetQ denote the set of all

rational numbers. Then by the definition ofτδ
ε , and the continuity ofXε

t andX̄t with
respect toε andt, we have

⋃

ε∈(0,ε̌]

{

τδ
ε < T

}

=
{

∃ ε ∈ (0, ε̌ ], s.t. τδ
ε < T

}

= {∃ ε ∈ (0, ε̌],∃ t ∈ [0,T), s.t. |Xε
t − X̄t | > δ}

= {∃ ε ∈ (0, ε̌]∩Q,∃ t ∈ [0,T)∩Q, s.t. |Xε
t − X̄t | > δ}

=
⋃

(0,ε̌]∩Q

⋃

[0,T)∩Q

{|Xε
t − X̄t | > δ}, (4.2.61)

which is measurable. Since the set
⋃

ε∈(0,ε̌]

{
τδ

ε < T
}

is increasing relative tǒε, we
have

⋂

ε̌∈(0,ε0)

⋃

ε∈(0,ε̌]

{

τδ
ε < T

}

=
⋂

ε̌∈(0,ε0)∩Q

⋃

ε∈(0,ε̌]

{

τδ
ε < T

}

, (4.2.62)

and hence the set
⋂

ε̌∈(0,ε0)

⋃

ε∈(0,ε̌]

{
τδ

ε < T
}

is also measurable. Thus by (4.2.60),
we obtain that for anyT ∈ N,

P




⋂

ε̌∈(0,ε0)

⋃

ε∈(0,ε̌]

{

τδ
ε < T

}



= 0, (4.2.63)

which implies that for anyT ∈ N,

lim
ε̌→0

P




⋃

ε∈(0,ε̌]

{

τδ
ε < T

}



= 0, (4.2.64)

and thus there existsεT ∈ (0,ε0) (without loss of generality, we assume thatεT

decreases to 0, asT → ∞) such that

P




⋃

ε∈(0,εT ]

{

τδ
ε < T

}



<
δ̌
2T . (4.2.65)
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Define

N =
+∞⋃

T=1

⋃

ε∈(0,εT ]

{

τδ
ε < T

}

. (4.2.66)

Then by (4.2.65), we have

P(N) < δ̌ , (4.2.67)

and thusP(Nc) > 1− δ̌ , where

Nc =
+∞⋂

T=1

⋂

ε∈(0,εT ]

{

τδ
ε ≥ T

}

. (4.2.68)

By the definition ofτδ
ε , we have

{

sup
0≤t≤T

|Xε
t − X̄t | ≤ δ

}

⊇
{

τδ
ε ≥ T

}

. (4.2.69)

Hence (4.2.57) holds. The proof is completed.

Lemma 4.3.Consider system (4.1.1) under Assumptions 4.1, 4.2, and 4.3. Then for
anyδ > 0, there exists a function Tδ (ε) : (0,ε0) → N such that

lim
ε→0

P

{

sup
0≤t≤Tδ (ε)

|Xε
t − X̄t | > δ

}

= 0, (4.2.70)

and

lim
ε→0

Tδ (ε) = +∞. (4.2.71)

Proof: Forδ > 0,0 < δ̌ < 1, we useεT

(

δ , δ̌
)

instead ofεT in Lemma 4.2. Now

fix δ > 0. For anyk = 2,3, . . ., by Lemma 4.2 we obtain a decreasing sequence
{εT

(
δ , 1

k

)
}T∈N of positive real numbers,εT

(
δ , 1

k

)
↓ 0 asT → ∞, such that

P






sup
T∈N

sup
0<ε≤εT(δ , 1

k)
sup

0≤t≤T
|Xε

t − X̄t | > δ






<

1
k
.
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(4.2.72)

By the proof of Lemma 4.2, we assume that for anyT ∈ N, εT
(
δ , 1

k

)
is a nonin-

creasing function ofk, and thus for anyk = 2,3, . . .,

0 < εk+1

(

δ ,
1

k+1

)

< εk

(

δ ,
1

k+1

)

≤ εk

(

δ ,
1
k

)

≤ εk

(

δ ,
1
2

)

.(4.2.73)

It follows from (4.2.73) and lim
k→+∞

εk
(
δ , 1

2

)
= 0 that

εk

(

δ ,
1
k

)

↓ 0, ask→ +∞. (4.2.74)

Now we define the desired functionTδ (ε) as follows:

Tδ (ε) :=

{
1, if ε ∈

(
ε2
(
δ , 1

2

)
,ε0
)
,

k, if ε ∈
(
εk+1

(
δ , 1

k+1

)
,εk
(
δ , 1

k

)]
, k = 2,3, · · · . (4.2.75)

Then for anyk = 2,3, . . ., by (4.2.72) and (4.2.75), we get that

sup
εk+1(δ , 1

k+1)<ε≤εk(δ , 1
k)

P

{

sup
0≤t≤Tδ (ε)

|Xε
t − X̄t | > δ

}

≤ 1
k
, (4.2.76)

and for j = k+1,k+2, . . ., we have

sup
ε j+1

(

δ , 1
j+1

)

<ε≤ε j

(

δ , 1
j

)
P

{

sup
0≤t≤Tδ (ε)

|Xε
t − X̄t | > δ

}

≤ 1
j

<
1
k
. (4.2.77)

By (4.2.74), (4.2.76) and (4.2.77), we get that for anyk = 2,3, . . .,

sup
0<ε≤εk(δ , 1

k)
P

{

sup
0≤t≤Tδ (ε)

|Xε
t − X̄t | > δ

}

≤ 1
k
, (4.2.78)

which implies (4.2.70). By (4.2.74) and (4.2.75), we obtain(4.2.71). The proof is
completed.
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4.2.4 Proof of approximation result (4.1.23) of Theorem 4.1

Fork = 1,2, . . ., by Lemma 4.3 there exists a functionT1
k
(ε) : (0,ε0) → N such that

lim
ε→0

P






sup

0≤t≤T1
k
(ε)

|Xε
t − X̄t | >

1
k






= 0, (4.2.79)

and

lim
ε→0

T1
k
(ε) = +∞. (4.2.80)

Without loss of generality, we assume that for anyk∈ N, we have

T 1
k+1

(ε) ≤ T1
k
(ε), ∀ε ∈ (0,ε0). (4.2.81)

In fact, we can replace the functionT 1
k+1

(ε) by T 1
k+1

(ε)∧T1
k
(ε). Let ε1 = 1. For

k = 2,3, . . ., define

εk := sup
{

ε ∈ (0,εk−1) : T1
k
(ε) = k

}

. (4.2.82)

Now we define the desired functionT(ε) : (0,ε0) → N as follows:

T(ε) =

{

T1(ε), if ε ∈
(
ε2∧ 1

2,ε0
)
,

T1
k
(ε), if ε ∈

(
εk+1∧ 1

k+1,εk∧ 1
k

]
, k = 2,3, . . . .

(4.2.83)

Since lim
k→∞

εk ∧ 1
k = 0, the functionT(ε) is defined on(0,ε0). By (4.2.82) and the

definition of T1
k
(ε)(k ∈ N) stated in the proof of Lemma 4.3 (T1

k
(ε) is increasing

whenε decreases to 0), we have that for any 0< ε ≤ εk∧ 1
k ,

T(ε) ≥ k, (4.2.84)

and thus (4.1.24) holds.
Next, we prove (4.1.23). For anyδ > 0, takeǩ ∈ N such that1

ǩ
≤ δ . Then for

j = ǩ, ǩ+1, ǩ+2, . . ., by (4.2.81) and (4.2.83), we get that
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sup
ε∈
(

ε j+1∧ 1
j+1 ,ε j∧ 1

j

]
P

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

= sup
ε∈
(

ε j+1∧ 1
j+1 ,ε j∧ 1

j

]
P







sup
0≤t≤T1

j
(ε)

|Xε
t − X̄t | > δ







≤ sup
ε∈
(

ε j+1∧ 1
j+1 ,ε j∧ 1

j

]
P







sup
0≤t≤T1

ǩ
(ε)

|Xε
t − X̄t | > δ







≤ sup
ε∈
(

ε j+1∧ 1
j+1 ,ε j∧ 1

j

]
P







sup
0≤t≤T1

ǩ
(ε)

|Xε
t − X̄t | >

1

ǩ







≤ sup
ε∈
(

0,ε j∧ 1
j

]
P







sup
0≤t≤T1

ǩ
(ε)

|Xε
t − X̄t | >

1

ǩ







,

(4.2.85)

and thus for anyl = j +1, j +2, . . .,

sup
ε∈(εl+1∧ 1

l+1 ,εl∧ 1
l ]

P

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

≤ sup
ε∈(0,εl∧ 1

l ]
P







sup
0≤t≤T1

ǩ
(ε)

|Xε
t − X̄t | >

1

ǩ







≤ sup
ε∈
(

0,ε j∧ 1
j

]
P







sup
0≤t≤T1

ǩ
(ε)

|Xε
t − X̄t | >

1

ǩ







, (4.2.86)

where in the second inequality of (4.2.86), we use the fact that εl ∧ 1
l ≤ ε j ∧ 1

j for

anyl = j +1, j +2, . . .. Hence by (4.2.85), (4.2.86) and the fact that lim
k→∞

εk∧ 1
k = 0,

we obtain that forj = ǩ, ǩ+1, ǩ+2, . . .,
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sup
ε∈
(

0,ε j∧ 1
j

]
P

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

≤ sup
ε∈
(

0,ε j∧ 1
j

]
P







sup
0≤t≤T1

ǩ
(ε)

|Xε
t − X̄t | >

1

ǩ







. (4.2.87)

By the fact that lim
k→∞

εk∧ 1
k = 0, (4.2.79) and (4.2.87), we obtain that for anyδ > 0,

lim
ε→0

P

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

= 0. (4.2.88)

The proof is completed.

4.2.5 Proof of Theorem 4.2

(i) We prove boundedness. Notice thatM = supt≥0 |Xt | and

{|Xε
t | > M +c} ⊆ {|Xε

t − X̄t | > c}. (4.2.89)

Then by the continuity of the sample path of(Xε
t ,t ≥ 0) (we don’t mention this fact

in the following proofs again), we have

inf{t ≥ 0 : |Xε
t | > M +c} ≥ inf{t ≥ 0 : |Xε

t − X̄t | > c}. (4.2.90)

Thus by Theorem 4.1, (4.1.25) holds.
(ii) We prove attractivity. Since lim

t→∞
X̄t = x∗, we have

lim
t→∞

|X̄t −x∗| = 0, (4.2.91)

and thus for anyδ > 0, there exists a constantTδ > 0 such that

sup
t≥Tδ

|X̄t −x∗| < δ
2

, (4.2.92)

by which, we obtain that for anyt ≥ Tδ ,
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{|Xε
t −x∗| > δ} = {|(Xε

t − X̄t)+ (X̄t −x∗)| > δ} ⊆
{

|Xε
t − X̄t | >

δ
2

}

,(4.2.93)

and thus

inf {t ≥ Tδ : |Xε
t −x∗| > δ}] ≥ inf

{

t ≥ Tδ : |Xε
t − X̄t | >

δ
2

}

≥ inf

{

t ≥ 0 : |Xε
t − X̄t | >

δ
2

}

, (4.2.94)

which together with Theorem 4.1 implies (4.1.26).
(iii) We prove stability. If X̄t ≡ 0 ∈ Rn is a stable equilibrium of the average

system (4.1.11), then for anyδ > 0, there exists a constantrδ > 0 such that

|X̄0| < rδ ⇒ sup
t≥0

|X̄t | <
δ
2

, (4.2.95)

which together with Theorem 4.1, implies that for|x| < rδ ,

lim
ε→0

inf {t ≥ 0 : |Xε
t | > δ}

= lim
ε→0

inf {t ≥ 0 : |(Xε
t − X̄t)+ X̄t | > δ}

≥ lim
ε→0

inf

{

t ≥ 0 : |Xε
t − X̄t | >

δ
2

}

= +∞, a.s. (4.2.96)

Hence (4.1.27) holds.
(iv) For asymptotic stability, the proof follows directly from (ii) and (iii) above.
(v) We prove exponential stability. Since the equilibrium̄Xt = 0 of the average

system is exponentially stable, there exist constantsr > 0,c > 0,γ > 0 such that for
any|x| < r,

|X̄t | < c|x|e−γt , ∀t > 0. (4.2.97)

Thus for anyδ > 0, we have

{
|Xε

t | > c|x|e−γt + δ
}
⊆ {|Xε

t − X̄t | > δ} , (4.2.98)

which together with Theorem 4.1 implies that
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lim
ε→0

inf{t ≥ 0 : |Xε
t | > c|x|e−γt + δ} ≥ lim

ε→0
inf{t ≥ 0 : |Xε

t − X̄t | > δ} = +∞, a.s.

(4.2.99)
Hence (4.1.30) holds.

Let the functionT(ε) be defined in Theorem 4.1. Thus lim
ε→0

T(ε) = +∞. For the

stability results (4.1.31)–(4.1.35) with respect to the approximation result (4.1.23),
we only prove (4.1.35). The proofs for (4.1.31)–(4.1.34) are similar.

Since the equilibrium̄Xt = 0 of the average system is exponentially stable, there
exist constantsr > 0,c > 0,γ > 0 such that for any|x| < r,

|X̄t | < c|x|e−γt , ∀t > 0. (4.2.100)

Thus for anyδ > 0, we have that for any|x| < r,
{

sup
0≤t≤T(ε)

{
|Xε

t |−c|x|e−γt}> δ

}

=
⋃

0≤t≤T(ε)

{
|Xε

t |−c|x|e−γt > δ
}

⊆
⋃

0≤t≤T(ε)

{|Xε
t − X̄t | > δ}

=

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

, (4.2.101)

which together with result (4.1.23) of Theorem 4.1 gives that

limsup
ε→0

P

{

sup
0≤t≤T(ε)

{
|Xε

t |−c|x|e−γt}> δ

}

≤ lim
ε→0

P

{

sup
0≤t≤T(ε)

|Xε
t − X̄t | > δ

}

= 0. (4.2.102)

Hence (4.1.35) holds. The whole proof is completed.

4.2.6 Proof of (4.2.45)

We give a detailed proof of (4.2.45), i.e.,
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lim
ε→0

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄s,Ys/ε

)
− ā(X̄s)

)
ds

∣
∣
∣
∣
= 0, a.s. (4.2.103)

Proof: We follow the proof of Theorem 5 of Chapter 3 of [130] for the globally
Lipschitz case. Notice that

M′ = sup
0≤t≤T

|X̄t |, M = M′ +1, (4.2.104)

andkM is the Lipschitz constant ofa(x,y) with respect to the compact subsetDM :=
{x ∈ Rn : |x| ≤ M} of Rn, i.e., for anyx, x̌ ∈ DM and anyy ∈ SY (see Assumption
4.1),

|a(x,y)−a(x̌,y)| ≤ kM|x− x̌|. (4.2.105)

Then by (4.1.12) and (4.2.105), we have that for anyx, x̌∈ DM,

|ā(x)− ā(x̌)| ≤ kM|x− x̌|. (4.2.106)

For anyn∈ N, define a function̄Xn
s ,s≥ 0, by

X̄n
s =

∞

∑
k=0

X̄k
n
I{ k

n≤s< k+1
n }. (4.2.107)

Then for anyn∈ N, we have

sup
0≤s≤T

|X̄n
s | ≤ sup

0≤s≤T
|X̄s| ≤ M′ < M. (4.2.108)

By (4.2.105)–(4.2.108), we obtain that

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄s,Ys/ε

)
− ā(X̄s)

)
ds

∣
∣
∣
∣

= sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

[(
a
(
X̄s,Ys/ε

)
−a
(
X̄n

s ,Ys/ε
))

+
(
a
(
X̄n

s ,Ys/ε
)
− ā(X̄n

s )
)
+(ā(X̄n

s )− ā(X̄s))
]
ds

∣
∣
∣
∣

≤ sup
0≤t≤T

∫ t

0

∣
∣a
(
X̄s,Ys/ε

)
−a
(
X̄n

s ,Ys/ε
)∣
∣ds
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+ sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄n

s ,Ys/ε
)
− ā(X̄n

s )
)

ds

∣
∣
∣
∣

+ sup
0≤t≤T

∫ t

0
|ā(X̄n

s )− ā(X̄s)|ds

≤ 2kMT sup
0≤s≤T

|X̄s− X̄n
s |+ sup

0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄n

s ,Ys/ε
)
− ā(X̄n

s )
)

ds

∣
∣
∣
∣
.(4.2.109)

Next, we focus on the second term on the right-hand side of (4.2.109). We have

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄n

s ,Ys/ε
)
− ā(X̄n

s )
)

ds

∣
∣
∣
∣

= sup
0≤t≤T

∣
∣
∣
∣
∣

∫ t

0

(
a
(
X̄n

s ,Ys/ε
)
− ā(X̄n

s )
) ∞

∑
k=0

I{ k
n≤s< k+1

n }ds

∣
∣
∣
∣
∣

= sup
0≤t≤T

∣
∣
∣
∣
∣

∫ t

0

∞

∑
k=0

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

I{ k
n≤s< k+1

n }ds

∣
∣
∣
∣
∣

= sup
0≤t≤T

∣
∣
∣
∣
∣

n([t]+1)

∑
k=0

∫ t

0

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

I{ k
n≤s< k+1

n }ds

∣
∣
∣
∣
∣

= sup
0≤t≤T

∣
∣
∣
∣
∣

n([t]+1)

∑
k=0

∫ k+1
n ∧t

k
n∧t

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
∣

≤ sup
0≤t≤T

n([t]+1)

∑
k=0

∣
∣
∣
∣
∣

∫ k+1
n ∧t

k
n∧t

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
∣
, (4.2.110)

where[t] is the largest integer not greater thant. For fixedn andk with k≤ n([T]+
1), we have

sup
0≤t≤T

∣
∣
∣
∣
∣

∫ k+1
n ∧t

k
n∧t

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
∣

≤ sup
0≤t≤T

(∣
∣
∣
∣
∣

∫ k+1
n ∧t

0

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

∫ k
n∧t

0

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
∣

)

≤ 2 sup
0≤t≤ k+1

n

∣
∣
∣
∣

∫ t

0

(

a
(

X̄k
n
,Ys/ε

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
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= 2 sup
0≤t≤ k+1

n

ε
∣
∣
∣
∣

∫ t
ε

0

(

a
(

X̄k
n
,Ys

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
. (4.2.111)

Then by the Birkhoff ergodic theorem and [88, Problem 5.3.2], we obtain that

lim
ε→0

sup
0≤t≤ k+1

n

ε
∣
∣
∣
∣

∫ t
ε

0

(

a
(

X̄k
n
,Ys

)

− ā
(

X̄k
n

))

ds

∣
∣
∣
∣
= 0, a.s., (4.2.112)

which together with (4.2.110) and (4.2.111) gives that for any n∈ N,

lim
ε→0

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄n

s ,Ys/ε
)
− ā(X̄n

s )
)

ds

∣
∣
∣
∣
= 0, a.s. (4.2.113)

Thus by (4.2.109), (4.2.113), and

lim
n→∞

sup
0≤s≤T

|X̄s− X̄n
s | = 0, (4.2.114)

we obtain that

lim
ε→0

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

(
a
(
X̄s,Ys/ε

)
− ā(X̄s)

)
ds

∣
∣
∣
∣
= 0, a.s. (4.2.115)

The proof is completed.

4.3 Discussions of the Existence of Solution

In Section 4.1.2, to obtain the general stochastic averaging theorems, the existence
of the solution of the original system is assumed. But in fact, owing to the close
relationship of the original system and its average system,this condition can be
removed when the solution of the average system has some goodproperty.

Now, we consider a weaker condition on the original system (4.1.1):

Assumption 4.5.The vector fielda(x,y) is a continuous function of(x,y), and for
any x ∈ D, it is a bounded function ofy. Furthermore,a(x,y) satisfies the locally
Lipschitz condition inx∈ D uniformly in y∈ SY, i.e., for any compact subsetD0 ⊂
D, there is a constantkD0 such that for allx′,x′′ ∈ D0 and all y ∈ SY, |a(x′,y)−
a(x′′,y)| ≤ kD0 |x′−x′′|.
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Before presenting the main results, we give two lemmas. To this end, for any
point x′ ∈ D, we define byd(x′,∂D) the distance betweenx′ and the boundary∂D
of the domainD, i.e.,

d(x′,∂D) = inf{|x′−y| : y∈ ∂D}. (4.3.116)

By conventiond(x′, /0) = ∞. SinceD is a domain, for anyx′ ∈ D, we have that
d(x′,∂D) > 0. If A is a subset ofD, we define byd(A,∂D) the distance betweenA
and∂D as follows:

d(A,∂D) = inf
x′∈A

d(x′,∂D) = inf{|x′−y| : x′ ∈ A,y∈ ∂y}. (4.3.117)

Throughout this section, we assume thatx∈ D, wherex is the initial value of sys-
tem (4.1.1). System (4.1.1) is a stochastic ordinary differential equation (stochastic
ODE), and its solution can be defined for each sample path of the perturbation pro-
cess(Yt/ε : t ≥ 0). If system (4.1.1) satisfies Assumptions 4.5, then for any compact
subsetD0 ⊂ D and the constantkD0 stated in Assumptions 4.5, it holds that for any
ω ∈ Ω , anyt ≥ 0, anyε ∈ (0,ε0), and allx′,x′′ ∈ D0,

∣
∣a(x′,Yt/ε (ω)−a(x′′,Yt/ε (ω))

∣
∣≤ kD0|x′−x′′|. (4.3.118)

Thus by the theorem on local existence and uniqueness of solutions of nonlinear
systems (see, e.g., Theorem 3.1 of [58]), for anyε ∈ (0,ε0) and anyω ∈ Ω , system
(4.1.1) has a unique solutionXε

t (ω) with the life time lε(ω) > 0, wherelε (ω) =
inf {t ≥ 0 : Xε

t (ω) ∈ ∂D} . For t > lε(ω), we defineXε
t (ω) = Xε

lε (ω)(ω), i.e., as
soon as the solution reaches the boundary of the domainD, we fix it and maintain it
at that constant value thereafter.

Lemma 4.4.Consider system (4.1.1) under Assumptions 4.5 and 4.2. If d({X̄t ,t ≥
0},∂D) > 0, then for any T> 0, we have that

lim
ε→0

sup
0≤t≤T

|Xε
t − X̄t | = 0, a.s. (4.3.119)

Proof. Fix T > 0 and define

AT = {|X̄t | : 0≤ t ≤ T}. (4.3.120)

Then by the assumption thatd({X̄t ,t ≥ 0},∂D) > 0, we have that
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δT := d(AT ,∂D) > 0. (4.3.121)

For anyε ∈ (0,ε0), define a stopping timeτε by

τε = inf

{

t ≥ 0 : |Xε
t − X̄t | >

δT

2

}

. (4.3.122)

Notice thatXε
0 = X̄0 = x. Then by the continuity of the sample paths of(Xε

t ,t ≥ 0)
and(X̄t , t ≥ 0), we know that 0< τε ≤ lε , and ifτε < +∞, then

|Xε
τε − X̄τε | = δT

2
. (4.3.123)

Thusd(Xε
τε ,∂D) ≥ δT

2 > 0, and so in this caseτε < lε .
From (4.1.1) and (4.1.11), we have that for any 0≤ t < lε ,

Xε
t − X̄t =

∫ t

0

[
a(Xε

s ,Ys/ε)−a
(
X̄s,Ys/ε

)]
ds

+

∫ t

0

[
a
(
X̄s,Ys/ε

)
− ā(X̄s)

]
ds. (4.3.124)

SinceX̄t is continuous,AT is a compact subset ofD. Further, by the assumption that

d({X̄t , t ≥ 0},∂D) > 0, we know that the setDT :=
{

x′ ∈ D : d(x′,AT) ≤ δT
2

}

is a

compact subset ofD. Then by Assumption 4.5, we obtain that for any 0≤ s≤ τε ∧T,
∣
∣a(Xε

s ,Ys/ε)−a
(
X̄s,Ys/ε

)∣
∣≤ kT |Xε

s − X̄s|, (4.3.125)

wherekT is the Lipschitz constant ofa(x,y) with respect to the compact subsetDT

of D. Thus by (4.3.124) and (4.3.125), we have that if 0≤ t ≤ τε ∧T, then

|Xε
t − X̄t | ≤ kT

∫ t

0
|Xε

s − X̄s|ds+

∣
∣
∣
∣

∫ t

0

[
a
(
X̄s,Ys/ε

)
− ā(X̄s)

]
ds

∣
∣
∣
∣
. (4.3.126)

Define

∆ ε
t = |Xε

t − X̄t |, (4.3.127)

α(ε) = sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

[
a
(
X̄s,Ys/ε

)
− ā(X̄s)

]
ds

∣
∣
∣
∣
.

Then by (4.3.126) and Gronwall’s inequality, we have
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sup
0≤t≤τε∧T

∆ ε
t ≤ α(ε)ekT (τε∧T) ≤ α(ε)ekT T . (4.3.128)

Since(X̄t , t ≥ 0) is a deterministic continuous function, by Assumption 4.2 and the
Birkhoff ergodic theorem (see e.g., Chapter 1 of [130]), we have that

lim
ε→0

α(ε) = 0, a.s. (4.3.129)

It follows from (4.3.127), (4.3.128) and (4.3.129) that

limsup
ε→0

sup
0≤t≤τε∧T

|Xε
t − X̄t | = 0, a.s. (4.3.130)

By (4.3.123) and (4.3.130), we obtain that for a.e.ω ∈ Ω , there existsε0(ω) > 0
such that for any 0< ε < ε0(ω),

τε (ω) > T. (4.3.131)

Thus by (4.3.130) and (4.3.131), we obtain that

limsup
ε→0

sup
0≤t≤T

|Xε
t − X̄t | = 0, a.s. (4.3.132)

Hence (4.3.119) holds. The proof is completed.

Lemma 4.5.Consider system (4.1.1) under Assumptions 4.5 and 4.2. If d({X̄t ,t ≥
0},∂D) > 0, then for anyδ > 0, we have

lim
ε→0

inf{t ≥ 0 : |Xε
t − X̄t | > δ} = +∞, a.s. (4.3.133)

Proof. Define

Ω ′ =

{

ω : limsup
ε→0

sup
0≤t≤T

|Xε
t (ω)− X̄t | = 0, ∀T ∈ N

}

. (4.3.134)

Then by Lemma 4.1, we have

P(Ω ′) = 1. (4.3.135)

Let δ > 0. Without loss of generality, we can assume thatδ < 1
2d({X̄t ,t ≥ 0},∂D)

since if 0< a < b, we have
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inf{t ≥ 0 : |Xε
t − X̄t | > b} ≥ inf{t ≥ 0 : |Xε

t − X̄t | > a}. (4.3.136)

For ε ∈ (0,ε0), define a stopping timeτδ
ε by

τδ
ε = inf{t ≥ 0 : |Xε

t − X̄t | > δ}. (4.3.137)

By the fact thatXε
0 − X̄0 = 0, and the continuity of the sample paths of(Xε

t ,t ≥ 0)

and(X̄t , t ≥ 0), we know that 0< τδ
ε ≤ +∞, and ifτδ

ε < +∞, then

|Xε
τδ

ε
− X̄τδ

ε
| = δ . (4.3.138)

For anyω ∈ Ω ′, by (4.3.134), (4.3.138) andδ < 1
2d({X̄t ,t ≥ 0},∂D), we get that

for anyT ∈ N, there existsε0(ω ,δ ,T) > 0 such that for any 0< ε < ε0(ω ,δ ,T),
τδ

ε (ω) > T, which implies that

lim
ε→0

τδ
ε (ω) = +∞. (4.3.139)

Thus it follows from (4.3.135) and (4.3.139) that limε→0 τδ
ε = +∞, a.s. This com-

pletes the proof.

Now, by Lemmas 4.4 and 4.5, following the corresponding proofs in Section 4.2,
we obtain the following two theorems.

Theorem 4.5.Consider system (4.1.1) under Assumptions 4.5 and 4.2. Thenif the
equilibriumX̄t ≡ x̄∈ D of the average system (4.1.11) is exponentially stable, then
there exist constants r> 0, c > 0 and γ > 0 such that for any initial condition
x∈ {x′ ∈ D : |x′− x̄| < r}, and anyδ > 0, the solution of system (4.1.1) satisfies

lim
ε→0

inf
{

t ≥ 0 : |Xε
t − x̄| > c|x|e−γt + δ

}
= +∞, a.s. (4.3.140)

Theorem 4.6.Consider system (4.1.1) under Assumptions 4.5 and 4.2. If the equi-
librium X̄t ≡ x̄∈ D of the average system (4.1.11) is exponentially stable, then there
exist constants r> 0, c > 0, γ > 0 and a function T(ε) : (0,ε0) → N such that for
any initial condition x∈ {x′ ∈ D : |x′− x̄| < r}, and anyδ > 0,

lim
ε→0

P

{

sup
0≤t≤T(ε)

{
|Xε

t − x̄|−c|x|e−γt}> δ

}

= 0, (4.3.141)

or equivalently,
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lim
ε→0

P
{
|Xε

t − x̄| ≤ c|x|e−γt + δ ,∀t ∈ [0,T(ε)]
}

= 1 (4.3.142)

with lim
ε→0

T(ε) = +∞.

4.4 Notes and References

In this chapter, which is based on our results in [91], we establish stability proper-
ties for stochastically perturbed differential equationsusing the averaging approach.
We remove the following restrictions in previous results: (a) the average system or
approximating diffusion system is globally exponentiallystable; (b) the nonlinear
vector field of the original system has bounded derivative oris dominated by some
forms of Lyapunov function of the average system; (c) the nonlinear vector field
of the original system vanishes at the origin for any value ofperturbation process
(equilibrium condition); and (d) the state space of the perturbation process is a com-
pact space. The theorems developed in this chapter allow us to design stochastic
extremum seeking results and to study their stability properties.





Chapter 5
Single-parameter Stochastic Extremum Seeking

The goal of extremum seeking is to find the optimizing input toan unknown operat-
ing map that has at least a local extremum. In addition to static operating maps, dy-
namic input-output maps are also allowable, provided the dynamics are sufficiently
fast, or provided extremum seeking is tuned to operate slowly enough relative to the
time constants of the dynamics.

Extremum seeking has traditionally been developed as a deterministic approach,
employing sinusoidal perturbations for estimating the map’s unknown gradient. For
a brief historical account of deterministic extremum seeking, the reader is referred
to [74] and to the Preface and Chapter 1 of [6].

Extremum seeking is easier to understand for single-input problems than for
multivariable problems. For this reason, we start our presentation of stochastic ex-
tremum seeking in this chapter by considering single-inputproblems.

The simplest version of deterministic extremum seeking employs an additive si-
nusoidal perturbation at the input of an unknown map and generates an estimate of
the unknown derivative of the map by multiplying the measured output of the map
with the same sinusoid that is applied additively at the input. Though it is not obvi-
ous that this set of operations generates an estimate of the unknown slope of the map,
an elementary analysis, under the assumption that the amplitude of the sinusoid is
small, shows that, on the average (over the period of the sinusoidal perturbation),
the estimate of the map’s slope, generated in the manner described above, closely
approximates the actual slope of the unknown map. By feedingthe estimate of the
map’s slope into an integrator, the output of the integratorserves as the estimate
of the optimizing input into the map, and the integrator’s output converges, on the
average, to the actual optimizing input of the unknown map.

89
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This book proposes algorithms for stochastic extremum seeking in which the
principal change is the replacement of the sinusoidal perturbation by a random noise
input. The specific noise input that we employ is the white noise passed through
a low pass filter with a high cutoff frequency. Such a signal isoften called the
Ornstein-Uhlenbeck (OU) process. Sometimes it is simply referred to as “colored
noise.” The key properties that the OU process has in common with the sinusoid
is that its mean, defined in an appropriate sense, is zero, whereas the mean of its
square is positive.

For technical reasons (the OU process being unbounded and the unknown map
having a nonlinear dependence on the perturbation signal),we actually cannot sim-
ply apply the OU signal as a perturbation, but we must pass this signal through a
bounded nonlinearity which has a zero value and a positive slope at zero. For ex-
ample, a saturation function or a sine nonlinearity can be applied to the OU process
before it is injected as an additive perturbation in the extremum seeking algorithm.
The sine nonlinearity is particularly convenient in the analysis because it facilitates
the calculation of certain averaging integrals. The periodicity of the sine function,
as a function dependent on the OU signal as its argument, is ofno particular sig-
nificance in the extremum seeking algorithm except that it yields explicit formulae
in the averaging calculations, which in turn yield explicitconvergence rates for the
extremum seeking algorithms.

Hence, the difference between deterministic and stochastic extremum seeking is
not conceptually substantial. The algorithm structures are the same and the pertur-
bation signals in both cases are zero in the mean, whereas their squares are positive
in the mean. The main difference is in the operation of the twoalgorithms, where
the deterministic algorithm has a predictable, nearly periodic evolution of the input
and output, whereas the stochastic algorithm generates inputs and outputs that, to an
untrained eye, appear completely random. In certain applications, this randomness
offers an advantage.

As in deterministic extremum seeking, certain filters and other modifications can
be introduced in the stochastic extremum seeking algorithms, as well illustrate in
this and other chapters of this book. Stochastic extremum has several features in
common with the methods of stochastic approximation, whichare covered in detail
in the books [80] and [132] and the references therein. Both methods deal with opti-
mization of unknown maps and employ stochastic perturbations. The key difference
is that stochastic extremum seeking, as formulated and analyzed in this book, per-
mits the incorporation of the search and optimization algorithms in continuous-time
dynamic processes, as illustrated in this book through mobile robotic vehicles. Our
stochastic extremum seeking algorithms operate simultaneously with the dynamic
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systems to which they are applied and the overall convergence rates are determined
for the coupled systems consisting of the search algorithm and the plant being con-
trolled, using the averaging and stability theorems that wedevelop in Chapter 4.

This chapter has two major sections. In Section 5.1 we develop stochastic ex-
tremum seeking for the case of a static single-parameter (single-input) map. Since
this is the reader’s first encounter with extremum seeking, we develop slowly all the
details of the stability analysis for our algorithm, based on the stability results in
Chapter 4, and illustrate the algorithms with a numerical example. In Section 5.2
we extend the analysis to the case of a system that contains dynamics and whose
operating map is the equilibrium map of those dynamics.

5.1 Extremum Seeking for a Static Map

Consider the quadratic function

ϕ(θ ) = ϕ∗ +
ϕ ′′

2
(θ −θ ∗)2 , (5.1.1)

whereθ ∗, ϕ∗, andϕ ′′ are unknown. AnyC2 function ϕ(θ ) with an extremum at
θ = θ ∗ and withϕ ′′ 6= 0 can be locally approximated by (5.1.1). Without loss of
generality, we assume thatϕ ′′ > 0. In this section, we design an algorithm to make
θ − θ ∗ as small as possible, so that the outputy = ϕ(θ ) is driven to its minimum
ϕ∗.

Denoteθ̂ (t) as the estimate of the unknown optimal inputθ ∗. Let

θ̃ (t) = θ ∗− θ̂(t) (5.1.2)

denote the estimation error. Instead of the deterministic periodic perturbation [6],
here we use a stochastic perturbation to develop a gradient estimate. Let

θ (t) = θ̂ (t)+asin(η(t)), (5.1.3)

wherea > 0 and(η(t), t ≥ 0) is a stochastic process satisfying

η =

√
εq

εs+1
[Ẇ], or εdη = −ηdt+

√
εqdW, (5.1.4)
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whereq > 0, W(t), t ≥ 0 is a 1-dimensional standard Brownian motion defined on

some complete probability space(Ω ,F ,P) and
√

εq
εs+1[Ẇ] denotes a time domain

signal obtained as the output of the transfer function
√

εq
εs+1 when the input isẆ(t).

Thus, by (5.1.2) and (5.1.3), we have

θ −θ ∗ = asin(η)− θ̃ . (5.1.5)

Substituting (5.1.5) into (5.1.1), we have the output

y = ϕ∗ +
ϕ ′′

2
(asin(η)− θ̃)2. (5.1.6)

Now, similar to the deterministic case [6], we design the parameter update law as
follows

dθ̂
dt

= −ksin(η)(y− ζ ), (5.1.7)

dζ
dt

= −hζ +hy, (5.1.8)

εdη = −ηdt+
√

εqdW, (5.1.9)

wherek > 0,h > 0 are scalar design parameters.
From (5.1.9), we have

η(t) = η(0)−
∫ t

0

1
ε

η(s)ds+
∫ t

0

q√
ε

dW(s). (5.1.10)

Thus it holds that

η(εt) = η(0)−
∫ εt

0

1
ε

η(s)ds+
∫ εt

0

q√
ε

dW(s)

= η(0)−
∫ t

0
η(εu)du+

∫ t

0

q√
ε

dW(εu). (5.1.11)

Defineχ(t) = η(εt) andB(t) = 1√
ε W(εt). Then we have

dχ(t) = −χ(t)dt+qdB(t), (5.1.12)

whereB(t) is a 1-dimensional standard Brownian motion.
Define the output error variable



5.1 Extremum Seeking for a Static Map 93

e=
h

s+h
[y]−ϕ∗. (5.1.13)

Then we have the following error dynamics

dθ̃ ε

dt
= − ˙̂θ = ksin(χ(t/ε))

(
ϕ ′′

2
(asin(χ(t/ε))− θ̃ ε)2−eε

)

, (5.1.14)

deε

dt
= h

(
ϕ ′′

2
(asin(χ(t/ε))− θ̃ ε)2−eε

)

. (5.1.15)

Now we calculate the average system. From Section 4.1.1, we known that the
stochastic process(χ(t), t ≥ 0) (OU process) is ergodic and has invariant distribu-
tion

µ(dx) =
1√
πq

e
− x2

q2 dx. (5.1.16)

Notice thate
− x2

q2 is an even function and

∫ +∞

−∞
cos(2xt)e−bt2dt =

√
π
b

e−
x2
b , (5.1.17)

wherex,b are parameters. Thus we have

∫

R

sin2k+1(x)µ(dx) =
∫ +∞

−∞
sin2k+1(x)

1√
πq

e
− x2

q2 dx= 0, k = 0,1, . . . ,(5.1.18)

∫

R

sin2(x)µ(dx) =

∫ +∞

−∞
sin2(x)

1√
πq

e
− x2

q2 dx=
1
2
(1−e−q2

). (5.1.19)

Therefore, by (4.1.12), we obtain that the average system of(5.1.14)–(5.1.15) is

dθ̃ ave

dt
= −kϕ ′′a

2
(1−e−q2

)θ̃ ave, (5.1.20)

deave

dt
= h

(
ϕ ′′a2

4
(1−e−q2

)+
ϕ ′′

2
θ̃ ave2 −eave

)

. (5.1.21)

By simple calculation, we get the following equilibrium of the above average system

θ̃ a,e = 0, ea,e =
a2ϕ ′′

4
(1−e−q2

) (5.1.22)
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Fig. 5.1 Stochastic extremum seeking scheme for a static map.

with the corresponding Jacobian matrix

[

− kϕ ′′a
2 (1−e−q2

) 0
0 −h

]

. (5.1.23)

Noticing thatϕ ′′ > 0, k > 0, a > 0, andh > 0, we know that the above Jacobian

is Hurwitz, i.e., the equilibrium
(

0, a2ϕ ′′
4 (1−e−q2

)
)

of the average system is expo-

nentially stable.
According to Theorems 4.5 and 4.6 for the stochastic extremum seeking algo-

rithm in Figure 5.1, we have the following result.

Theorem 5.1.Consider the static map (5.1.1) under the parameter update law
(5.1.7)–(5.1.9). Then there exist constants r> 0,c > 0,γ > 0 and a function T(ε) :
(0,ε0) → N such that for any initial condition|Λ ε(0)| < r and anyδ > 0,

lim
ε→0

inf
{

t ≥ 0 : |Λ ε (t)| > c|Λ ε(0)|e−γt + δ
}

= ∞, a.s. (5.1.24)

and

lim
ε→0

P
{
|Λ ε(t)| ≤ c|Λ ε(0)|e−γt + δ , ∀t ∈ [0,T(ε)]

}
= 1 with lim

ε→0
T(ε) = ∞,

(5.1.25)
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whereΛ ε(t) , (θ̃ ε(t),eε(t))−
(

0, a2ϕ ′′
4 (1−e−q2

)
)

.

These two results imply that the norm of the error vectorΛ ε (t) exponentially
converges, both almost surely and in probability, to below an arbitrarily small resid-
ual valueδ , over an arbitrarily long time interval, which tends to infinity asε goes to
zero. In particular, thẽθ ε(t)-component of the error vector converges to belowδ . To
quantify the output convergence to the extremum, for anyε > 0, define a stopping
time

τδ
ε = inf

{
t ≥ 0 : |Λ ε(t)| > c|Λ ε(0)|e−γt + δ

}
. (5.1.26)

Then by (5.1.24) and the definition ofΛ ε(t), we know that lim
ε→0

τδ
ε = ∞, a.s., and

∣
∣θ̃ ε(t)

∣
∣≤ c|Λ ε(0)|e−γt + δ , ∀t ≤ τδ

ε . (5.1.27)

Sincey(t) = ϕ(θ ∗ + θ̃ ε(t)+asin(η(t))) andϕ ′
(θ ∗) = 0, we have

y(t)−ϕ(θ ∗) =
ϕ ′′

(θ ∗)
2

(θ̃ ε(t)+asin(η(t)))2 +O
(
(θ̃ ε(t)+asin(η(t)))3) .

(5.1.28)

Thus by (5.1.27), it holds that

|y(t)−ϕ(θ ∗)| ≤ O(a2)+O(δ 2)+C|Λ ε(0)|2 e−2γt , ∀t ≤ τδ
ε , (5.1.29)

for some positive constantC. Similarly, by (5.1.25),

lim
ε→0

P
{

|y(t)−ϕ(θ ∗)| ≤ O(a2)+O(δ 2)+C|Λ ε (0)|2e−2γt ,∀t ∈ [0,T(ε)]
}

= 1,

(5.1.30)

whereT(ε) is a deterministic function with lim
ε→0

T(ε) = ∞.

Inequalities (5.1.29) and (5.1.30) characterize the asymptotic performance of ex-
tremum seeking in Figure 5.1 and explain why it is not only important that the
perturbation parameterε be small but also that the perturbation gaina be small.

In the gradient-based estimator (5.1.7), stochastic excitation is chosen in the form
of sin(η(t)). The use of the sinusoidal nonlinearity should not be confused with the
use of sinusoidal perturbation signals in deterministic extremum seeking [6]. In the
present stochastic design, the sinusoidal nonlinearity issimply used as a bounded
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Fig. 5.2 Stochastic extremum seeking with an OU process perturbation. Top: output and extremum
values. Bottom: solutions of the error system and average system.

function whose role is to guarantee that the vector field of the error system (5.1.14)–
(5.1.15) is a bounded function of the perturbation process.We can choose other
bounded odd functions to replace sinusoidal functions, such as,g(x) = xe−x2

. Cor-
responding to (5.1.19) in calculating the average system, the following integral is

computed:
∫ +∞
−∞ x2e−2x2 1√

πq
e
− x2

q2 dx= 1
2q(2+ 1

q2 )3/2 .

Figure 5.2 displays the simulation results withϕ∗ = 1,ϕ ′′ = 2,θ ∗ = 0 in the static
map (5.1.1) anda= 0.1,h= k= q= 1,ε = 0.25 in the parameter update law (5.1.7)–
(5.1.9) and initial conditioñθ ε(0) = 1,eε(0) = 0.99, θ̂(0) = −1,ζ (0) = 1.99. The
simulation result is robust to design parameters, and similar results are obtained for
values on this order of magnitude.
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The only requirements on the perturbation process in our averaging theorems are
ergodicity and the bounded dependence of the vector field on the perturbation. The
OU process satisfies these requirements. Brownian motion onthe unit circle can also
be used as the excitation signal. In the extremum seeking algorithm, we replace the
bounded signal sin(η(t)) = sin(χ(t/ε)) with the signalHT η̌(t/ε), whereη̌(t) =
[cos(W(t)),sin(W(t))]T is Brownian motion on the unit circle andH = [h1,h2]

T is a
constant vector. By a similar analysis, we obtain results asin (5.1.24) and (5.1.25),

whereΛ ε(t) , (θ̃ ε(t),eε(t))−−(0, a2ϕ ′′

4 (h2
1 +h2

2)).
For Brownian motion on the unit circle as the stochastic perturbation, Figure 5.3

shows the simulation results withϕ∗ = 1,ϕ ′′ = 2,θ ∗ = 0 in the static map (5.1.1),
a = 0.1,h = k = h1 = h2 = 1,ε = 0.02 in the parameter update law (5.1.7)–(5.1.9)
and initial conditionθ̃ ε(0) = 1,eε(0) = 0.99, θ̂(0) = −1,ζ (0) = 1.99. The simula-
tion is made under the time scales= t/ε.

By comparing Figures 5.2 and 5.3, we observe that faster convergence is obtained
with the Brownian motion on the unit circle as compared to theconvergence rate of
the average system, whereas with the OU process the actual convergence is poorer
than predicted with the average system (this observation isgeneric and independent
of the fact that different parameters were used for the two perturbation processes).
The difference between the effects of the two perturbation processes may be due to
the “exponentially decaying form” of the invariant distribution of the OU process,
in contrast to the uniform distribution of Brownian motion on the unit circle.

5.2 Stochastic Extremum Seeking Feedback for General
Nonlinear Dynamic Systems

Consider a general SISO nonlinear model

ẋ = f (x,u), (5.2.31)

y = h(x), (5.2.32)

wherex∈Rn is the state,u∈R is the input,y∈R is the output, andf : Rn×R→Rn

andh : Rn → R are smooth. Suppose that we know a smooth control law

u = α(x,θ ) (5.2.33)

parameterized by a scalar parameterθ . Then the closed-loop system
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Fig. 5.3 Stochastic extremum seeking with perturbation based on theBrownian motion on the unit
circle. Top: output and extremum values. Bottom: solutionsof the error system and average system.

ẋ = f (x,α(x,θ )) (5.2.34)

has equilibria parameterized byθ . As the deterministic case [6], we make the fol-
lowing assumptions about the closed-loop system.

Assumption 5.1.There exists a smooth functionl : R → Rn such that

f (x,α(x,θ )) = 0 if and only ifx = l(θ ). (5.2.35)

Assumption 5.2.For eachθ ∈ R, the equilibriumx = l(θ ) of system (5.2.34) is
exponentially stable with decay and overshoot constant uniform in θ .

Assumption 5.3.There existsθ ∗ ∈ R such that
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(h◦ l)′(θ ∗) = 0, (5.2.36)

(h◦ l)′′(θ ∗) < 0. (5.2.37)

Thus, we assume that the output equilibrium mapy = h(l(θ )) has a local maxi-
mum atθ = θ ∗.

Our objective is to develop a feedback mechanism which makesthe output equi-
librium mapy(h(l(θ ))) as close as possible to the maximumy(h(l(θ ∗))) but without
requiring the knowledge of eitherθ ∗ or the functionsh andl .

We use a stochastic rather than deterministic perturbationsignal and choose the
parameter update law as (Figure 5.4)

dθ̂
dt

= kξ , (5.2.38)

dξ
dt

= −w1ξ +w1(y− ζ )sin(η), (5.2.39)

dζ
dt

= −w2ζ +w2y, (5.2.40)

εdη = −ηdt+
√

εqdW, (5.2.41)

wherek > 0,w1 > 0,w2 > 0,ε > 0, andq > 0 are design parameters and(W(t),t ≥
0) is a 1-dimensional standard Brownian motion on some probability space(Ω ,F ,P).
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Remark 5.1.As in the deterministic case [6], the parametersk,w1,w2 need to be
chosen asO(δ ), where 0< δ ≪ ε. This yields a decomposition into three time
scales (in contrast to two time scales encountered with the static map in Sec-
tion 5.1). The fastest of the three time scales, the time scale associated with the
plant ẋ = f (x,α(x,θ )), requires the employment of a singular perturbation argu-
ment, whereas averaging analysis is applied to the two lowertime scales. Since we
do not have a suitable infinite-time stochastic singular perturbation theorem at our
disposal, we apply the singular perturbation reduction without invoking a formal
theorem, though the reduced and boundary layer systems do satisfy the usual local
exponential stability assumptions. In addition, the low-pass filter (5.2.39), together
with the high-pass filter (5.1.8) in Section 5.1, is introduced for improved asymp-
totic performance but is not essential for achieving stability [137].

We define

θ = θ̂ +asin(η(t)) (5.2.42)

with a > 0 and obtain the closed-loop system as

dx
dt

= f
(
x,α

(
x, θ̂ +asin(η(t))

))
, (5.2.43)

dθ̂
dt

= kξ , (5.2.44)

dξ
dt

= −w1ξ +w1(y− ζ )sin(η(t)), (5.2.45)

dζ
dt

= −w2ζ +w2y, (5.2.46)

εdη(t) = −η(t)dt+
√

εqdW(t). (5.2.47)

Defineχ(t) = η(εt) andB(t) = 1√
ε W(εt). Then with the error variables

θ̃ = θ̂ −θ ∗, (5.2.48)

ζ̃ = ζ −h◦ l(θ ∗) , (5.2.49)

the closed-loop system is rewritten as

dx
dt

= f (x,α(θ ∗ + θ̃ +asin(χ(t/ε))),

(5.2.50)
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d
dt





θ̃
ξ
ζ̃



 = Ẽ, (5.2.51)

where

Ẽ ,





kξ
−w1ξ +w1(h(x)−h◦ l(θ ∗)− ζ̃)sin(χ(t/ε))

−w2ζ̃ +w2(h(x)−h◦ l(θ ∗))



 (5.2.52)

anddχ(t) = −χ(t)dt+qdB(t).
As indicated in Remark 5.1, we employ a singular perturbation reduction. As-

sumingε to be large compared to the size of parameters in (5.2.33), wefreezex in
(5.2.50) at its quasi-steady state value as

x = l(θ ∗ + θ̃ +asin(χ(t/ε))), (5.2.53)

and substitute it into (5.2.51), and then get the reduced system

d
dt





θ̃r

ξr

ζ̃r



 = Ẽr , (5.2.54)

where

Ẽr ,





kξr

−w1ξr +w1(v(θ̃r +asin(χ(t/ε)))− ζ̃r)sin(χ(t/ε))

−w2ζ̃r +w2v(θ̃r +asin(χ(t/ε)))



 (5.2.55)

and

v(θ̃r +asin(χ(t/ε))) = h◦ l(θ ∗+ θ̃r +asin(χ(t/ε)))−h◦ l(θ ∗). (5.2.56)

With Assumption 5.3, we have

v(0) = 0, (5.2.57)

v′(0) = (h◦ l)′(θ ∗) = 0, (5.2.58)

v′′(0) = (h◦ l)′′(θ ∗) < 0. (5.2.59)



102 5 Single-parameter Stochastic Extremum Seeking

Now we use our stochastic averaging theorems to analyze system (5.2.54). Accord-
ing to (4.1.12), we obtain that the average system of (5.2.54) is

d
dt





θ̃ ave
r

ξ ave
r

ζ̃ ave
r



 = Ẽave
r , (5.2.60)

where

Ẽave
r ,








kξ ave
r

−w1ξ ave
r +w1

1√
πq

∫+∞
−∞ v(θ̃ ave

r +asin(y))sin(y)e
− y2

q2 dy

−w2ζ̃ ave
r +w2

1√
πq

∫ +∞
−∞ v(θ̃ ave

r +asin(y))e
− y2

q2 dy








. (5.2.61)

First, we determine the average equilibrium(θ̃ a,e
r ,ξ a,e

r , η̃a,e
r ) which satisfies

ξ a,e
r = 0, (5.2.62)

∫ +∞

−∞
v(θ̃ a,e

r +asin(y))
sin(y)√

πq
e
− y2

q2 dy= 0, (5.2.63)

ζ̃ a,e
r =

1√
πq

∫ +∞

−∞
v(θ̃ a,e

r +asin(y))e
− y2

q2 dy. (5.2.64)

Assume that̃θ a,e
r has the form

θ̃ a,e
r = b1a+b2a

2 +O(a3), (5.2.65)

and by (5.2.57)–(5.2.58), define

v(x) =
v′′(0)

2
x2 +

v′′′(0)

3!
x3 +O(x4). (5.2.66)

Then substituting (5.2.65) and (5.2.66) into (5.2.63) , we have

∫ +∞

−∞
v(b1a+b2a

2+O(a3)+asin(y))sin(y)
1√
πq

e
− y2

q2 dy

=

∫ +∞

−∞

[
v′′(0)

2

(
b1a+b2a

2 +O(a3)+asin(y)
)2
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+
v′′′(0)

3!

(
b1a+b2a

2 +O(a3)+asin(y)
)3

+O((b1a+b2a
2 +O(a3)+asin(y))4)

]
sin(y)

1√
πq

e
− y2

q2 dy

=
∫ ∞

−∞

[
v′′(0)

2
(2b1a2 +2b2a

3 +O(a4))sin2(y)

+
v′′′(0)

3!
(3b2

1a3 +O(a4)+a3sin2(y))sin2(y)

]
1√
πq

e
− y2

q2 dy+O(a4)

= O(a4)+v′′(0)b1

(
1
2
− 1

2
e−q2

)

a2

+

[(

b2v′′(0)+
v′′′(0)

2
b2

1

)(
1
2
− 1

2
e−q2

)

+
v′′′(0)

6

(
3
8
− 1

2
e−q2

+
1
8

e−4q2
)]

a3

= 0, (5.2.67)

where the following facts are used:

1√
πq

∫ +∞

−∞
sin2k+1(y)e

− y2

q2 dy= 0, k = 0,1,2, . . . , (5.2.68)

1√
πq

∫ +∞

−∞
sin2(y)e

− y2

q2 dy=
1
2
− 1

2
e−q2

, (5.2.69)

1√
πq

∫ +∞

−∞
sin4(y)e

− y2

q2 dy=
3
8
− 1

2
e−q2

+
1
8

e−4q2
. (5.2.70)

Comparing the coefficients of the powers ofa on the right-hand and left-hand sides
of (5.2.67), we have

b1 = 0, (5.2.71)

b2 = −v′′′(0)(3−4e−q2
+e−4q2

)

24v′′(0)(1−e−q2
)

, (5.2.72)

and thus by (5.2.65), we have

θ̃ a,e
r = −v′′′(0)(3−4e−q2

+e−4q2
)

24v′′(0)(1−e−q2
)

a2 +O(a3). (5.2.73)

From this equation, together with (5.2.64), we have
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ζ̃ a,e
r =

∫ +∞

−∞
v
(
θ̃ a,e

r +asin(y)
) 1√

πq
e
− y2

q2 dy

=

∫ +∞

−∞
v
(
b2a2 +O(a3)+asin(y)

) e
− y2

q2

√
πq

dy

=
∫ +∞

−∞

[
v′′(0)

2

(
b2a2+O(a3)+asin(y)

)2

+
v′′′(0)

3!

(
b2a2 +O(a3)+asin(y)

)3

+O
(
(b2a2 +O(a3)+asin(y))4)

]
e
− y2

q2

√
πq

dy

=
a2v′′(0)

2

∫ +∞

−∞
sin2(y)

1√
πq

e
− y2

q2 dy+O(a3)

=
v′′(0)(1−e−q2

)

4
a2 +O(a3). (5.2.74)

Thus the equilibrium of the average system (5.2.60) is





θ̃ a,e
r

ξ a,e
r

ζ a,e
r



=







− v′′′(0)(3−4e−q2
+e−4q2

)

24v′′(0)(1−e−q2
)

a2+O(a3)

0
v′′(0)(1−e−q2

)
4 a2 +O(a3)







. (5.2.75)

The Jacobian matrix of the average system (5.2.60) at the equilibrium (θ̃ a,e
r ,ξ a,e

r ,ζ a,e
r )

is

Ja
r =





0 k 0
Ja

r21 −w1 0
Ja

r31 0 −w2



 , (5.2.76)

where

Ja
r21 =

w1√
πq

∫ +∞

−∞
v′
(
θ̃ a,e

r +asin(y)
)

sin(y)e
− y2

q2 dy, (5.2.77)

Ja
r31 =

w2√
πq

∫ +∞

−∞
v′(θ̃ a,e

r +asin(y))e
− y2

q2 dy. (5.2.78)

SinceJa
r is block-lower triangular we see that it will be Hurwitz if and only if
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∫ +∞

−∞
v′
(
θ̃ a,e

r +asin(y)
)

sin(y)e
− y2

q2 dy< 0. (5.2.79)

With Taylor expansion and by calculating the integral, we get

∫ +∞

−∞
v′
(
θ̃ a,e

r +asin(y)
)

sin(y)e
− y2

q2 dy= a
√

πqv′′(0)

(
1
2
− 1

2
e−q2

)

+O(a2).

(5.2.80)

By substituting (5.2.80) into (5.2.76) we get

det(λ I −Ja
r ) =

(

λ 2 +w1λ − w1k
2

v′′(0)a(1−e−q2
)+O(a2)

)

(λ +w2),(5.2.81)

which proves thatJa
r is Hurwitz for sufficiently smalla. This implies that the equi-

librium of the average system is exponentially stable for sufficiently smalla. Then
according to Theorems 4.5 and 4.6, we have the following result for stochastic ex-
tremum seeking algorithm in Figure 5.4.

Theorem 5.2. Consider system (5.2.54) under Assumption 5.3. Then there exists a
constant a∗ > 0 such that for any0< a < a∗ there exist constants r> 0,c> 0,γ > 0
and a function T(ε) : (0,ε0) → N such that for any initial condition|∆ ε,a(0)| < r,
and anyδ > 0,

lim
ε→0

inf
{
t ≥ 0 : |∆ ε,a(t)| > c|∆ ε,a(0)|e−γt + δ

}
= ∞, a.s. (5.2.82)

and

lim
ε→0

P
{
|∆ ε,a(t)| ≤ c|∆ ε,a(0)|e−γt + δ , ∀t ∈ [0,T(ε)]

}
= 1 with lim

ε→0
T(ε) = ∞,

(5.2.83)

where

∆ ε,a(t) , (θ̃r(t),ξr(t), ζ̃r(t))−(

−v′′′(0)(3−4e−q2
+e−4q2

)

24v′′(0)(1−e−q2
)

a2 +O(a3) ,0,
v′′(0)(1−e−q2

)

4
a2 +O(a3)

)

.

(5.2.84)
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These results imply that the norm of the error vector∆ ε,a(t) exponentially con-
verges, both almost surely and in probability, to below an arbitrarily small residual
valueδ over an arbitrary large time interval, which tends to infinity as the pertur-
bation parameterε goes to zero. In particular, thẽθ ε(t)-component of the error
vector converges to belowδ . To quantify the output convergence to the extremum,
we define a stopping time

τδ
ε = inf

{
t ≥ 0 : |∆ ε,a(t)| > c|∆ ε,a(0)|e−γt + δ

}
.

Then by (5.2.82) and the definition of∆ ε,a(t), we know that lim
ε→0

τδ
ε = ∞, a.s., and

for ∀t ≤ τδ
ε ,

∣
∣
∣
∣
∣
θ̃r(t)−

(

−v′′′(0)(3−4e−q2
+e−4q2

)

24v′′(0)(1−e−q2
)

a2 +O(a3)

)∣
∣
∣
∣
∣
≤ c|∆ ε,a(0)|e−γt + δ ,

(5.2.85)

which implies that
∣
∣θ̃r(t)

∣
∣≤ O(a2)+c|∆ ε,a(0)|e−γt + δ , ∀t ≤ τδ

ε . (5.2.86)

Sincey(t) = h(l(θ ∗ + θ̃r(t)+asin(η(t)))) and(h◦ l)
′
(θ ∗) = 0, we have

y(t)−h◦ l(θ ∗) =
(h◦ l)

′′
(θ ∗)

2
(θ̃r(t)+asin(η(t)))2 +O

(
(θ̃r +asin(η(t)))3) .

(5.2.87)

Thus by (5.2.86), it holds that

|y(t)−h◦ l(θ ∗)| ≤ O(a2)+O(δ 2)+C|∆ ε,a(0)|2e−2γt , ∀t ≤ τδ
ε , (5.2.88)

for some positive constantC. Similarly, by (5.2.83)

lim
ε→0

P
{

|y(t)−h◦ l(θ ∗)| ≤ O(a2)+O(δ 2)+C|∆ ε,a(0)|2e−2γt ,

∀t ∈ [0,T(ε)]} = 1, (5.2.89)

whereT(ε) is a deterministic function with lim
ε→0

T(ε) = ∞.
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5.3 Notes and References

This chapter is based on our results in [91]. The first design of a stochastic extremum
seeking algorithm was proposed in discrete time in [99]. In this chapter, we intro-
duced continuous-time extremum seeking algorithms that employ stochastic excita-
tion signals instead of deterministic periodic signals. Inthe subsequent chapters, we
explore more specific applications of the stochastic extremum seeking algorithms.

The stochastic extremum seeking approach introduced in [91] has inspired a de-
sign of an algorithm for maximization of endurance of aircraft in [71] by exploring
the stochastic character of the air turbulence disturbance, which affects the airspeed-
dependent drag force. The algorithm in [71] is a nontrivial modification of the algo-
rithm in this chapter because the air turbulence is not a disturbance that is introduced
by the user and hence it enters the feedback system differently.





Chapter 6
Stochastic Source Seeking for Nonholonomic
Vehicles

Steering mobile robots in concentrations fields with an unknown spatial distribution,
and without position (GPS) measurements available to the robots, has become a very
active field in recent years, with entire conference sessions dedicated to the topic
and with many grants, in various countries, awarded to the study of this topic. The
motivation comes from environmental (tracking of oil spillplumes) to homeland
security (contaminants released into the atmosphere via a “dirty bomb”) to biology
and medicine (understanding the feedback mechanism that underlies chemotaxis of
bacteria and cancer cells).

We refer to the problem of steering of vehicles in GPS-deniedenvironments, with
unknown spatially distributed concentration fields, assource seeking. In this chap-
ter, we investigate a stochastic version of source seeking by navigating a unicycle
robot with the help of a random perturbation. Our vehicle hasno knowledge of its
position, nor of of the distribution of the signal field. To find the source, we employ
a stochastic extremum seeking approach and provide a stability analysis based on
stochastic averaging theorems that we developed in Chapter4. The key challenge is
that we cannot directly control the two-dimensional position vector of the robot but
can control its scalar angular velocity input, for steering. With a controller that we
design in the chapter, the vehicle is driven to approach a small neighborhood of the
source in a manner that seems partly random but is convergentin a suitable sense.
We present a stability proof for the scheme with a static source and simulation re-
sults for both static and moving sources. Convergence is proved both in the “almost
sure” sense and “in probability”.

The chapter is organized as follows. In Section 6.1 we present the vehicle model
and state the problem. In Section 6.2 we present our stochastic source seeking con-

109
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·

·

v

R
sr

cr
u

y

x

Fig. 6.1 The notation used in the model of vehicle sensor and center dynamics.

troller. In Section 6.3 we prove local exponential convergence for circular level sets,
namely, where the signal depends only on the distance from the source and decays
quadratically. In Section 6.4 we calculate the convergencespeed, for particular pa-
rameter choices for which it is possible to do so explicitly,and characterize the
best achievable convergence speed. In Section 6.5 we present simulations and dis-
cussions about dependence on design parameters. In Section6.6 we discuss the
dependence on damping term. In Section 6.7 we discuss the effect of constraints of
the angular velocity and design alternatives. In Section 6.8 we consider signal fields
with elliptical level sets.

6.1 Vehicle Model and Problem Statement

As in [31], we consider a mobile agent modeled as a unicycle with a sensor mounted
at its front end, a distanceR from the center. Fig. 6.1 depicts the position, heading,
angular and forward velocities for the center and sensor. The equations of motion
for the vehicle center are
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Fig. 6.2 Block diagram of stochastic source seeking via tuning of angular velocity of the vehicle.

ṙc = vejθ , (6.1.1)

θ̇ = u, (6.1.2)

whererc is the vehicle center,θ is the orientation,v,u are the forward and angular
velocity inputs, respectively, andj is the imaginary unit. The sensor is located at
rs = rc +Rejθ .

The task of the vehicle is to seek a source that emits a signal aspatially dis-
tributed signalJ = f (r(x,y)), which has an isolated local maximumf ∗ = f (r∗),
wherer∗ is the location of the local maximum. We achieve local convergence tor∗,
in a particular probabilistic sense, without the knowledgeof the shape off (·), and
without the measurement ofrc, using only the measurement ofJ(t) at the vehicle
sensor.

6.2 Stochastic Source Seeking Controller

We employ the scheme depicted by the block diagram in Fig. 6.2. The forward
velocity of the vehicle is set tov(t) = Vc ≡ const, whereas the angular velocityθ̇ is
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tuned by the extremum seeking control law

θ̇ = aη̇ +cξ sin(η)−d0ξ 2sin(η) , (6.2.3)

where ξ = s
s+h[J] is the output of the washout filter for the sensor readingJ,

η = g
√

ε
εs+1[Ẇ](ε ∈ (0,ε0)) is colored noise used as a perturbation in stochastic ex-

tremum seeking, andVc,a,c,d0,g,ε,h > 0 are design parameters which (along with
parameterR) influence the performance. The signal(W(t),t ≥ 0) is a standard
Brownian motion defined in a complete probability space(Ω ,F ,P) with the sample
spaceΩ , theσ -field F , and the probability measureP.

With the observation that the transfer function from white noiseẆ to η̇ is relative
degree zero, giving

η̇ =
g
√

εs
εs+1

[Ẇ] =
1√
ε

gεs+g−g
εs+1

[Ẇ] =
g√
ε

Ẇ− 1
ε

η , (6.2.4)

the control law is rewritten as

dθ = −a
ε

ηdt+(cξ −d0ξ 2)sin(η)dt +
ag√

ε
dW, (6.2.5)

dη = −1
ε

ηdt+
g√
ε

dW. (6.2.6)

Compared with the deterministic case in [31], where sin(ωt) was used as the
probing signal, we use the stochastic signal sin(η(t)) to develop a gradient estimate.
It is not essential to choose the sinusoidal nonlinearity sin(η) in the stochastic de-
sign. This choice is primarily made for the ease of deriving the average system in
the stability analysis. We can replace sin(η) with other bounded and odd functions,
such asηe−η2

, however, the integrals in calculating the expectations inthe deriva-
tion of the average system become more complicated. In fact,the boundedness of
the perturbation (such as sinη or ηe−η2

) is only needed in the analysis, whereas in
the simulations, successful convergence is achieved even when sin(η) is replaced
by η .

We refer to the term−d0ξ 2sin(η) as the “d0-term” or the damping term. This
term is not needed in the basic stochastic extremum seeking algorithm for a static
map in Chapter 5. This term is essential for achieving exponential stability in source
seeking problems with a vehicle employing constant forwardvelocity.
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6.3 Stability Analysis

We assume that the nonlinear map defining the distribution ofthe signal field is
quadratic and takes the form

J = f (rs) = f ∗−qr |rs− r∗|2, (6.3.7)

wherer∗ is the unknown maximizer,f ∗ = f (r∗) is the unknown maximum andqr

is an unknown positive constant. We define an output error variable

e=
h

s+h
[J]− f ∗, (6.3.8)

which allows us to express the signalξ after the washout filter, as

ξ =
s

s+h
[J] = J− h

s+h
[J] = J− f ∗−e, (6.3.9)

and thus we have ˙e= hξ .
We now use our general stochastic averaging theory from Chapter 4 to analyze

the stability of the closed-loop system.

Theorem 6.1.Consider the closed-loop system

drc = Vce
jθ dt, (6.3.10)

dθ =
−a
ε

ηdt+(cξ −d0ξ 2)sin(η)dt +
ag√

ε
dW, (6.3.11)

de= hξ dt, (6.3.12)

ξ = −(qr |rs− r∗|2 +e), (6.3.13)

rs = rc +Rejθ , (6.3.14)

dη = −1
ε

ηdt+
g√
ε

dW, (6.3.15)

where c,d0,h,R,Vc,qr > 0, and the parameters h,Vc,a,g > 0 are chosen such that

1
h

>
R

2Vc

(

2− I2(2a,g)

I1(a,g)I2(a,g)

)

, (6.3.16)
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where I1(a,g)= e−
a2g2

4 , I2(a,g)= 1
2

[

e−
(a−1)2g2

4 −e−
(a+1)2g2

4

]

. (The condition (6.3.16)

is satisfied for any h> 0 and Vc > 0 provided g is chosen as g=
√

β
a and a is cho-

sen as0 < a < a∗(β ) , 2
β ln e2β−1

2
√

eβ (eβ−1)
for any β > 0. For example, forβ = 1,

a∗(1) ≈ 0.24.) If the initial conditions rc(0), θ (0), e(0) are such that the following
quantities are sufficiently small,

||rc(0)− r∗|−ρ |,
∣
∣e(0)+qr(R

2 + ρ2)
∣
∣ , (6.3.17)

either
∣
∣
∣θ (0)−arg(r∗− rc(0))+

π
2

∣
∣
∣ or (6.3.18)

∣
∣
∣θ (0)−arg(r∗− rc(0))− π

2

∣
∣
∣ , (6.3.19)

where

ρ =

√

VcI1(a,g)

2qrcRI2(a,g)
, (6.3.20)

then there exist constants C0,γ0 > 0 and a function T(ε) : (0,ε0) → N such that for
anyδ > 0,

lim
ε→0

inf
{

t ≥ 0 : ||rc(t)− r∗|−ρ |> C0e−γ0t + δ
}

= ∞, a.s. (6.3.21)

and

lim
ε→0

P
{
||rc(t)− r∗|−ρ | ≤C0e−γ0t + δ , ∀t ∈ [0,T(ε)]

}
= 1 (6.3.22)

with limε→0T(ε) = ∞, where the constant C0 is dependent on the initial condition
(rc(0),θ (0),e(0)) and on the parameters a,c,d0,h,R,Vc,qr ,g, and the constantγ0

is dependent on the parameters a,c,d0,h,R,Vc,qr ,g.

Proof. We start by defining the shifted variables

r̂c = rc− r∗, (6.3.23)

θ̂ = θ −aη , (6.3.24)

and a map between ˆrc and a new quantityθ ∗ given by

−r̂c = |r̂c|ejθ∗
(6.3.25)
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θ ∗ = arg(−r̂c) = arg(r∗− rc)

=







−π − j
2 ln
(

r̂c
r̂c

)

, if θ ∗ ∈ (−π ,− π
2 ],

− j
2 ln
(

r̂c
r̂c

)

, if θ ∗ ∈ (− π
2 , π

2 ],

π − j
2 ln
(

r̂c
r̂c

)

, if θ ∗ ∈ (π
2 ,π ],

(6.3.26)

whereθ ∗ represents the heading angle towards the source located atr∗ when the
vehicle is atrc. Using these definitions, the expression forξ is

ξ = −
(
qr
(
R2 + |r̂c|2−2R|r̂c|cos(θ̂ −θ ∗+aη)

)
+e
)
. (6.3.27)

Since

dθ̂ = dθ −adη
=

−a
ε

ηdt+(cξ −d0ξ 2)sin(η)dt +
ag√

ε
dW+

a
ε

ηdt− ag√
ε

dW

= (cξ −d0ξ 2)sin(η)dt, (6.3.28)

we obtain the dynamics of the shifted system as

dr̂c

dt
=

drc

dt
= Vce

j(θ̂+aη), (6.3.29)

dθ̂
dt

= (cξ −d0ξ 2)sin(η), (6.3.30)

de
dt

= −hqr
(
R2 + |r̂c|2−2R|r̂c|cos(θ̂ −θ ∗+aη)

)
−he. (6.3.31)

Similar to Section 5.1, define

B(t) =
1√
ε

W(εt), χ(t) = η(εt) . (6.3.32)

Then we have

dχ(t) = −χ(t)dt+gdB(t), (6.3.33)

whereB(t) is a standard Brownian motion and the processχ(t) is an Ornstein-
Uhlenbeck (OU) process which is ergodic with invariant distribution
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µ(dy) =
1√
πg

e
− y2

g2 dy. (6.3.34)

Now we define error variables ˜rc andθ̃ which represent the distance to the source,
and the difference between the vehicle’s heading and the optimal heading, respec-
tively,

r̃c = |r̂c| = |rc− r∗|, (6.3.35)

θ̃ = θ̂ −θ ∗. (6.3.36)

Thus we obtain the following dynamics for the error variables

dr̃c

dt
=

d|r̂c|
dt

=
d
√

r̂cr̂c

dt
=

1
2|r̂c|

(
dr̂c

dt
r̂c + r̂c

dr̂c

dt
)

= −Vccos(θ̃ +aχ(t/ε)), (6.3.37)

dθ̃
dt

=
dθ̂
dt

− dθ ∗

dt
=

dθ̂
dt

+
j

2|r̂c|2
(
dr̂c

dt
r̂c− r̂c

dr̂c

dt
)

= (c−d0ξ )ξ sin(χ(t/ε))+
Vc

r̃c
sin(θ̃ +aχ(t/ε)), (6.3.38)

de
dt

= hξ , (6.3.39)

ξ = −
(
qr(R

2 + r̃2
c −2Rr̃ccos(θ̃ +aχ(t/ε)))+e

)
, (6.3.40)

dχ(t) = −χ(t)dt+gdB(t). (6.3.41)

We use general stochastic averaging presented in Chapter 4 to analyze this error
system.

First we calculate the average system of (6.3.37),(6.3.38)and (6.3.39). Since

∫

R

sin(ay)µ(dy) =

∫ +∞

−∞
sin(ay)

1√
πg

e
− y2

g2 dy= 0, (6.3.42)
∫

R

cos(ay)sin(ay)µ(dy) =

∫

R

cos(2ay)sin(ay)µ(dy) = 0, (6.3.43)

∫

R

cos(ay)µ(dy) =

∫ +∞

−∞
cos(ay)

1√
πg

e
− y2

g2 dy= e−
a2g2

4 , I1(a,g),(6.3.44)

∫

R

sin(ay)sin(y)µ(dy) =

∫ +∞

−∞
sin(ay)sin(y)

1√
πg

e
− y2

g2 dy
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=
1
2

[

e−
(a−1)2g2

4 −e−
(a+1)2g2

4

]

, I2(a,g), (6.3.45)

by (4.1.12), we obtain that the average error system is

dr̃ave
c

dt
= −VcI1(a,g)cos(θ̃ ave), (6.3.46)

dθ̃ ave

dt
= −

(

2c+4d0

(

qr(R
2 + r̃ave2

c )+eave
))

×qrRr̃ave
c sin(θ̃ ave)I2(a,g)

+2d0q2
r R2r̃ave2

c sin(2θ̃ ave)I2(2a,g)+
Vc

r̃ave
c

sin(θ̃ ave)I1(a,g), (6.3.47)

deave

dt
= −hqrR

2−hqr r̃
ave2
c +2hRqr r̃

ave
c cos(θ̃ ave)I1(a,g)−heave. (6.3.48)

The average error system has two equilibria defined by
[

r̃aveeq1
c , θ̃ aveeq1 ,eaveeq1

]

=
[

ρ ,+
π
2

,−qr(R
2 + ρ2)

]

, (6.3.49)
[

r̃aveeq2
c , θ̃ aveeq2 ,eaveeq2

]

=
[

ρ ,−π
2

,−qr(R
2 + ρ2)

]

, (6.3.50)

whereρ is given by (6.3.20 ). The above two equilibria have the following Jaco-
bians, respectively,

Aeq1 = −





0 −VcI1(a,g) 0
Aeq1

21 4d0γ2ρ2I2(2a,g) 4d0γρ I2(a,g)
2hqrρ 2hγρ I1(a,g) h



 , (6.3.51)

and

Aeq2 =





0 −VcI1(a,g) 0
Aeq2

21 −4d0γ2ρ2I2(2a,g) 4d0γρ I2(a,g)
−2hqrρ 2hγρ I1(a,g) −h



 , (6.3.52)

whereAeq1
21 = Aeq2

21 = 4γ(c+ 2d0qrρ2)I2(a,g), γ , qrR. The characteristic polyno-
mial for both Jacobians is

0 = λ 3 +hλ 2+
2V2

c I2
1(a,g)

ρ2 λ +h
2V2

c I2
1(a,g)

ρ2

+4d0ρ2q2
r R
[
RI2(2a,g)λ 2 +(2VcI1(a,g)I2(a,g)

+hR(I2(2a,g)−2I1(a,g)I2(a,g)))λ ] . (6.3.53)
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Sincea > 0, we haveI2(a,g) > 0 andI1(a,g) > 0. For the roots of the polynomial
(6.3.53) to be in the left half-plane, all of its three coefficients need to be positive and
the product of the coefficients associated withλ 2 andλ 1 needs to be greater than
the coefficient associated withλ 0. All of these conditions are satisfied whenever

2VcI1(a,g)I2(a,g)+hR(I2(2a,g)−2I1(a,g)I2(a,g)) > 0, (6.3.54)

which is equivalent to the condition (6.3.16). When the condition (6.3.16) is sat-
isfied, the Jacobians (6.3.51) and (6.3.52) are Hurwitz, which implies that both
average equilibria (6.3.49) and (6.3.50) are exponentially stable. Thus by Theo-

rems 4.5 and 4.6, there exist constantsc(i)
0 > 0, r(i)

0 > 0,γ(i)
0 > 0 and functions

T(i)(ε) : (0,ε0) → N, i = 1,2, such that for anyδ > 0, and any initial condition
∣
∣
∣Λ (i)

ε (0)
∣
∣
∣< r(i)

0 ,

lim
ε→0

inf

{

t ≥ 0 :
∣
∣
∣Λ (i)

ε (t)
∣
∣
∣> c(i)

0

∣
∣
∣Λ (i)

ε (0)
∣
∣
∣e−γ(i)

0 t + δ
}

= ∞, a.s., (6.3.55)

and

lim
ε→0

P

{∣
∣
∣Λ (i)

ε (t)
∣
∣
∣≤ c(i)

0

∣
∣
∣Λ (i)

ε (0)
∣
∣
∣e−γ(i)

0 t + δ , t ∈ [0,T(i)(ε)]

}

= 1 (6.3.56)

with limε→0 T(i)(ε) = ∞, whereΛ (1)
ε (t) = (r̃c(t)−ρ , θ̃ (t)− π

2 , e(t)+qr(R2 + ρ2)
)

andΛ (2)
ε (t) = (r̃c(t)−ρ , θ̃ (t)+ π

2 , e(t)+qr(R2 + ρ2)
)
. The results (6.3.55), (6.3.56),

together with the fact|r̃c(t)−ρ | <
∣
∣
(
r̃c(t)−ρ , θ̃(t)± π

2 ,e(t)+qr(R2 + ρ2)
)∣
∣ and

the definition of ˜rc, we have

lim
ε→0

inf

{

t ≥ 0 : ||rc(t)− r∗|−ρ |> C(i)
0 e−γ(i)

0 t + δ
}

= ∞, a.s., (6.3.57)

and

lim
ε→0

P

{

||rc(t)− r∗|−ρ | ≤C(i)
0 e−γ(i)

0 t + δ , ∀t ∈ [0,T(i)(ε)]

}

= 1 (6.3.58)

with limε→0 T(i)(ε)= ∞, whereC(1)
0 = c(1)

0 |(r̃c(0)−ρ , θ̃ (0)− π
2 , e(0)+qr(R2 + ρ2)

)∣
∣

andC(2)
0 = c(2)

0 |(r̃c(0)−ρ , θ̃(0) + π
2 , e(0)+qr(R2 + ρ2)

)∣
∣ . This completes the

proof.
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6.4 Convergence Speed

Theorem 6.1 establishes exponential convergence, however, the convergence rate is
determined by the complicated cubic polynomial (6.3.53), whose roots are hard to
find analytically in general. However, for particular parameter choice, they can be
found explicitly, as given in the next proposition.

Proposition 6.1.Let the vehicle speed Vc and the parameter h of the washout filter
be chosen according to the following relation:

Vc = hR. (6.4.59)

Then the exponential convergence rate of the source seekingsystem in Theorem 6.1
is determined by the eigenvalues

λ1 =−h, (6.4.60)

λ2 =− d0qrR2hI1(a,g)I2(2a,g)

cI2(a,g)

(

1−
√

1−ψ
)

, (6.4.61)

λ3 =− d0qrR2hI1(a,g)I2(2a,g)

cI2(a,g)

(

1+
√

1−ψ
)

, (6.4.62)

where

ψ =
4c3I3

2(a,g)

d2
0qrhR2I1(a,g)I2

2(2a,g)
> 0, (6.4.63)

and the radius of the residual annulus is

ρ =

√

hI1(a,g)

2qrcI2(a,g)
. (6.4.64)

Proof. With Vc = hR, the stability condition (6.3.16) becomes

0 > − I2(2a,g)

2I1(a,g)I2(a,g)
, (6.4.65)

which is satisfied for all parametersa,g,h,R> 0. Thus the characteristic polynomial
(6.3.53) has all three roots with negative real parts. Let

H , 4d0ρ2q2
r R2I2(2a,g), (6.4.66)
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M ,
2V2

c I2
1(a,g)

ρ2 , (6.4.67)

Q , 4d0ρ2q2
r R[2VcI1(a,g)I2(a,g)

+hR(I2(2a,g)−2I1(a,g)I2(a,g))] . (6.4.68)

Then we write the characteristic polynomial compactly as

λ 3 +(h+H)λ 2+(M +Q)λ +hM = 0. (6.4.69)

Denote byλi , i = 1,2,3, the roots of the polynomial (6.4.69). Then by the relation
between the roots and the coefficients in the polynomial, we have

h+H = −λ1−λ2−λ3, (6.4.70)

hM = −λ1λ2λ3, (6.4.71)

M +Q = λ1λ2 + λ2λ3 + λ3λ1. (6.4.72)

At this point one can just verify (6.4.60)–(6.4.62)by direct substitution into (6.4.70)–
(6.4.72), however, we explain how we have arrived at (6.4.60)–(6.4.62). Letλ1 =
−h. We shall show that this choice satisfies (6.4.70)–(6.4.72)by also findingλ2 and
λ3 which satisfy (6.4.70)–(6.4.72). Withλ1 = −h, (6.4.70)–(6.4.72) become

H = −λ2−λ3, (6.4.73)

M = λ2λ3, (6.4.74)

Q = hH. (6.4.75)

With substitution ofVc = hR into (6.4.68), we immediately see that (6.4.75) is ver-
ified. From (6.4.73) and (6.4.74) we see that we only need to solve the quadratic
equationλ 2+Hλ +M = 0. Applying the formula for the roots of a quadratic equa-
tion, we arrive at

λ2 =−2d0ρ2q2
r R2I2(2a,g)+

1
ρ

√

4d2
0ρ6q4

r R4I2
2(2a,g)−2V2

c I2
1(a,g)

=−d0qrRVc
I1(a,g)I2(2a,g)

cI2(a,g)

+
R
c

√

d2
0q2

r V2
c

I2
1(a,g)I2

2(2a,g)

I2
2(a,g)

−4hqrc3I1(a,g)I2(a,g), (6.4.76)
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λ3 =−2d0ρ2q2
r R2I2(2a,g)− 1

ρ

√

4d2
0ρ6q4

r R4I2
2(2a,g)−2V2

c I2
1(a,g)

=−d0qrRVc
I1(a,g)I2(2a,g)

cI2(a,g)

− R
c

√

d2
0q2

r V2
c

I2
1(a,g)I2

2(2a,g)

I2
2(a,g)

−4hqrc3I1(a,g)I2(a,g), (6.4.77)

which, with some simplifications, gives (6.4.60)–(6.4.63). This completes the proof.

Of the three eigenvalues in Proposition 6.1 one is real and can be placed arbi-
trarily far to the left by choosingh large, whereas the other two can either be real
or conjugate complex. The optimal choice is where the eigenvaluesλ2 andλ3 are
equal, because otherwise, either one or both of these eigenvalues are closer to the
imaginary axis then whenλ2 = λ3. Unfortunately, this optimal eigenvalue placement
cannot be achieved by intent, since the design parameters would have to depend on
the unknownqr , however, in the next corollary we state this result in orderto note
what the best achievable convergence speed is.

Corollary 6.1. Let Vc = hR and let the damping parameter be chosen as

d0 =
1√
qr

2
RhI2(2a,g)

√

c3I2
2(a,g)

I1(a,g)
. (6.4.78)

Then the exponential convergence rate of the source seekingsystem in Theorem 6.1
is determined by the eigenvalues

λ1 = −h, (6.4.79)

λ2 = λ3 = −2R
√

qrhcI1(a,g)I2(a,g) , (6.4.80)

whereas the residual annulus is as in (6.4.64).

From Corollary 6.1 we note that the optimizing damping coefficient d0 grows,
whereas the convergence rateλ2 = λ3 decays, with a decrease of the parameterqr ,
namely, with the flattening of the extremum, as should be expected. Not surprisingly,
the residual annulus (6.4.64) also grows with the flatteningof the extremum. The
convergence speed grows, whereas the annulus size shrinks,with the tuning gainc.

Proposition 6.2.For a fixed a, the optimal convergence speed (6.4.80) has a non-
monotonic dependence on the noise intensity g, with the maximal convergence speed
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achieved for

g∗ =

√

1
a

ln
2a2+1+2a
2a2+1−2a

. (6.4.81)

Proof. By considering (6.4.80) and maximizing

I1(a,g)I2(a,g) =
1
2

e−
a2g2

4

[

e−
(a−1)2g2

4 −e−
(a+1)2g2

4

]

(6.4.82)

with respect tog2. This completes the proof.

The non-monotonicdependence of the convergence speed on the noise intensityg
is intuitive. If the noise is low, the gradient exploration is insufficient and the tuning
process is ineffective. Too much noise, and the perturbation takes the trajectories
too far from the average trajectory, slowing the approach tothe annulus.

Proposition 6.3.For a≥ 1/2 the annulus radiusρ defined in (6.4.64) is a decreas-
ing function of noise intensity g. For a∈ (0,1/2) the radiusρ has a non-monotonoic
dependence on g, with the minimalρ achieved for

g◦ =

√

1
a

ln
1+2a
1−2a

. (6.4.83)

Proof. By considering (6.4.64) and minimizing

I2(a,g)

I1(a,g)
=

2e
1
4g2

(e
a
2g2 −e−

a
2g2

)
(6.4.84)

with respect tog2. This completes the proof.

Since we want to operate with a relatively small perturbation parametera, the
annulus-minimizing value ofg in (6.4.83) is of interest. Both very large and very
low intensity of perturbation noise result in a large annulus, whereas a medium
range ofg is optimal. It is worth comparing the optimizingg for convergence speed
in (6.4.81) with the optimizingg for the annulus in (6.4.83). For smalla they are
similar, which is very fortunate.
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6.5 Simulations, and Dependence on Design Parameters

6.5.1 Basic simulations

Without loss of generality, we let theunknownlocation of the source be at the
origin r∗ = (0,0). We pick the design parameters asVc = 0.1,c = 10000,d0 =
10,a = 0.1,h = 1,g = 1,ε = 0.01,R = 0.1 and take the parameters of the map
as f ∗ = 0,qr = 1.5. The simulation results are given in Fig. 6.3. We observe that
the trajectories of the vehicle center go to a small neighborhood of the source and
the vehicle motion involves a random perturbation component, instead of a sinu-
soidal perturbation employed in the deterministic case [31]. In the simulations we
use band-limited white noise to approximate the white noise.

The stochastic source seeking approach can also be used for pursuit of non-
stationary sources. For the case where the source is performing a “figure eight”
motion, unknown to the pursuing vehicle, the simulation result is shown in Fig. 6.4.

6.5.2 Dependence of annulus radius ρ on parameters

From (6.3.20), we see the radiusρ of the attractive annulus is dependent on the
model parametersqr ,R and design parametersVc,c,a,g, and that it can be made as
small as desired. Hence, by (6.3.21) and (6.3.22), by makingρ as small as desired,
the vehicle can converge as closely to the source as desired.

The dependence ofρ on the noise intensity is characterized by Proposition 6.3.
Fig. 6.5 show some of this dependence. For a fixed smalla = 0.1, the radius for
g = 2 is ρ = 0.021, which is smaller than the radiusρ = 0.029 forg = 1.

6.6 Dependence on Damping Termd0

Similar to the deterministic case in [31], the damping term−d0ξ 2sin(η) in the con-
trol law (6.2.3) forθ̇ plays a crucial role in achieving convergence of the vehicleto
an annulus of radiusρ and arbitrarily small thicknessδ near the source, c.f. (6.3.21)
and (6.3.22), and long-term retention (in a probabilistic sense) in that annulus. To
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Fig. 6.3 (a) The trajectory of the vehicle center for the case of source with circular level sets. The
trajectory converges to an annulus; (b) A zoomed in section of the vehicle trajectory, displaying the
vehicle motion more clearly. For both simulations:Vc = 0.1,c = 10000,d0 = 10, a = 0.1, g = 1,
ε = 0.01,R= 0.1, f ∗ = 0, h = 1, qr = 1.5. The source is atr∗ = (0,0).

analyze the effect of the damping term in the stochastic setting, we consider two
cases.
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Initial position

Source (xsrc, ysrc)

Fig. 6.4 Vehicle following a moving source with circular level sets.The simulation parameters are
Vc = 0.1,c= 10000,d0 = 10,a= 0.1,g= 1,ε = 0.01,R= 0.1, f ∗ = 0, h= 1, qr = 1.5. The source
moves according toxsrc(t) = 0.5sin(0.13t),ysrc(t) = 0.5sin(0.26t).

6.6.1 No damping (d0 = 0)

From (6.3.49) and (6.3.50), the location of the equilibria are independent ofd0. Let
d0 = 0. Then the average error system (6.3.46)–(6.3.48) simplifies to

dr̃ave
c

dt
= −VcI1(a,g)cos(θ̃ ave), (6.6.85)

dθ̃ ave

dt
= sin(θ̃ ave)

(
Vc

r̃ave
c

I1(a,g)−2cqrRr̃ave
c I2(a,g)

)

, (6.6.86)

deave

dt
= −h

(

qrR
2 +qr r̃

ave2
c −2Rqr r̃

ave
c cos(θ̃ ave)I1(a,g)

)

−heave, (6.6.87)

and the corresponding characteristic polynomial becomes

0 = λ 3 +hλ 2+
2V2

c I2
1(a,g)

ρ2 λ +h
2V2

c I2
1(a,g)

ρ2



126 6 Stochastic Source Seeking for Nonholonomic Vehicles

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

X

Y

g = 1

(a)

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

x

Y

g = 2

(b)

Fig. 6.5 The radius of the attractive annulus of the vehicle center for the case of source with
circular level sets. (a) is forg = 1; (b) is for g = 2. The other simulation parameters areVc =
0.1,c = 10000,d0 = 10,a = 0.1, ε = 0.01, R = 0.1, f ∗ = 0, h = 1, qr = 1.5. The source is at
r∗ = (0,0).

= (λ +h)

(

λ 2 +
2V2

c I2
1(a,g)

ρ2

)

, (6.6.88)
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which means that the average error system has one stable eigenvalue and two purely
imaginary eigenvalues, rendering it neutrally stable instead of exponentially stable.
Thus the locally exponential convergence result in Theorem6.1 does not hold, nei-
ther in almost sure sense, nor in the sense of convergence in probability. We add the
term−d0ξ 2sin(η) to the stochastic extremum seeking control law (6.2.3) precisely
in order to achieve local exponential stability of the average error system without
changing its equilibria, and thus to obtain the local exponential convergence of the
original error system. Fig. 6.6 depicts the phase portrait of the average error system,
from which we see ford0 > 0 that the two equilibria are exponentially stable, each
one with a region of attraction being exactly one half of the state space of the aver-
age error system(r̃ave

c , θ̃ ave) ∈ R+ ×{−π ,π}, whereas ford0 = 0 the two average
equilibria are only neutrally stable.

6.6.2 Effect of damping (d0 > 0)

Fig.6.7 displays two distinct behaviors of the source seeking scheme. For larged0

the vehicle undergoes a “roundabout” transient but settlesquickly into a small neigh-
borhood of the source (see Fig. 6.7 (a)). From Fig. 6.7 (b), wesee that for smaller
d0, the vehicle manifests distinct overshoot phenomenon before setting to the at-
tractive annulus, and owing to the use of stochastic perturbation, the vehicle moves
randomly and even turns around in the small neighborhood of the source. From Fig.
6.3 (b), we see that, for a smalld0, the vehicle makes sharp turns, particularly during
the transient motion towards the annulus. However, by taking a largerd0, the vehicle
avoids sharp turns and moves in a smoother way (see Fig. 6.7 (a)). By smoothing the
trajectories, the damping term actually steers the vehiclefaster to the origin, even
though theaveragetrajectory appears more roundabout. To see this point, consider
Fig.6.8, which shows three complete trajectories over the time interval[0,T], for
T = 60. For a small value of the damping coefficient,d0 = 10, the vehicle has not
even reached the annulus over the time interval considered,whereas for the large
damping value,d0 = 40000, the vehicle has long arrived to the annulus and has
moved several times around the source in the same time interval.
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Fig. 6.6 Phase portrait of the average error system. (a) is ford0 = 0 and the average error system
is not exponentially stable but only marginally stable; (b)is for d0 = 10000 and the average error
system is exponentially stable. The simulation parametersareVc = 0.1,c = 1000,a = 0.1,g = 1,
ε = 0.01,R= 0.1, f ∗ = 0,h= 1,qr = 1.5. The source is at ˜rave

c = 0 (which is theθ̃ ave-axis manifold
in the state space of the average system).

6.7 Effect of Constraints of the Angular Velocity, and Design
Alternatives

6.7.1 Effect of constraints of the angular velocity

A physical vehicle always has a steering constraint, namely, a limit on the angular
velocity θ̇ . This type of a unicycle model is commonly referred to as the Dubins ve-
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Fig. 6.7 (a) The trajectories of the vehicle center for different values ofd0; (b) A zoomed in
section of attractive annulus with different values ofd0. The simulation parameters areVc = 0.1,c=
1000,a = 0.1,g = 1,ε = 0.01,R= 0.1, f ∗ = 0, h = 1, qr = 1.5. The source is atr∗ = (0,0).

hicle. Fig. 6.9 depicts the trajectories of the vehicle center when the angular velocity
is restricted to a symmetric interval,[−umax,+umax], for several values ofumax. We
observe that, forumax as small as 20, our control law successfully steers the vehicle
to the annulus, and keeps the vehicle near the source, see Fig. 6.9 (a). In addition,
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Fig. 6.8 The trajectories of the vehicle center, for different values of d0, showing that the vehicle
arrives faster to the source for larger values ofd0, due to the smoothing, or “straightening out”
of its trajectory. Ford0 = 10000 the trajectory just makes it to the annulus inT = 60 seconds.
Over the same time interval, the trajectory does not make it yet to the annulus for a smallerd0,
but arrives much sooner to the annulus, and makes a couple of revolutions around it, for a larger
d0. The simulation parameters areVc = 0.1,c = 10000,a = 0.1, g = 1, ε = 0.01,R= 0.1, f ∗ = 0,
h = 1, qr = 1.5. The source is atr∗ = (0,0).

the vehicle moves more smoothly for smallerumax, see Fig. 6.9 (b). However, if the
actuator constraintumax is too small, for example,umax= 10, the algorithm cannot
keep the vehicle very near the source, as observed in Fig. 6.10.

6.7.2 Alternative designs

In the standard extremum seeking algorithm (see [6]), the probing signal and the
demodulation signal are the same, typically sin(ωt). Looking at the probing equa-
tion (6.3.24) and the demodulation equation (6.3.28) in thepresent work, the reader
should note that the probing and demodulation signals are different. They areη and
sin(η), respectively. In this chapter we make such a choice for the sake of simplicity
of calculating the average error system in the stability analysis—the integrals in the
expectations are easier to obtain analytically with such a choice. If η is replaced
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Fig. 6.9 (a) The trajectories of the vehicle center for different constraints of angular velocity;
(b) A zoomed in section of vehicle motion for different constraintsumax on angular velocity. The
simulation parameters areVc = 0.1,c = 10000,a = 0.1, g = 1, ε = 0.01, R= 0.1, f ∗ = 0, h = 1,
qr = 1.5. The source is atr∗ = (0,0).

by sin(η) as the stochastic perturbation in (6.3.24), the extremum seeking control
(6.2.3) is replaced by
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Fig. 6.10 The trajectories of the vehicle center under a severe constraint on the angular velocity
input (umax = 10). The simulation parameters areVc = 0.1,c = 10000,a = 0.1, g = 1, ε = 0.01,
R= 0.1, f ∗ = 0, h = 1, qr = 1.5. The source is atr∗ = (0,0).

θ̇ = acos(η)η̇ − ag2

2ε
sin(η)+cξ sin(η)−d0ξ 2sin(η) (6.7.89)

and thus (6.3.11) in the closed-loop system changes to

dθ =

[−a
ε

cos(η)η − ag2

2ε
sin(η)

]

dt

+(cξ −d0ξ 2)sin(η)dt +
ag√

ε
cos(η)dW, (6.7.90)

where the additional term− ag2

2ε sin(η) results from the Ito formula. Consequently,
the two terms cos(θ̃ +aχ(t/ε)) and sin(θ̃ +aχ(t/ε)) in the error system (6.3.37),
(6.3.38) and (6.3.39) should be replaced by cos(θ̃ + asin(χ(t/ε))) and sin(θ̃ +
asin(χ(t/ε))), respectively. It is hard to obtain the corresponding analytical average

error system because we need to calculate two integrals:
∫ +∞
−∞ cos(asin(y))e

− y2

g2 dy

and
∫+∞
−∞ sin(asin(y)) sin(y) e

− y2

g2 dy and it is hard to obtain the analytical results
though we can obtain numerical results. Fig. 6.11 depicts the trajectory of the ve-
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hicle center when the control law (6.7.89) is used. From the simulation, there is no
noticeable difference relative to the trajectory in Fig. 6.3 (a).

Now we analyze the radius of the annulus for three alternative perturbation sig-
nals. LetVc = 0.1,c= 10000,d0 = 10,a= 0.1,g= 1,ε = 0.01,R= 0.1, f ∗ = 0,qr =
1.5. Then

1. For the probing signalη in (6.3.24) and demodulation signal sin(η) in (6.3.28),
we obtain the radius of the annulus asρ I = 0.0293.

2. If we use sin(η) to replaceη as the probing signal in (6.3.24), the expres-
sionsI1(a,g) andI2(a,g) are replaced byI∗1(a,g) andI∗2(a,g), whereI∗1(a,g) ,

∫

R
cos(asin(y))µ(dy) =

∫ +∞
−∞ cos(asin(y)) 1√

πg
e
− y2

g2 dy and I∗2(a,g) ,
∫

R
sin

(asin(y)) sin(y)µ(dy) =
∫ +∞
−∞ sin(asin(y)) sin(y) 1√

πg
e
− y2

g2 dy. By calculating

the integrals numerically, we obtainI∗1(0.1,1)= 0.9984 andI∗2(0.1,1)= 0.0316.

Thus, we get the radius of the annulus asρ II =

√

VcI∗1 (a,g)

2qrcRI∗2(a,g) = 0.0325, which

is a little larger thanρ I .
3. If we use the bounded functionηe−η2

to replace bothη as the probing signal
in (6.3.24) and sin(η) as the demodulating signal in (6.3.28), by numerical cal-

culation we obtain
∫

R
cos(0.1ye−y2

)µ(dy) =
∫+∞
−∞ cos(0.1ye−y2

) 1√
πg

e
− y2

g2 dy =

0.9995,
∫

R
sin(0.1ye−y2

)y e−y2µ(dy) =
∫ +∞
−∞ sin(0.1ye−y2

) ye−y2 1√
πg

e
− y2

g2 dy=

0.0096. Thus the radius isρ III = 0.0588, which is considerably larger than both
ρ I andρ II .

Therefore, from the point of view of the annulus radius, our choiceη as the probing
signal in (6.3.24) and sin(η) as the demodulation signal in (6.3.28), achieves the
best performance, in addition to facilitating the analysis.

If OU process(η(t), t ≥ 0) is used not only as the probing signal, but also as
the demodulation signal in (6.3.28), the extremum seeking control law (6.2.3) is
replaced by

θ̇ = aη̇ +(cξ −d0ξ 2)η . (6.7.91)

With sin(η) replaced byη as a demodulation signal, where the latter signal is not
uniformly bounded, the local Lipschitz condition (Assumption 4.1) is not satisfied
uniformly in the perturbation process for the resulting closed-loop system. For this
reason, we cannot use general stochastic averaging theoremto analyze stability.
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Fig. 6.11 The trajectory of the vehicle center under the control law (6.7.89). The simulation pa-
rameters areVc = 0.1,c= 10000,d0 = 10,a= 0.1,g= 1,ε = 0.01,R= 0.1, f ∗ = 0,h= 1,qr = 1.5.
The source is atr∗ = (0,0).

However from simulation results given by Fig. 6.12, we observe that the vehicle
achieves convergence to a an annulus near the source under the control law (6.7.91).

6.8 System Behavior for Elliptical Level Sets

Our analysis is limited to circular level sets, namely, to fields that depend on the
distance from the source only. In this section, we present simulation results for el-
liptical level sets. Without loss of generality, we assume the source is atr∗ = (0,0),
and the signal distribution in space is given (at the sensor location) by

J = f (rs) = f ∗−qr |rs|2−qp(r
2
s + r̄2

s)

= f ∗− (qr +2qp)x
2
s − (qr −2qp)y

2
s

= f ∗−qr |rc +Rejθ |2−qp

(

(rc +Rejθ)2 +(r̄c +Re− jθ)2
)

, (6.8.92)

whereqr > 0, qr ±2qp > 0.
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Fig. 6.12 The trajectory of the vehicle center under the control law (6.7.91). The simulation pa-
rameters areVc = 0.1,c= 10000,d0 = 10,a= 0.1,g= 1,ε = 0.01,R= 0.1, f ∗ = 0,h= 1,qr = 1.5.
The source is atr∗ = (0,0).

Fig. 6.13 depicts the trajectory of the vehicle center for a signal field with ellip-
tical level sets. The vehicle reaches a small neighborhood of the source, however,
the average motion is not circular revolution around the source, nor elliptical revo-
lution, but a motion bias to one of the flatter sides of the ellipse. More than one such
attractor exists. It depends on the initial condition and onthe noise sequence which
of the average attractors the trajectory will converge to.

Fig. 6.14 depicts the trajectories of the vehicle center with differentd0-values in
the control law. From Fig. 6.14 (a), we see that for largerd0 the vehicle undergoes
a “roundabout” behavior and then moves into a small neighborhood of the source.
This is no different than the situation for circular level sets, with either stochastic or
deterministic source seeking algorithms. However, from Fig. 6.14 (b), we observe
a difference relative to the results obtained for elliptical level sets in the determin-
istic case in [31]. The value ofd0 does not affect the shape and size of the system
attractors—the motion near the source is limited to an elliptical shape.
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Fig. 6.13 The trajectory of the vehicle center for signal field with elliptical level sets. The simula-
tion parameters areVc = 0.1,c = 10000,d0 = 10,a = 0.1,g= 1,ε = 0.01,R= 0.1, f ∗ = 0, h = 1,
qr = 1.5, qp = 0.25. The source lies inr∗ = (0,0).

6.9 Notes and References

The research on GPS-denied source seeking has been initiated by the second author
and his students in [147] (for fully actuated point mass vehicles in 2D), [31, 48, 146]
(for nonholonomic unicycles), [28] (for underactuated vehicles in 3D), and [30] (for
models of fish locomotion involving multi-link structures in ideal fluid and flexible
hydrofoils in vortical flows).

In this chapter, we have investigated a stochastic version of source seeking by
navigating the unicycle with the help of a random perturbation, achieving a behav-
ior that mimicks the chemotaxis-like motion observed in thebacterium Escherichia
coli (E. coli). E. coli is a single celled organism consisting of a cell body with mul-
tiple trailing flagella used for propulsion. In [18] and [19]it is observed that the
bacterium is able to move up chemical gradients towards higher densities of nutri-
ents by switching between alternate behaviors known as “run” and “tumble”. The
behavior “run” means that the bacterium moves in essentially a straight line by ro-
tating the flagella counter-clockwise as viewed from behindthe cell and the behav-
ior “tumble” means that the bacterium ceases forward motionand spins by turning
some flagella in a clockwise direction. It is also observed that the tumble behavior



6.9 Notes and References 137

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

X

Y

d0 = 0

d0 = 10000

d0 = 40000

(a)

−0.2 0 0.2
−0.2

0

0.2

X

Y

−0.2 0 0.2
−0.2

0

0.2

X

Y

−0.2 0 0.2
−0.2

0

0.2

X

Y

−0.2 0 0.2
−0.2

0

0.2

X

Y

d0 = 0

d0 = 40000

d0 = 10000

d0 = 80000

(b)

Fig. 6.14 Signal field with elliptical level sets. (a) The trajectories of the vehicle center for different
d0-values; (b) A zoomed in section of attractors for differentd0-values. The simulation parameters
areVc = 0.1,c= 10000,a= 0.1, g= 1, ε = 0.01,R= 0.1, f ∗ = 0, h= 1, qr = 1.5, qp = 0.25. The
source lies inr∗ = (0,0).

displays apparent random nature, although the net motion ofthe bacterium is not
completely random but is in the direction of higher nutrientconcentrations.



138 6 Stochastic Source Seeking for Nonholonomic Vehicles

Motivated by the chemotactic behavior ofE. coli, in this chapter we have con-
sidered the problem of stochastic source seeking for a nonholonomic unicycle. The
analogy is appropriate since neither the unicycle norE. coli can exhibit sideways
motions, though they can be steered. The unicycle vehicle that we considered in this
chapter has no knowledge of its own position, nor of the position of the source. It is
only able to sense a scalar signal which emanates from the source. In an application
to autonomous vehicles, the signal could be the concentration of a chemical or bi-
ological agent, or it could be an electromagnetic, acoustic, thermal or radar signal.
The strength of the signal is assumed to decay away from the source through diffu-
sion or other physical processes, however, the spatial distribution of the signal is not
available to the vehicle.

To find the source, we employed a stochastic extremum seekingapproach and
provide a stability analysis based on stochastic averagingtheorems that we devel-
oped in Chapter 4. With a controller that we designed in this chapter, the vehicle
is driven to approach a small neighborhood of the source in a manner that seems
partly random but is convergent in a suitable sense. We presented a stability proof
for the scheme with a static source and simulation results for both static and moving
sources. Convergence was proved both in the “almost sure” sense and “in probabil-
ity”.

It is important to consider the relative merits of the deterministic solution to the
source seeking problem in [31] and the stochastic solution presented here. As ex-
pected, the steering inputs in the stochastic approach are less smooth, which is a
disadvantage of the stochastic approach from the viewpointof actuator wear. How-
ever, the nearly random motion of the stochastic seeker has its advantage in appli-
cations where the seeker itself may be pursued by another pursuer. A seeker, which
successfully performs the source finding task but with an unpredictable, nearly ran-
dom trajectory, is a more challenging target, and is hence less vulnerable, than a
deterministic seeker.

Motivated byE. coli chemotaxis, in [101] the authors consider a similar problem
of seeking the maximum of a scalar signal, using a swarm of autonomous vehicles,
and propose a control design which induces the vehicles to perform a biased random
walk, with a net motion of the swarm towards the maximum, and achieving higher
vehicle densities near the maximum at the end of the search. Besides the difference
in the algorithms presented in [101] and in the present work,different results are
proved. The result in [101] guarantees that the probabilitydensity function of the
positions of the vehicles evolves towards a specified function of the spatial profile of
the measured signal, whereas in this chapter we proved convergence (in probability
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and almost surely), for any single vehicle, to a specific small neighborhood of the
source.

Another significant difference is that we establish exponential convergence, and
in fact characterize the best achievable value, and the worst-case value, of the ex-
ponential convergence rate, as a function of the design parameters. In contrast, in
[101] exponential convergence is not shown, nor formally claimed. A considerable
difference in performance is also observed in simulations.The algorithm in [101] at
best matches the convergence of the deterministic algorithm in [146], whereas the
present algorithm has superior convergence to that in [146]as it does not employ
motions that would, in the absence of a gradient, keep a vehicle in place on the av-
erage (such as random walk, or the triangle and diamond-shaped gaits in [146]), but
employs a strategy that keeps the vehicle moving in some average direction even
when the gradient is zero, as is the case with the design in [31]. However, it is im-
portant to note that the results we proved here are only for signal fields that have
circular level sets, whereas in [101] such a restriction is not present.

The results of this chapter is not difficult to extend to 3D source seeking, as in
[28], for underwater vehicle applications, or even to source seeking for fish models,
as in [30].





Chapter 7
Stochastic Source Seeking with Tuning of
Forward Velocity

In this chapter, we investigate the same source seeking problem as in Chapter 6 but
by controlling the forward velocity of the vehicle instead of the angular velocity.

The chapter is organized as follows. In Section 7.1 we give the description of the
vehicle model and state the problem. In Section 7.2 we present our stochastic source
seeking controller and prove local exponential convergence to a small neighborhood
for the case where the signal field has circular level sets, namely, where the signal
depends only on the distance from the source and decays quadratically. In Section
7.3 we present simulations. Section 7.4 contains some notesand references.

7.1 The Model of Autonomous Vehicle

We consider a unicycle model of a mobile robot with sensor that is collocated at
the center of the vehicle. A diagram depicting the position,heading, angular and
forward velocities, and the sensor location on the autonomous vehicle is shown in
Fig. 7.1. The equations of motion for the vehicle center are

ẋc = vcos(θ ), (7.1.1)

ẏc = vsin(θ ), (7.1.2)

θ̇ = ω0, (7.1.3)

where(xc,yc) = zc is the center of the vehicle,θ is the orientation, andv, ω0 are the
forward and angular velocity inputs. Our stochastic extremum seeking algorithm

141
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Fig. 7.1 The notation used in the vehicle model wherezc = (xc,yc) is the center of the vehicle.

will tune only the forward velocity inputv, while keeping the angular velocity input
ω0 constant.

Different from the case in Chapter 6 and [92] of tuning the angular velocity,
the sensor is collocated with the vehicle center. For the non-collocated sensor case,
where the sensor is mounted some distance away from the center, there is no essen-
tial difference but the calculations are more complex.

7.2 Search Algorithm and Convergence Analysis

We assume that the signal source being tracked is distributed according to an un-
known nonlinear mapJ = f (x,y), which has an isolated local maximumf ∗ =
f (x∗,y∗) at(x∗,y∗). Our purpose is to control the autonomous vehicle to achievelo-
cal convergence to the maximizer(x∗,y∗) without knowledge of the shape off (x,y)
and using only the measurements of its value at the vehicle’sposition. A block dia-
gram of the stochastic extremum seeking scheme is shown in Fig. 7.2.

Consider the controller for the forward velocity,
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Fig. 7.2 Stochastic extremum seeking scheme for unicycle with forward velocity tuning.

v = cJsin(η)+
a
ε

[

−(η cos(η)+
1
2

g2sin(η))+g
√

ε cos(η)Ẇ

]

, (7.2.4)

wheredη = − 1
ε ηdt + g√

ε dW, 0 < ε < ε0 is a small parameter for fixedε0 > 0, Ẇ
denotes the white noise, andc,a,q > 0 are design parameters. For our analysis, we
assume that the nonlinear map is quadratic:

J = J∗ +(zc−z∗)TH(zc−z∗), (7.2.5)

whereH = HT < 0, zc = [xc,yc]
T , andz∗ = (x∗,y∗).

After defining,

xc−x∗ = x̃+acos(θ )sin(η), (7.2.6)

yc−y∗ = ỹ+asin(θ )sin(η), (7.2.7)

we can rewrite (7.2.5) as

J = J∗ +
1
2

(

Z̃ε +a

[
cos(θ )
sin(θ )

](

Z̃ε +a

[
cos(θ )
sin(θ )

]

sin(η)

))

, (7.2.8)

whereZ̃ε denotes the error variables
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Z̃ε =

[
x̃
ỹ

]

. (7.2.9)

Here we use the superscriptε to make the dependence on the small parameterε
more clear. Then by (7.1.1) (7.1.2), (7.1.3), (7.2.4), (7.2.6), (7.2.7), and Ito formula,
we have the following error dynamics

dZ̃ε

dt
=

(

aω0

[
−sin(θ )
cos(θ )

]

+cJ

[
cos(θ )
sin(θ )

])

sin(η)

=

[
−sin(θ )
cos(θ )

]

aω0sin(η)+c

[
cos(θ )
sin(θ )

]

sin(η)

{

J∗ +
1
2

Z̃εT
HZ̃ε

+a

[
cos(θ )
sin(θ )

]T

sin(η)HZ̃ε +
a2

2

[
cos(θ )
sin(θ )

]T

H

[
cos(θ )
sin(θ )

]

sin2(η)

}

,

(7.2.10)
dθ
dt

= ω0. (7.2.11)

By the definition of Ito stochastic differential equation, we have

η(t) = η(0)−
∫ t

0

1
ε

η(s)ds+
∫ t

0

g√
ε

dW(s). (7.2.12)

Thus, it holds that

η(εt) = η(0)−
∫ t

0
η(εu)du+

∫ t

0

g√
ε

dW(εu). (7.2.13)

Now define

B(t) =
1√
ε

W(εt), (7.2.14)

χ(t) = η(εt) . (7.2.15)

Then, the error dynamics (7.2.10)-(7.2.11) are transformed to

dZ̃ε

dt
=

[
−sin(θ )
cos(θ )

]

aω0sin(χ(t/ε))+c

[
cos(θ )
sin(θ )

]

sin(χ/ε)

{

J∗ +
1
2

Z̃εT
HZ̃ε
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+a

[
cos(θ )
sin(θ )

]T

sin(χ(t/ε))HZ̃ε +
a2

2

[
cos(θ )
sin(θ )

]T

H

[
cos(θ )
sin(θ )

]

×sin2(χ(t/ε))

}

, (7.2.16)

dθ
dt

= ω0, (7.2.17)

where

dχ(t) = −χ(t)dt+gdB(t), (7.2.18)

B(t) is a standard Brownian motion and the processχ(t) is an Ornstein-Uhlenbeck
(OU) process, which is ergodic with invariant distribution

µ(dy) =
1√
πg

e
− y2

g2 dy. (7.2.19)

Since

∫

R

sin2k+1(y)µ(dy) =
∫ +∞

−∞
sin2k+1(y)

1√
πg

e
− y2

g2 dy= 0, k = 0,1,

∫

R

sin2(y)µ(dy) =
∫ +∞

−∞
sin2(y)

1√
πg

e
− y2

g2 dy=
1
2
(1−e−g2

), (7.2.20)

by (4.1.12), we obtain the average system of (7.2.16)–(7.2.17),

dZ̃ave

dt
=

ca
2

(1−e−g2
)

[
cos(θ ave)
sin(θ ave)

][
cos(θ ave)
sin(θ ave)

]T

HZ̃ave, (7.2.21)

dθ ave

dt
= ω0. (7.2.22)

Using the property of persistency of excitation (PE) of[cos(θ0 + ω0t),sin(θ0 +
ω0t)]T , it can be shown that the linear time-varying system

dZ̃ave

dt
=

ca
2

(1−e−g2
)Ψ (t)HZ̃ave, (7.2.23)

where
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Ψ(t) =

[
cos(θ0 + ω0t)
sin(θ0 + ω0t)

][
cos(θ0 + ω0t)
sin(θ0 + ω0t)

]T

, (7.2.24)

is exponentially stable for anyθ0 and anyω0 6= 0 (see Lemma 3.4,[138]). Thus,
there existM,γ > 0 such that the following holds for the average system (7.2.21)–
(7.2.22):

|Z̃ave(t)| ≤ Me−γt |Z̃0|, (7.2.25)

θ ave(t) = θ0 + ω0t, ∀t ≥ 0, (7.2.26)

for all (Z0,θ0) ∈ R3 and allω0 6= 0.
If the error dynamics (7.2.16)-(7.2.17) have a unique continuous solution on

[0,∞), then by the approximate result Theorem 4.1, we have for anyδ > 0

lim
ε→0

inf

{

t ≥ 0 :

∣
∣
∣
∣

[
Z̃ε (t)
θ ε(t)

]

−
[

Z̃ave(t)
θ ave(t)

]∣
∣
∣
∣
> δ

}

= +∞, a.s. (7.2.27)

and there exist a functionT(ε) : (0,ε0) → N such that for anyδ > 0

lim
ε→0

P

{

sup
0≤t≤T(ε)

∣
∣
∣
∣

[
Z̃ε (t)
θ ε(t)

]

−
[

Z̃ave(t)
θ ave(t)

]∣
∣
∣
∣
> δ

}

= 0, (7.2.28)

where
lim
ε→0

T(ε) = +∞. (7.2.29)

Noting (7.2.25) and (7.2.26), we have

lim
ε→0

inf

{

t ≥ 0 :

∣
∣
∣
∣

[
Z̃ε(t)

θ ε(t)−θ0−ω0t

]∣
∣
∣
∣
≤ Me−γt |Z̃ε

0|+ δ

}

= +∞, a.s. (7.2.30)

and

lim
ε→0

P

{∣
∣
∣
∣

[
Z̃ε (t)

θ ε(t)−θ0−ω0t

]∣
∣
∣
∣
≤ Me−γt |Z̃ε

0|+ δ ,∀t ∈ [0,T(ε)]

}

= 1. (7.2.31)

Finally, recall that

Z̃ε =

[
x−x∗

y−y∗

]

+a

[
cos(θ )
sin(θ )

]

sin(η), (7.2.32)
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which leads us to the following result.

Theorem 7.1.Consider the vehicle (7.1.1)–(7.1.3) under the controller(7.2.4). If
the error dynamics (7.2.16)-(7.2.17) have a unique continuous solution on[0,∞),
then there exist constants r,c,γ > 0 and a function T(ε) : (0,ε0) → N such that for
any initial condition|zc(0)−z∗| < r and anyδ > 0,

lim
ε→0

inf

{

t ≥ 0 :

∣
∣
∣
∣
∣
∣





xε(t)−x∗

yε(t)−y∗

θ ε(t)−θ0−ω0t





∣
∣
∣
∣
∣
∣

> c

∣
∣
∣
∣

[
x0−x∗

y0−y∗

]∣
∣
∣
∣
e−γt + δ +O(a)

}

= +∞, a.s.

(7.2.33)

and

lim
ε→0

P

{
∣
∣
∣
∣
∣
∣





xε(t)−x∗

yε(t)−y∗

θ ε(t)−θ0−ω0t





∣
∣
∣
∣
∣
∣

≤ c

∣
∣
∣
∣

[
x0−x∗

y0−y∗

]∣
∣
∣
∣
e−γt + δ +O(a), ∀t ∈ [0,T(ε)]

}

= 1

(7.2.34)

with limε→0T(ε) = +∞.

Remark 7.1.To analyze the solution property of the error dynamics (7.2.16), we use
the stochastic averaging method as in Chapter 6, but here itscorresponding average
system (7.2.21) is time-varying. To deal with this difficulty, we consider the system
(7.2.16)-(7.2.17), however, the corresponding average system (7.2.21)-(7.2.22) is
not exponentially stable. Thus, the stochastic averaging theorem is not applicable.
Here we use the PE property and our developed approximation results in Chapter 4
to overcome this challenge.

7.3 Simulation

For a numerical example, we employ the forward velocity controller (7.2.4), with
parametersε = 0.05,a = 0.025,c = 25,g = 0.6, to steer the unicycle withω0 = 5
rad/sec in an unknown signal field, given by

J = 1−0.5(xc−x∗)2−0.25(yc−y∗)2,

where(x∗,y∗) = (0,0). Hence,
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Fig. 7.3 (a) The trajectory of the vehicle center, and (b) a zoomed in section of the vehicle trajec-
tory, displaying the vehicle motion more clearly. The source is at(0,0) and the vehicle is initialized
at (1,1.5).

H =

[
−0.5 0

0 −0.25

]

.

The vehicle’s initial position is(xc(0),yc(0)) = (1,1.5).
Fig. 7.3 shows the trajectory of the vehicle as it converges towards a small neigh-

borhood of the source. It is interesting to note the star-shaped trajectory that occurs
on average in Fig. 7.3(b) and the star-pattern that occurs when deterministic ex-
tremum seeking is employed [146]. Fig. 7.4 depicts the time history of the measured
signal field, which converges to a neighborhood ofJ∗ = 1. The time histories of the
x- andy-positions are shown in Fig. 7.5.

7.4 Notes and References

This chapter is the stochastic version of the deterministicresult in [146]. Owing to
the cooccurrence of a sinusoidal signal and stochastic perturbation, the determinis-
tic/stochastic averaging theorems are not applicable. In this chapter, we replace the
time-varying average error system (the “time-varying” character is caused by the si-
nusoidal evolution of vehicle heading) by a time-invariantaverage system with one
more state and supply convergence analysis by the approximation results developed
in Chapter 4.
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Fig. 7.4 Time history of the signal field measured at the vehicle’s position.
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Fig. 7.5 Time history of the vehicle’s position (a)x-position and (b)y-position.





Chapter 8
Multi-parameter Stochastic Extremum Seeking
and Slope Seeking

In Chapters 5, 6, and 7 we considered single-input ES problems, even though
the physical space had more than one dimensions, such as in the source seeking
problems in Chapters 6, and 7. In this chapter we introduce multivariable (multi-
parameter) ES algorithms, in which a distinct white noise signal is used for each
channel of the input vector.

Numerous applications motivate the development of multivariable extremum
seeking: formation flight for drag minimization, source seeking with fully actuated
vehicles, locomotion of fish with elongated bodies that can be approximated by a
mechanism with more than two links, beam matching in chargedparticle accelera-
tors, and many other problems where performance is shaped using more than one
parameter.

In this chapter we first develop the tools for a theoretical analysis of multi-
parameter stochastic ES algorithms. These tools are multi-input stochastic aver-
aging theorems in Section 8.1. Then, we introduce multi-parameter stochastic ES
algorithms for static maps in Section 8.2. Finally, in Section 8.3 we present stochas-
tic gradient-seeking algorithms, in which the input to a plant is tuned to a value at
which the gradient of the map approximately equals the commanded gradient.

8.1 Multi-input Stochastic Averaging

Consider the following system

151
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{
dXε (t)

dt = a(Xε(t),Y1(t/ε1),Y2(t/ε2), . . . ,Yl (t/εl )),
Xε(0) = x,

(8.1.1)

whereXε(t) ∈ Rn, Yi(t) ∈ Rmi ,1≤ i ≤ l are time homogeneous continuous Markov
processes defined on a complete probability space(Ω ,F ,P), whereΩ is the sam-
ple space,F is theσ -field, andP is the probability measure. The initial condition
X(0) = x is deterministic. The small parametersεi , i = 1,2, . . . , l , are in(0,ε0) with
fixed ε0 > 0, ε = [ε1, . . . ,εl ]

T . Let SYi ⊂ R
mi be the living space of the perturbation

process(Yi(t), t ≥ 0) and note thatSYi may be a proper (e.g. compact) subset ofRmi .
Assume that

εi =
ε1

ci
, i = 2, . . . , l (8.1.2)

for some positive real constantsci . Denote

Z1(t) = Y1(t), Z2(t) = Y2(c2t), . . . , Zl (t) = Yl (cl t). (8.1.3)

Then (8.1.1) becomes

{
dXε1(t)

dt = a(Xε1(t),Z1(t/ε1),Z2(t/ε1), . . . ,Zl (t/ε1)),
Xε1(0) = x,

(8.1.4)

whereXε1(t) , Xε1.
We have the following lemma about the ergodicity of the processes(Yi(t),t ≥ 0)

and(Zi(t), t ≥ 0),

Lemma 8.1.For i = 1, . . . , l, if the process(Yi(t),t ≥ 0) is ergodic with invariant
distribution µi(dxi) (i.e., if, for any x in the living space of(Yi(t),t ≥ 0), we have
that‖Pi(x, t, ·)−µi‖var → 0 as t→∞, where Pi(x,t, ·) is the distribution of Yi(t) when
Yi(0) = x, and‖ · ‖var is the total variation norm), then the process(Zi(t),t ≥ 0) is
ergodic with the same invariant distributionµi(dxi).

Proof. SinceZ1 ≡ Y1, we only need to prove the claim fori = 2, . . . , l . For any
i = 2, . . . , l , denote byQi(zi , t, ·) the distribution ofZi(t) whenZi(0) = Yi(0) = zi .
Then by the definition ofZi(t), we have thatQi(zi ,t, ·) = Pi(zi ,cit, ·), and thus

‖Qi(zi , t, ·)− µi‖var = ‖Pi(zi ,cit, ·)− µi‖var → 0 ast → ∞. (8.1.5)
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The proof is complete.

DenoteZ(t) = [Z1(t)T ,Z2(t)T , . . . ,Zl (t)T ]T . Then for the vector-valued process,
we have the following result:

Lemma 8.2.If the process(Yi(t),t ≥ 0) is ergodic with invariant distributionµi(dxi),
and the processes(Y1(t), t ≥ 0),. . ., (Yl (t),t ≥ 0) are independent, then the process
(Z(t), t ≥ 0) is ergodic with the invariant distributionµ1(dx1)×·· ·×µl(dxl ).

Proof. By the independence of{Y1, . . . ,Yl}, we can assume that the process(Z(t),t ≥
0) lives in the product space ofSY1 ×·· ·×SYl . Denote the distribution ofZi(t) when
Zi(0) = zi , i = 1, . . . , l , by Qi(zi ,t, ·) and the distribution ofZ(t) whenZ(0) = z=
(z1, . . . ,zl ) by Q(z, t, ·). Then by the independence, we have that

Q(z, t, ·) = Q1(z1,t, ·)×·· ·×Ql (zl ,t, ·). (8.1.6)

And thus by Lemma 8.1, we get

‖Q(z, t, ·)− µ1×·· ·×µl‖var

= ‖Q1(z1, t, ·)×·· ·×Ql(zl , t, ·)− µ1× µ2×·· ·×µl‖var

≤ ‖Q1(z1, t, ·)×·· ·×Ql(zl , t, ·)− µ1×Q2(z2,t, ·)×·· ·×Ql (zl ,t, ·)‖var

+‖µ1×Q2(z2, t, ·)×·· ·×Ql(zl ,t, ·)− µ1× µ2×Q3(z3,t, ·)×·· ·×Ql (zl ,t, ·)‖var

+ · · · +‖µ1×·· ·×µl−1×Ql(zl ,t, ·)− µ1×·· ·×µl−1× µl‖var

≤ ‖Q1(z1, t, ·)− µ1‖var + · · ·+‖Ql(zl ,t, ·)− µl‖var → 0, t → ∞. (8.1.7)

The proof is complete.

So we obtain the average system of system (8.1.4) as follows:

dX̄(t)
dt

= ā(X̄(t)), X̄0 = x, (8.1.8)

where

ā(x) =

∫

SY1
×···×SYl

a(x,z1, . . . ,zl )µ1(dz1)×·· ·×µl(dzl ). (8.1.9)
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To develop a multi-input stochastic averaging theorem, we make the following
assumptions:

Assumption 8.1.The vector fielda(x,y1,y2, . . . ,yl ) is a continuous function of
(x,y1,y2, . . . ,yl ), and for anyx∈Rn, it is a bounded function ofy= [yT

1 ,yT
2 , . . . ,yT

l ]T .
Further it satisfies the locally Lipschitz condition inx ∈ Rn uniformly in y ∈
SY1 ×SY2 × ·· · ×SYl , i.e., for any compact subsetD ⊂ R

n, there is a constantkD

such that for allx1,x2 ∈ D and ally∈ SY1 ×SY2 ×·· ·×SYl ,

|a(x1,y)−a(x2,y)| ≤ kD |x1−x2|. (8.1.10)

Assumption 8.2.The perturbation processes(Yi(t),t ≥ 0), i = 1, . . . , l , are ergodic
with invariant distributionµi , respectively, and independent.

By the same method as in Chapter 4 for single input stochasticaveraging theo-
rem, we obtain the following multi-input averaging theorem:

Theorem 8.1.Consider system (8.1.1) under Assumptions 8.1 and 8.2. If the equi-
librium X̄(t) ≡ 0 of the average system (8.1.8) is exponentially stable, then

(i) The solution of system (8.1.1) is weakly stochastic exponentially stable, i.e.,
there exist constants r> 0, c> 0 andγ > 0 such that for any initial condition
x ∈ {x̌ ∈ Rn : |x̌| < r}, and anyδ > 0, the solution Xε(t) = Xε1(t) of system
(8.1.1) satisfies

lim
ε1→0

inf
{

t ≥ 0 : |Xε1(t)| > c|x|e−γt + δ
}

= +∞, a.s. (8.1.11)

(ii) There exists a function T(ε1) : (0,ε0) → N such that

lim
ε1→0

P

{

sup
0≤t≤T(ε1)

{
|Xε1(t)|−c|x|e−γt}> δ

}

= 0 with lim
ε1→0

T(ε1) = ∞.

(8.1.12)

Furthermore, (8.1.12) is equivalent to
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lim
ε1→0

P
{
|Xε1(t)| ≤ c|x|e−γt + δ ,∀t ∈ [0,T(ε1)]

}
= 1 with lim

ε1→0
T(ε1) = ∞.

(8.1.13)

8.2 Multi-parameter Stochastic ES for Static Maps

8.2.1 Algorithm for multi-parameter stochastic ES

Let f (θ ) be a function of the form

f (θ ) = f ∗ +(θ −θ ∗)TP(θ −θ ∗), (8.2.14)

whereP = (pi j )l×l ∈ Rl×l is an unknown symmetric matrix,f ∗ is an unknown
constant,θ = [θ1, . . . ,θl ]

T , andθ ∗ = [θ ∗
1 , . . . ,θ ∗

l ]T . Any C2(Rl ) function f (θ ) with
an extremum atθ = θ ∗ and with∇2 f 6= 0 can be locally approximated by (8.2.14).
Without loss of generality, we assume the matrixP is positive definite.

The objective is to design an algorithm to make|θ −θ ∗| as small as possible, so
that the outputy = f (θ ) is driven to its minimumf ∗.

Denoteθ̂ j(t) as the estimate of the unknown optimal inputθ ∗
j and let

θ̃ j (t) = θ ∗
j − θ̂ j(t) (8.2.15)

denote the estimation error.
We use a stochastic perturbation to develop a gradient estimate for every param-

eter. Let

θ j(t) = θ̂ j(t)+a j sin(η j (t)), (8.2.16)

wherea j > 0 is the perturbation amplide and(η j(t),t ≥ 0) is OU process which is
given by

ε jdη j(t) = −η j(t)dt+
√

ε j q jdWj(t), (8.2.17)

whereε j , j = 1, . . . , l are small parameters.
By (8.2.15) and (8.2.16), we have

θ j(t)−θ ∗
j = a j sin(η j(t))− θ̃ j(t) (8.2.18)
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Substituting (8.2.18) into (8.2.14), we have the output

y(t) = f ∗ +(θ (t)−θ ∗)TP(θ (t)−θ ∗), (8.2.19)

whereθ (t)−θ ∗ = [a1sin(η1(t))− θ̃1(t), . . . ,al sin(ηl (t))− θ̃l(t)]T .
We design the parameter update law as follows

dθ̂ j(t)
dt

= −k ja j sin(η j(t))(y(t)− ξi(t)), (8.2.20)

dξ j(t)
dt

= −h jξ j(t)+h jy(t), (8.2.21)

ε j dη j(t) = −η j(t)dt+
√

ε jq jdWj(t), (8.2.22)

whereh j ,k j , j = 1, . . . , l are scalar design parameters. To improve the performance,
here we use a washout filterss+h j

for each parameter and the gradient estimation for

each parameter is based on the outputs
s+h j

[y] = y(t)− ξ j(t) of this filter.

Defineχ j(t) = η j(ε j t) andB j(t) = 1√ε j
Wj(ε j t). Then we have

dχ j(t) = −χ j(t)dt +q jdBj(t), (8.2.23)

whereB j(t) is a 1-dimensional standard Brownian motion defined on the complete
probability space(Ω ,F ,P), while [B1(t), . . . ,Bl (t)]T is anl -dimensional indepen-
dent standard Brownian motion on the same space.

Define the output error variable

ej(t) = ξ j(t)− f ∗, j = 1, . . . , l . (8.2.24)

Therefore, it follows from (8.2.15), (8.2.19), (8.2.20) and (8.2.21) that we have the
error dynamics

dθ̃ j(t)
dt

= −dθ̂ j(t)
dt

(8.2.25)

= −k ja j sin(η j(t))((θ (t)−θ ∗)TP(θ (t)−θ ∗)−ej(t))
= −k ja j sin(χ j(t/ε j))((θ (t)−θ ∗)TP(θ (t)−θ ∗)−ej(t)),

dej(t)

dt
= h j(y(t)− f ∗−ej(t)) (8.2.26)

= h j((θ (t)−θ ∗)TP(θ (t)−θ ∗)−ej(t)),

j = 1, . . . , l .
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Denoteθ̃ (t)= [θ̃1(t), . . . , θ̃l (t)]T ande(t) = [e1(t), . . . ,el (t)]T , which are depen-
dent on the small parameterε1. Then we have the following result:

Theorem 8.2.Consider the static map (8.2.14) under the parameter updatelaw
(8.2.20)–(8.2.22). Then the error system (8.2.25)–(8.2.26) is weak stochastic expo-
nentially stable, i.e., there exist constants r> 0, c > 0 andγ > 0 such that for any
initial condition |Λ ε1

1 (0)| < r, and anyδ > 0,

lim
ε1→0

inf
{
t ≥ 0 : |Λ ε1

1 (t)| > c|Λ ε1
1 (0)|e−γt + δ

}
= +∞, a.s. (8.2.27)

Moreover, there exists a function T(ε1) : (0,ε0) → N such that

lim
ε1→0

P

{

sup
0≤t≤T(ε1)

{
|Λ ε1

1 (t)|−c|Λ ε1
1 (0)|e−γt}> δ

}

= 0 with lim
ε1→0

T(ε1) = ∞,

(8.2.28)

where Λ ε1
1 (t) =

(
θ̃ (t)T ,e(t)T

)
−
(
0T

l×l ,∑
l
i=1 pii a2

i G0(qi)IT
1

)
, I1 = [1,1, . . . ,1]T1×l .

Furthermore, (8.2.28) is equivalent to

lim
ε1→0

P
{
|Λ ε1

1 (t)| ≤ c|Λ ε1
1 (0)|e−γt + δ ,∀t ∈ [0,T(ε1)]

}
= 1 with lim

ε1→0
T(ε1) = ∞.

(8.2.29)

8.2.2 Convergence analysis

We rewrite the error dynamics (8.2.25)–(8.2.26) as

dθ̃ j(t)
dt

= k ja j sin(χ j(t/ε j))
(
[a1sin(χ1(t/ε1))− θ̃1(t), . . . ,al sin(χl (t/εl ))− θ̃l(t)]

TP

[a1sin(χ1(t/ε1))− θ̃1(t), . . . ,al sin(χl (t/εl ))− θ̃l(t)]
)

= k ja j sin(χ j(t/ε j))×(
l

∑
i,k=1

pik
(
ai sin(χi(t/εi))− θ̃i(t)

)(
ak sin(χk(t/εk))− θ̃k(t)

)
−ej(t)

)

,

(8.2.30)

dei(t)
dt

= h j

(
l

∑
i,k=1

pik
(
ai sin(χi(t/εi))− θ̃i(t)

)(
ak sin(χk(t/εk))− θ̃k(t)

)
−ej(t)

)

,
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j = 1, . . . , l .
(8.2.31)

Now we calculate the average system of the error system. Assume that

εi =
ε1

ci
, i = 2, . . . , l (8.2.32)

for some positive real constantsci . Denote

Z1(t) = χ1(t), Z2(t) = χ2(c2t), . . . , Zl (t) = χ(cl t). (8.2.33)

Then the error dynamics become

dθ̃ j(t)

dt
= k ja j sin(Z j(t/ε1))×
(

l

∑
i,k=1

pik
(
ai sin(Zi(t/ε1))− θ̃i(t)

)(
ak sin(Zk(t/ε1))− θ̃k(t)

)
−ej(t)

)

,

(8.2.34)
dej(t)

dt
= h j(y(t)− f ∗−ej(t))

= h j

(
l

∑
i,k=1

pik
(
ai sin(Zi(t/ε1))− θ̃i(t)

)(
ak sin(Zk(t/ε1))− θ̃k(t)

)
−ej(t)

)

,

j = 1, . . . , l . (8.2.35)

It is known that for givenj = 1, . . . , l , the stochastic process(χ j(t),t ≥ 0) is er-

godic and has invariant distributionµ j(dxj) = 1√
πq j

e
−

x2
j

q2
j dxj . Thus by Lemma 8.2,

the vector-valued process[Z1(t),Z2(t), . . . ,Zl (t)]T is also ergodic with invariant dis-
tribution µ1(dx1)×·· ·×µl (dxl ).

To calculate the average system of system (8.2.34)–(8.2.34), we need to consider
the following terms

sin(Z j(t/ε1))sin(Zi(t/ε1))sin(Zk(t/ε1)), i 6= j, j 6= k,k 6= i, (8.2.36)

sin3(Z j (t/ε1)), (8.2.37)

sin(Z j(t/ε1))sin2(Zi(t/ε1)), i 6= j, (8.2.38)

sin2(Z j (t/ε1)), (8.2.39)
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sin(Z j(t/ε1))sin(Zi(t/ε1)), i 6= j. (8.2.40)

Averaging calculation gives
∫

R3
sin(xi)sin(x j)sin(xk)µi(dxi)× µ j(dxj)× µk(dxk)

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
sin(xi)sin(x j)sin(xk)

1√
πqi

e
− x2

i
q2
i

1√
πq j

e
−

x2
j

q2
j

1√
πqk

e
− x2

k
q2
k

×dxidxjdxk = 0, (8.2.41)

∫

R

sin2k+1(xi)µi(dxi) =

∫ +∞

−∞
sin2k+1(xi)

1√
πqi

e
− x2

i
q2
i dxi = 0, k = 0,1,2, . . . ,

(8.2.42)
∫

R2
sin2(xi)sin(x j)µi(dxi)× µ j(dxj)

=
∫ +∞

−∞

∫ +∞

−∞
sin2(xi)sin(x j)

1√
πqi

e
− x2

i
q2
i

1√
πq j

e
−

x2
j

q2
j dxidxj = 0, (8.2.43)

∫

R

sin2(xi)µi(dxi) =

∫ +∞

−∞
sin2(xi)

1√
πqi

e
− x2

i
q2
i dxi =

1
2
(1−e−q2

i ) , G0(qi),

(8.2.44)
∫

R2
sin(xi)sin(x j)µi(dxi)× µ j(dxj)

=

∫ +∞

−∞

∫ +∞

−∞
sin(xi)sin(x j)

1√
πqi

e
− x2

i
q2
i

1√
πq j

e
−

x2
j

q2
j dxidxj = 0. (8.2.45)

Then we get the average error system as follows:

dθ̃ ave
j (t)

dt
= −a2

j k j(1−e−q2
j )

l

∑
i=1

p ji θ̃ ave
i (t), (8.2.46)

deave
j (t)

dt
= h j

(
l

∑
i=1

pii a
2
i
1
2
(1−e−q2

i )+
l

∑
i,k=1

pikθ̃ ave
i θ̃ ave

k −eave
j (t)

)

,(8.2.47)

j = 1, . . . , l .

In the matrix form, the average error system is
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dθ̃ ave(t)
dt

= −ΠPθ̃ ave(t), (8.2.48)

deave(t)
dt

= H

(
l

∑
i=1

pii a
2
i G0(qi)I1−eave(t)+Q(θ̃ ave(t))

)

, (8.2.49)

whereΠ =









a2
1k1(1−e−q2

1) 0 · · · 0
0 a2

2k2(1−e−q2
2) · · · 0

...
...

.. .
...

0 0 · · · a2
l kl (1−e−q2

l )









, θ̃ ave(t) = [θ̃ ave
1 (t),

. . .,θ̃ ave
l (t)]T , eave(t) = [eave

1 (t), . . . ,eave
l (t)]T , H =








h1 0 · · · 0
0 h2 · · · 0
...

...
.. .

...
0 0 · · · hl








, Q(θ̃ ave(t)) =

θ̃ aveT (t)Pθ̃ ave(t)I1, I1 = [1,1, . . . ,1]T1×l .

The average error system has equilibrium(θ̃ eT
,eeT

)= (0T
l×1,∑

l
i=1 pii a2

i G0(qi)IT
1 ).

The corresponding Jacobian matrix at this equilibrium is

Ξ1 =

[
−ΠP 0

0 −H

]

. (8.2.50)

SinceΠ andP are positive definite andΠ is diagonal, all eigenvalues of the matrix
ΠP are positive, i.e., the eigenvalues of the matrix−ΠP are negative. Furthermore,
from the facthi > 0, i = 1, . . . , l it follows that the matrixΞ1 is Hurwitz and hence the
equilibrium is exponentially stable. Thus by Theorem 8.1, the convergence results
(8.2.27) and (8.2.29) hold. The proof is complete.

To quantify the output convergence to the extremum, for anyε1 > 0, define a
stopping time

τδ
ε1

= inf
{

t ≥ 0 : |Λ ε1
1 (t)| > c|Λ ε1

1 (0)|e−γt + δ
}

.

Then by (8.2.27), we know that lim
ε1→0

τδ
ε1

= ∞, a.s., and

∣
∣θ̃ (t)

∣
∣≤ c

∣
∣Λ ε1

1 (0)
∣
∣e−γt + δ , ∀t ≤ τδ

ε1
. (8.2.51)
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Denote θ̂ (t)= [θ̂1(t), . . . , θ̂l (t)]T , asin(η(t))= [a1sin(η1(t)), . . . , al sin(ηl (t))]T .
Then the outputy(t) = f (θ ) = f (θ ∗ + θ̃ (t) + asin(η(t))), for ▽ f (θ ∗) = 0, we
have

y(t)− f (θ ∗) = (θ̃ (t)+asin(η(t)))TP(θ̃ (t)+asin(η(t)))
+O

(
|θ̃ (t)+asin(η(t))|3

)
. (8.2.52)

Thus by (8.3.75), it holds that

|y(t)− f (θ ∗)| ≤ O(|a|2)+O(δ 2)+C
∣
∣Λ ε1

1 (0)
∣
∣2e−2γt , ∀t ≤ τδ

ε1
, (8.2.53)

for some positive constantC, where|a|=
√

a2
1 +a2

2+ · · ·+a2
l . Similarly, by (8.2.29),

we have

lim
ε1→0

P
{

|y(t)− f (θ ∗)| ≤ O(|a|2)+O(δ 2)+C
∣
∣Λ ε1

1 (0)
∣
∣2 e−2γt ,∀t ∈ [0,T(ε1)]

}

= 1,

(8.2.54)

whereT(ε1) is a deterministic function with lim
ε1→0

T(ε1) = ∞.

Figure 8.1 displays the simulation results withf ∗ = 1,θ ∗ = [0,1]T , P =

[
1 1
1 2

]

in the static map (8.2.14) anda1 = 0.8,a2 = 0.6,k1 = 1.25,k2 = 5/3,h1 = 1,h2 =
2,q1 = q2 = 1,ε1 = 0.25,ε2 = 0.01 in the parameter update law (8.2.20)–(8.2.22)
and initial conditionθ̃1(0) = 1, θ̃2(0) =−1, θ̂1(0) =−1, θ̂2(0) = 2,ξ1(0) = ξ2(0) =
0.

8.3 Stochastic Gradient Seeking

8.3.1 Single-parameter stochastic slope seeking

Let f ′ref denote the commanded slope on an unknown single-input quadratic operat-
ing map. Let the map be parameterized as

f (θ ) = f ∗ + f ′ref(θ −θ ∗)+
f ′′

2
(θ −θ ∗)2, (8.3.55)
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Fig. 8.1 Stochastic extremum seeking with an OU process perturbation. Top: output and extremum
values. Bottom: solutions of the error system.

which means thatθ ∗ is the unknown input that produces the slopef ′ref, f ∗ is the
value of the output atθ = θ ∗, and f ′′ > 0 is the second derivative off (θ ) at the
point θ = θ ∗ where the slope isf ′ref. The object is to design an algorithm to make
θ (t)−θ ∗ as small as possible, so that the slopef ′(θ ) is driven to f ′ref.

Denoteθ̂ (t) as the estimate of the unknown optimal inputθ ∗. Let

θ̃ (t) = θ ∗− θ̂(t) (8.3.56)

denote the estimation error. Let

θ (t) = θ̂ (t)+asin(η(t)), (8.3.57)

wherea > 0 and(η(t), t ≥ 0) is a stochastic process satisfying
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η =

√
εq

εs+1
[Ẇ],or εdη = −ηdt+

√
εqdW, (8.3.58)

whereq > 0 andW(t), t ≥ 0 is a 1-dimensional standard Brownian motion defined
on some complete probability space(Ω ,F ,P). Thus, by (8.3.56) and (8.3.57), we
have

θ −θ ∗ = asin(η)− θ̃ . (8.3.59)

Substituting (8.3.59) into (8.2.14), we have the output

y = f ∗ + f ′ref(asin(η)− θ̃)+
f ′′

2
(asin(η)− θ̃)2. (8.3.60)

Now, we design the parameter update law as follows

dθ̂
dt

= −k
[
sin(η)(y− ξ )+ r( f ′ref)

]
, (8.3.61)

dξ
dt

= −hξ +hy, (8.3.62)

εdη = −ηdt+
√

εqdW, (8.3.63)

wherek > 0,h > 0 are scalar design parameters, andr is a function to be designed.

Defineχ(t) = η(εt) andB(t) = 1√
ε W(εt). Then we have

dχ(t) = −χ(t)dt+qdB(t), (8.3.64)

whereB(t) is a 1-dimensional standard Brownian motion.
Define the output error variable

e=
h

s+h
[y]− f ∗. (8.3.65)

Then we have the following error dynamics

dθ̃(t)
dt

= −dθ̂(t)
dt

= ksin(χ(t/ε))

·
(

f ′ref(asin(χ(t/ε))− θ̃)+
f ′′

2
(asin(χ(t/ε))− θ̃)2−e

)

+kr( f ′ref),
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(8.3.66)
de(t)

dt
= h

(

f ′ref(asin(χ(t/ε))− θ̃)+
f ′′

2
(asin(χ(t/ε))− θ̃)2−e

)

.

(8.3.67)

Now we calculate the average system. By (5.1.18), (5.1.19) and (4.1.11), we
obtain that the average system of (8.3.66)–(8.3.67) is

dθ̃ ave(t)
dt

=
ak f′ref

2
(1−e−q2

)− ak f′′

2
(1−e−q2

)θ̃ ave+kr( f ′ref), (8.3.68)

deave(t)
dt

= h

(

− f ′refθ̃
ave+

f ′′a2

4
(1−e−q2

)+
f ′′

2
θ̃ ave2 −eave

)

. (8.3.69)

We choose

r( f ′ref) = −a f ′ref

2
(1−e−q2

). (8.3.70)

Then by simple calculation, we get the following equilibrium of the above average

system at̃θ a,e = 0, ea,e = a2 f ′′
4 (1−e−q2

) with the corresponding Jacobian matrix

[

− ak f′′
2 (1−e−q2

) 0
−h f ′ref −h

]

. (8.3.71)

Noticing that f ′′ > 0, k > 0, a > 0, andh > 0, the above Jacobian is Hurwitz, i.e.,

the equilibrium
(

0, a2 f ′′
4 (1−e−q2

)
)

of the average system is exponentially stable.

Then by stochastic averaging Theorems 4.5 and 4.6, we have the following result.

Theorem 8.3.Consider the static map (8.3.55) with the commanded slope under the
parameter update law (8.3.61)–(8.3.63). Then there exist constants r> 0,c> 0,γ >
0 and a function T(ε) : (0,ε0) → N such that for any initial condition

∣
∣Λ ε

2 (0)
∣
∣< r

and anyδ > 0,

lim
ε→0

inf
{

t ≥ 0 : |Λ ε
2 (t)| > c|Λ ε

2 (0)|e−γt + δ
}

= ∞, a.s. (8.3.72)

and

lim
ε→0

P
{
|Λ ε

2 (t)| ≤ c|Λ ε
2 (0)|e−γt + δ , ∀t ∈ [0,T(ε)]

}
= 1 with lim

ε→0
T(ε) = ∞,

(8.3.73)
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whereΛ ε
2 (t) , (θ̃ ε(t),eε(t))−

(

0, a2 f ′′
4 (1−e−q2

)
)

.

These two results imply that the norm of the error vectorΛ ε
2 (t) exponentially

converges, both almost surely and in probability, to below an arbitrarily small resid-
ual valueδ , over an arbitrarily long time interval, which tends to infinity asε goes
to zero.

In particular, theθ̃ ε(t)-component of the error vector converges to belowδ . To
quantify the output convergence to the optimum, for anyε > 0, define a stopping
time

τδ
ε = inf

{
t ≥ 0 : |Λ ε

2 (t)| > c|Λ ε
2 (0)|e−γt + δ

}
. (8.3.74)

Then by (8.3.72) and the definition ofΛ ε
2 (t), we know that lim

ε→0
τδ

ε = ∞, a.s., and

∣
∣θ̃ ε(t)

∣
∣≤ c|Λ ε

2 (0)|e−γt + δ , ∀t ≤ τδ
ε . (8.3.75)

Sincey(t) = f (θ ∗ + θ̃ ε(t)+asin(η(t))), we have

y(t)− f (θ ∗) = f ′(θ ∗)(θ̃ ε(t)+asin(η(t)))+
f
′′
(θ ∗)
2

(θ̃ ε(t)+asin(η(t)))2

+O
(
(θ̃ ε(t)+asin(η(t)))3) . (8.3.76)

Thus by (8.3.75), it holds that

|y(t)− f (θ ∗)| ≤ O(a)+O(δ )+c|Λ ε
2 (0)|e−γt +C|Λ ε

2 (0)|2e−2γt , ∀t ≤ τδ
ε ,

(8.3.77)

for some positive constantC. Similarly, by (8.3.73),

lim
ε→0

P
{

|y(t)− f (θ ∗)| ≤ O(a)+O(δ )+c|Λ ε
2 (0)|e−γt +C|Λ ε

2 (0)|2e−2γt ,

∀t ∈ [0,T(ε)]} = 1, (8.3.78)

whereT(ε) is a deterministic function with lim
ε→0

T(ε) = ∞.

Figure 8.2 displays the simulation results withf ∗ = 1, f ′ref = 0.5, θ ∗ = 0 in the
static map (8.3.55) anda= 0.1,k= 1,q= 1,ε = 0.25,h= 1 in the parameter update
law (8.3.61)–(8.3.62) and initial conditioñθ (0) = 1, θ̂ (0) = −1, ξ (0) = 1.99.
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Fig. 8.2 Single-parameter stochastic slope seeking with an OU process perturbation. Top: output
and optimum values. Bottom: solutions of the error system.

8.3.2 Multi-parameter stochastic gradient seeking

Analogous to the single parameter case, we letf (θ ) be a function of the form:

f (θ ) = f ∗ +JT(θ −θ ∗)+ (θ −θ ∗)TP1(θ −θ ∗), (8.3.79)

whereP1 = PT
1 = (p1i j )l×l ∈ Rl×l , θ = [θ1, . . . ,θl ]

T , θ ∗ = [θ ∗
1 ,. . . , θ ∗

l ]T , andJ =
[J1,J2, . . . ,Jl ] is the commanded gradient.

According to the multi-parameter stochastic extremum seeking algorithm, we
denoteθ̂ j(t) as the estimate of the unknown optimal inputθ ∗

j and let

θ̃ j (t) = θ ∗
j − θ̂ j(t) (8.3.80)
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denote the estimation error.
We use stochastic perturbation to develop a gradient estimate for every parameter.

Let

θ j(t) = θ̂ j(t)+a j sin(η j (t)), (8.3.81)

wherea j > 0 is the perturbation amplitude and(η j(t),t ≥ 0) is an OU process which
is given by

ε jdη j(t) = −η j(t)dt+
√

ε j q jdWj(t), (8.3.82)

whereε j , j = 1, . . . , l are small parameters.
By (8.3.80) and (8.3.81), we have

θ j(t)−θ ∗
j = a j sin(η j(t))− θ̃ j(t). (8.3.83)

Substituting (8.3.83) into (8.3.79), we have the output

y(t) = f ∗ +JT(θ (t)−θ ∗)+ (θ (t)−θ ∗)TP1(θ (t)−θ ∗), (8.3.84)

whereθ (t)−θ ∗ = [a1sin(η1(t))− θ̃1(t), . . . ,al sin(ηl (t))− θ̃l(t)]T .
We design the parameter update law as follows

dθ̂ j(t)

dt
= −k j [a j sin(η j(t))(y(t)− ξ j(t))+ r j(Jj)] , (8.3.85)

dξ j(t)

dt
= −h jξ j(t)+h jy(t), (8.3.86)

ε jdη j(t) = −η j(t)dt+
√

ε j q jdWj(t), (8.3.87)

whereh j ,k j , j = 1, . . . , l are scalar design parameters, andr j are functions to be de-
signed. We use a washout filterss+h j

for each parameter and the gradient estimation

for each parameter is based on the outputs
s+h j

[y] = y(t)− ξ j(t) of this filter.

Defineχ j(t) = η j(ε j t) andB j(t) = 1√ε j
Wj(ε j t). Then we have

dχ j(t) = −χ j(t)dt +q jdBj(t), (8.3.88)

whereB j(t) is a 1-dimensional standard Brownian motion defined on the complete
probability space(Ω ,F ,P), while [B1(t), . . . ,Bl (t)]T is anl -dimensional indepen-
dent standard Brownian motion on the same space.
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Define the output error variable

ej(t) = ξ j(t)− f ∗, j = 1, . . . , l . (8.3.89)

Therefore, it follows from (8.3.80), (8.3.84), (8.3.85) and (8.3.86) that we have the
error dynamics

dθ̃ j(t)
dt

= −dθ̂ j(t)
dt

= k j
[
a j sin(η j(t))(J

T(θ (t)−θ ∗)+ (θ (t)−θ ∗)TP1(θ (t)−θ ∗)−ej(t))
+r j(Jj)]

= k j
[
a j sin(χ j(t/ε j))(J

T(θ (t)−θ ∗)+ (θ (t)−θ ∗)TP1(θ (t)−θ ∗)−ej(t))
+r j(Jj)] ,

= k j

[

a j sin(η j (t))

(
l

∑
k=1

Jk(ak sin(χk(t/εk))− θ̃k)

+
l

∑
i,k=1

p1ik(ai sin(χi(t/εi))− θ̃i)(ak sin(χk(t/εk))− θ̃k)−ej(t)

)

+r j(Jj)] , (8.3.90)

dej(t)

dt
= h j(y(t)− f ∗−ej(t))

= h j(J
T(θ (t)−θ ∗)+ (θ (t)−θ ∗)TP1(θ (t)−θ ∗)−ej(t)),

= h j

[
l

∑
k=1

Jk(ak sin(χk(t/εk))− θ̃k)

+
l

∑
i,k=1

p1ik(ai sin(χi(t/εi))− θ̃i)(ak sin(χk(t/εk))− θ̃k)−ej(t)

]

,(8.3.91)

j = 1, . . . , l .

Thus the corresponding average system is

dθ̃ ave
j (t)

dt
= a2

j k jJj
1−e−q2

j

2
−a2

j k j(1−e−q2
j )

l

∑
i=1

p1 ji θ̃ ave
i (t)+k j r j(Jj), (8.3.92)

deave
j (t)

dt
= h j

[

−
l

∑
k=1

Jkθ̃ ave
k +

l

∑
i=1

p1ii a
2
i
1−e−q2

i

2
+

l

∑
i,k=1

p1ikθ̃ ave
i θ̃ ave

k −eave
j (t)

]

(8.3.93)
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We choose

r j (Jj) = −a2
j Jj

1−e−q2
j

2
. (8.3.94)

Then in the matrix form, the average error system is

dθ̃ ave(t)
dt

= −ΠP1θ̃ ave(t), (8.3.95)

deave(t)
dt

= H

(

−JT θ̃ ave+
l

∑
i=1

p1ii a
2
i G0(qi)I1−eave(t)+Q(θ̃ ave(t))

)

,(8.3.96)

whereΠ =









a2
1k1(1−e−q2

1) 0 · · · 0

0 a2
2k2(1−e−q2

2) · · · 0
...

...
.. .

...

0 0 · · · a2
l kl (1−e−q2

l )









, θ̃ ave(t) = [θ̃ ave
1 (t),

. . .,θ̃ ave
l (t)]T , eave(t) = [eave

1 (t), . . . ,eave
l (t)]T , H =








h1 0 · · · 0
0 h2 · · · 0
...

...
.. .

...
0 0 · · · hl








, Q(θ̃ ave(t)) =

θ̃ aveT (t)P1θ̃ ave(t)I1, I1 = [1,1, . . . ,1]T1×l .

The average error system has equilibrium(θ̃ eT
,eeT

)= (0T
l×1,∑

l
i=1 p1ii a2

i G0(qi)IT
1 ).

The corresponding Jacobi matrix at this equilibrium is

Ξ2 =

[
−ΠP1 0
−HJT −H

]

. (8.3.97)

SinceΠ ,P1,H are positive definite andΠ is diagonal,Ξ2 is Hurwitz. By multi-input
stochastic averaging theorem given in Theorem 8.1, we have the following result:

Theorem 8.4.Consider the static map (8.3.79) under the parameter updatelaw
(8.3.85)–(8.3.87). Then the error system (8.3.90)–(8.3.91) is weak stochastic expo-
nentially stable, i.e., there exist constants r> 0, c > 0 andγ > 0 such that for any
initial condition |Λ ε1

3 (0)| < r, and anyδ > 0,

lim
ε1→0

inf
{

t ≥ 0 : |Λ ε1
3 (t)| > c|Λ ε1

3 (0)|e−γt + δ
}

= +∞, a.s. (8.3.98)
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Moreover, there exists a function T(ε1) : (0,ε0) → N such that

lim
ε1→0

P

{

sup
0≤t≤T(ε1)

{
|Λ ε1

3 (t)|−c|Λ ε1
3 (0)|e−γt}> δ

}

= 0 with lim
ε1→0

T(ε1) = ∞,

(8.3.99)

whereΛ ε1
3 (t) =

(
θ̃ (t)T ,e(t)T

)
−
(
0T

l×l ,∑
l
i=1 p1ii a2

i G0(qi)IT
1

)
, I1 = [1,1, . . . ,1]T1×l .

Furthermore, (8.3.99) is equivalent to

lim
ε1→0

P
{
|Λ ε1

3 (t)| ≤ c|Λ ε1
3 (0)|e−γt + δ ,∀t ∈ [0,T(ε1)]

}
= 1 with lim

ε1→0
T(ε1) = ∞.

(8.3.100)

To quantify the output convergence to the optimum, for anyε1 > 0, define a
stopping time

τδ
ε1

= inf
{

t ≥ 0 : |Λ ε1
3 (t)| > c|Λ ε1

3 (0)|e−γt + δ
}

.

Then by (8.3.98), we know that lim
ε1→0

τδ
ε1

= ∞, a.s., and

∣
∣θ̃ (t)

∣
∣≤ c

∣
∣Λ ε1

3 (0)
∣
∣e−γt + δ , ∀t ≤ τδ

ε1
. (8.3.101)

Denote θ̂ (t)= [θ̂1(t), . . . , θ̂l (t)]T , asin(η(t))= [a1sin(η1(t)), . . . , al sin(ηl (t))]T .
Then the outputy(t) = f (θ ) = f (θ ∗ + θ̃(t)+asin(η(t))), we have

y(t)− f (θ ∗) = ▽ f (θ ∗)(θ̃ (t)+asin(η(t)))+ (θ̃ (t)+asin(η(t)))TP1

(θ̃ (t)+asin(η(t)))+O
(
|θ̃ (t)+asin(η(t))|3

)
. (8.3.102)

Thus by (8.3.101), it holds that

|y(t)− f (θ ∗)| ≤ O(|a|)+O(δ )+
∣
∣Λ ε1

3 (0)
∣
∣e−γt +C

∣
∣Λ ε1

3 (0)
∣
∣2e−2γt , ∀t ≤ τδ

ε1
,

(8.3.103)

for some positive constantC, where|a|=
√

a2
1 +a2

2+ · · ·+a2
l . Similarly, by (8.2.29),

we have

lim
ε1→0

P
{

|y(t)− f (θ ∗)| ≤ O(|a|)+O(δ )+
∣
∣Λ ε1

3 (0)
∣
∣e−γt +C

∣
∣Λ ε1

3 (0)
∣
∣
2
e−2γt ,

∀t ∈ [0,T(ε1)]} = 1, (8.3.104)
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Fig. 8.3 Multi-parameter stochastic gradient seeking with an OU process perturbation. Top: output
and optimum values. Bottom: solutions of the error system.

whereT(ε1) is a deterministic function with lim
ε1→0

T(ε1) = ∞.

Figure 8.3 displays the simulation results withf ∗ = 1, J = [0.5,0.2]T , θ ∗ =

[0,1]T , P1 =

[
1 1
1 2

]

in the static map (8.3.79) anda1 = 0.1,a2 = 0.2,k1 = 1.25,k2 =

5/3,q1 = 1,q2 = 1,ε1 = 0.25,ε2 = 0.01,h1 = 1,h2 = 2 in the parameter update
law (8.3.85)–(8.3.86) and initial conditioñθ1(0) = 1, θ̃2(0) = −1, θ̂1(0) = −1,
θ̂2(0) = 2, ξ1(0) = 0, ξ2(0) = 0.
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8.4 Notes and References

Most of the existing stochastic averaging theory focuses onthe systems with a single
stochastic perturbation input [21, 40, 81, 90] or on two-time-scales systems with
slow dynamics and a fast dynamics [61, 129]. There are few result on stochastic
averaging for systems with multi-scale stochastic perturbation inputs. With multi-
input stochastic averaging theorems that we developed in this chapter, we designed
multivariable stochastic extremum seeking and gradient seeking algorithms. Parts
of this chapter are based on our results in [90].



Chapter 9
Stochastic Nash Equilibrium Seeking for Games
with General Nonlinear Payoffs

Non-cooperative games have been a vibrant topic in mathematics and economics for
decades. While work on control-theoretic problems in differential games has been
conducted since at least the 1960s, the topic of games has, inrecent years, been
justifiably enjoying a renaissance in the field of engineering and, in particular, in the
area of control systems. A comprehensive account of non-cooperative game theory
is available in the seminal book [10].

It is inherent to the non-cooperative character of games that the opponents share
as little information as possible. For example, in realistic games, players would not
be inclined to inform their opponents about the functional form of their performance
criteria (payoff functions). When a game is played iteratively (as the time evolves),
the opposing players would not be inclined to share with others the information on
the actions that they are taking and on the payoff values thatthey are obtaining. It
is reasonable that each player is aware of the value of his ownpayoff achieved, but
the player doesn’t necessarily know the functional form of the payoff, namely, its
dependence on the player’s own action and on the actions of the opponents. This un-
certainty in the functional form of the payoff functions comes from the uncertainty
regarding the environment in which the game is played, such as the uncertainty that
companies encounter in the marketplace when they play gamesin which pricing or
production volumes are the actions, while the customer response is hard to predict.

Due to such a lack of modeling information and restricted measurements, the
topic of learning in games has recently been popular [26, 38,39, 44, 56, 85, 126,
127, 150]. Rather than seeking strategically optimal (Nashequilibrium) policies
using iterative algorithms that employ the full modeling information and the mea-

173
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surement of the opponents’ actions, learning-based algorithms attempt to achieve
convergence to Nash policies using estimation and various other techniques.

In this chapter, a multi-parameter stochastic extremum seeking algorithm is
developed for finding Nash equilibria in N-player noncooperative games. For an
N-player noncooperative game, each player employs independently stochastic ex-
tremum seeking to attain a Nash equilibrium.The players arenot required to know
the mathematical model of game (neither their own nor the opponents’ payoff func-
tions). The players are also not required to measure the opponents actions but only
measure their own payoff values. We prove that, under certain conditions, the ac-
tions of the players converge to a small neighborhood of a Nash equilibrium. The
convergence result is local in the sense that convergence toany particular Nash equi-
librium is assured only for initial conditions in a set around that specific stable Nash
equilibrium. Moreover, convergence to a Nash equilibrium is biased in proportion
to the third derivatives of the payoff functions and is dependent on the intensity of
stochastic perturbation.

The chapter is organized as follows: we introduce the general problem formula-
tion in Section 9.1, state the algorithm and convergence results in Section 9.2, and
present the convergence proof in Section 9.3. We provide a numerical example for
a two-player game in Section 9.4.

9.1 Problem Formulation

Consider an N-player noncooperative game where each playerwishes to maximize
its payoff function of the general nonlinear form. Assume the payoff function of
playeri is of the form

Ji = hi(ui ,u−i), (9.1.1)

whereui is playeri’s action, the action (strategy) space is the whole spaceR, u−i =
[u1, . . . ,ui−1,ui+1, . . . ,uN] represents the actions of the other players,hi : RN → R is
smooth, andi ∈ {1, . . . ,N}.

Our algorithm is based on the following assumptions.

Assumption 9.1.There exists at least one, possibly multiple, isolated stable Nash
equilibriumu∗ = [u∗1, . . . ,u

∗
N] such that
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∂hi

∂ui
(u∗) = 0, (9.1.2)

∂ 2hi

∂u2
i

(u∗) < 0 (9.1.3)

for all i ∈ {1, . . . ,N}.

Assumption 9.2.The matrix

Ξ =











∂ 2h1(u
∗)

∂u2
1

∂ 2h1(u
∗)

∂u1∂u2
. . . ∂ 2h1(u

∗)
∂u1∂uN

∂ 2h2(u
∗)

∂u1∂u2

∂ 2h2(u
∗)

∂u2
2

. . . ∂ 2h2(u
∗)

∂u2∂uN

...
...

. . .
...

∂ 2hN(u∗)
∂u1∂uN

∂ 2hN(u∗)
∂u2∂uN

· · · ∂ 2hN(u∗)
∂u2

N











(9.1.4)

is strictly diagonally dominant and hence, nonsingular.

By Assumptions 9.1 and 9.2,Ξ is Hurwitz.
In our scheme, playeri has no knowledge of others players’ payoffh j , j 6= i and

actionsu j( j 6= i). It can only measure its own payoffhi. Our objective is to de-
sign a stochastic extremum seeking algorithm for each player to approximate Nash
equilibrium.

9.2 Stochastic Nash Equilibrium Seeking Algorithm

In our algorithm, each player independently employs a stochastic seeking strategy
to attain the stable Nash equilibrium of the game. Playeri implements the following
strategy:

ui(t) = ûi(t)+ai fi(ηi(t)), (9.2.5)

dûi(t)
dt

= kiai fi(ηi(t))Ji(t), (9.2.6)

where for anyi = 1, . . . ,N, ai > 0 is the perturbation amplitude,ki > 0 is the adaptive
gain,Ji(t) is the measured payoff value for playeri, andfi is a bounded smooth func-
tion that playeri chooses, e.g., a sine function.ηi(t), i = 1, . . . ,N, are independent
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Fig. 9.1 Stochastic extremum seeking scheme for a two-player noncooperative game

ergodic processes chosen by playeri, e.g., the Ornstein-Uhlenbeck (OU) process

ηi =

√
εiqi

εis+1
[Ẇi ], or εidηi(t) = −ηi(t)dt+

√
ε iqidWi(t), (9.2.7)

qi > 0, εi are small parameters satisfying 0< maxi εi < ε0 for fixed ε0 > 0, and
Wi(t), i = 1, . . . ,N are independent 1-dimensional standard Brownian motion ona
complete probability space(Ω ,F ,P) with the sample spaceΩ , σ -field F , proba-
bility measureP.

Figure 9.1 depicts a noncooperative game played by two players implementing
the stochastic extremum seeking strategy (9.2.5)–(9.2.6)to attain a Nash equilib-
rium.

To analyze the convergence of the algorithm, we denote the error relative to the
Nash equilibrium as

ũi(t) = ûi(t)−u∗i . (9.2.8)

Then, we obtain an error system as
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dũi(t)
dt

= kiρ
(1)
i (t)hi

(

u∗i + ũi + ρ (1)
i (t),u∗−i + ũ−i + ρ (1)

−i (t)
)

, (9.2.9)

where ρ (1)
i (t) = ai fi(ηi(t)), ρ (1)

−i (t) = [a1 f1(η1(t)),. . . , ai−1 fi−1 (ηi−1(t)), ai+1

fi+1(ηi+1(t)), . . ., aN fN(ηN(t))], ũ∗−i = [ũ∗1, . . ., ũ∗i−1,ũ∗i+1, . . .,ũ∗N], and ũ−i =
[ũ1,. . .,ũi−1,ũi+1,. . .,ũN].

If the players choosefi(x) = sinx for all i = 1, . . . ,N, andηi as OU processes
(9.2.7), we have the following convergence result.

Theorem 9.1.Consider the error system (9.2.9) for an N-player game underAs-
sumptions 9.1 and 9.2. Then there exists a constant a∗ > 0such that formax1≤i≤N ai ∈
(0,a∗) there exist constants r> o,c > 0,γ > 0 and a function T(ε1) : (0,ε0) → N

such that for any initial condition|Λ ε1(0)| < r, and anyδ > 0,

lim
ε1→0

inf{t ≥ 0 : |Λ ε1(t)| > c|Λ ε1(0)|e−γt + δ +O(max
i

a3
i )} = ∞, a.s.(9.2.10)

and

lim
ε1→0

P{|Λ ε1(t)| ≤ c|Λ ε1(0)|e−γt + δ +O(max
i

a3
i ),∀t ∈ [0,T(ε1)]} = 1(9.2.11)

with

lim
ε1→0

T(ε1) = ∞, (9.2.12)

where

Λ ε1(t) = [ũ1(t)−
N

∑
j=1

d1
j j a

2
j , . . . , ũN(t)−

N

∑
j=1

dN
j j a

2
j ], (9.2.13)
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














d1
j j
...

d j−1
j j

d j
j j

d j+1
j j
...

dN
j j
















= −Ξ−1






























1
2G0(q j)

∂ 3h1
∂u1∂u2

j
(u∗)

...
1
2G0(q j)

∂ 3h j−1

∂u j−1∂u2
j
(u∗)

1
6

G1(q j )

G0(q j )

∂ 3h j

∂u3
j
(u∗)

1
2G0(q j)

∂ 3h j+1

∂u2
j ∂u j+1

(u∗)

...
1
2G0(q j)

∂ 3hN
∂u2

j ∂uN
(u∗)






























, (9.2.14)

and G0(q j) = 1
2(1− e−q2

j ), G1(q j) = 3
8 − 1

2e−q2
j + 1

8e−4q2
j = 1

8(1− e−q2
j )2(e−2q2

j +

2e−q2
j +3).

Several remarks are needed in order to properly interpret Theorem 9.1. From
(9.2.10) and the fact|Λ ε1(t)| ≥ maxi |ũi(t)−∑N

j=1di
j j a

2
j |, we obtain

lim
ε1→0

inf

{

t ≥ 0 : max
i

{∣
∣
∣
∣
∣
ũi(t)−

N

∑
j=1

di
j j a

2
j

∣
∣
∣
∣
∣

}

> c|Λ ε1(0)|e−γt + δ +O(max
i

a3
i )

}

= ∞, a.s.

By taking all theai ’s small, maxi |ũi(t)| can be made arbitrarily small ast → ∞.
The bias terms∑N

j=1di
j j a

2
j defined by (9.2.14) appear complicated but have a

simple physical interpretation. When the game’s payoff functions are not quadratic
(not symmetric), the extremum seeking algorithms, which employ zero-mean (sym-
metric) perturbations, will produce a bias. According to the formulas (9.2.14), the
bias depends on the third derivatives of the payoff functions, namely, on the level
of asymmetry in the payoff surfaces at the Nash equilibrium.In the trivial case of
a single player the interpretation is easy—extremum seeking settles on the flatter
(more favorable) side of an asymmetric peak. In the case of multiple players the in-
terpretation is more difficult, as each player contributes both to his own bias and to
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the other players’ biases. Though difficult to intuitively interpret in the multi-player
case, the formula (9.2.14) is useful as it quantifies the biases.

The estimate of the region of attractionr can be conservatively taken as indepen-
dent of theai ’s, for ai ’s chosen sufficiently small. This fact can be only seen by going
through the proof of the averaging theorem for the specific system (3.5). Hence,r is
larger than the bias terms, which means that for smallai ’s the algorithm reduces the
distance to the Nash equilibrium for all initial conditionsexcept for those within an
O(maxi a2

i ) to the Nash equilibrium.
On the other hand, the convergence rateγ cannot be taken independently of the

ai ’s, because theai ’s appear as factors on the entire right-hand side of (3.5). How-
ever, by letting theki ’s increase as theai ’s decrease, independence ofγ from theai ’s
can be ensured.

In the rare case where the error system (9.2.9) may be globally Lipschitz, we
obtain global convergence using the global averaging theorem in Chapter 3.

9.3 Proof of the Algorithm Convergence

We apply the multi-input stochastic averaging theory presented in Chapter 8 to an-
alyze the error system (9.2.9). First, we calculate the average system of (9.2.9).

Defineχi(t) = ηi(εit) andBi(t) = 1√
εi

Wi(εit). Then by (9.2.7) we have

dχi(t) = −χi(t)dt +qidBi(t), (9.3.15)

where [B1(t), . . . ,BN(t)]T is an N-dimensional standard Brownian motion on the
space(Ω ,F ,P).

Thus we can rewrite the error system (9.2.9) as

dũi(t)
dt

= kiρ
(2)
i (t/εi)hi

(

u∗i + ũi + ρ (2)
i (t/εi),u

∗
−i + ũ−i + ρ (2)

−i (t/ε−i)
)

,(9.3.16)

whereρ (2)
i (t) = ai sin(χi(t)), ρ (2)

−i (t/ε−i) = [a1sin(χ1(t/ε1)),. . . , ai−1sin(χi−1(t/εi−1)),
ai+1sin(χi+1(t/εi+1)), . . ., aN sin(χN(t/εN))].

Denote

εi =
ε1

ci
, i = 2, . . . ,N (9.3.17)
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for some positive real constantsci ’s and consider the change of variable

Z1(t) = χ1(t), Z2(t) = χ2(c2t), . . . , ZN(t) = χ(cNt). (9.3.18)

Then the error system (9.3.16) can be transformed as one withsingle small param-
eterε1:

dũi(t)
dt

= kiρ
(3)
i (t/ε1)hi

(

u∗i + ũi + ρ (3)
i (t/ε1),u

∗
−i + ũ−i + ρ (3)

−i (t/ε1)
)

,(9.3.19)

whereρ (3)
i (t) = ai sin(Zi(t)), ρ (3)

−i (t/ε1) = [a1sin(Z1(t/ε1)),. . . , ai−1sin(Zi−1(t/ε1)),
ai+1sin(Zi+1(t/ε1)), . . ., aN sin(ZN(t/ε1))].

Since(χi(t), t ≥ 0) is ergodic and has an invariant distributionµi(dxi)= 1√
πqi

e
− x2

i
q2
i dxi ,

by Lemma 8.2, the vector value process[Z1(t), . . . ,ZN(t)]T is also ergodic with in-
variant distributionµ1× ·· · × µN. Thus by (8.1.9), we have the following average
error system

dũave
i (t)
dt

= kiai

∫

RN
sin(xi)hi

(
u∗i + ũave

i +ai sin(xi),u
∗
−i + ũave

−i +a−i sin(x−i)
)

µ1(dx1)×·· ·×µN(dxN), (9.3.20)

wherea−i sin(x−i) = [a1sin(x1), . . ., ai−1sin(xi−1), ai+1sin(xi+1), . . ., aN sin(xN)],
andµi is the invariant distribution of the process(χi(t),t ≥ 0) or (Zi(t),t ≥ 0).

The equilibrium ˜ue = [ũe
1, . . . , ũ

e
N] of (9.3.20) satisfies

0 =

∫

RN
sin(xi)hi

(
u∗i + ũe

i +ai sin(xi),u
∗
−i + ũe

−i +a−i sin(x−i)
)

µ1(dx1)×·· ·×µN(dxN) (9.3.21)

for all i = {1, . . . ,N}.
To calculate the equilibrium of the average error system andanalyze its stability,

we postulate that ˜ue has the form

ũe
i =

N

∑
j=1

bi
ja j +

N

∑
j=1

N

∑
k≥ j

di
jka jak +O(max

i
a3

i ). (9.3.22)

By expandinghi aboutu∗ in (9.3.21) and substituting (9.3.22), the unknown coeffi-
cientsbi

j anddi
jk can be determined.
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The Taylor series expansion ofhi aboutu∗ in (9.3.21) for anN-player game is

hi(u
∗ +vi,u

∗
−i +v−i) =

∞

∑
n1=0

· · ·
∞

∑
nN=0

vn1
1 · · ·vnN

N

n1! · · ·nN!

(
∂ n1+···+nNhi

∂un1
1 · · ·∂unN

N

)

(u∗),(9.3.23)

wherevi = ũe
i +ai sin(xi) andv−i = ũe

−i +a−i sin(x−i). Although for anyi = 1, . . . ,N,
hi may not have its Taylor series expansion only by its smoothness, here we just
give the form of Taylor series expansion. In fact, we only need its third order Taylor
formula.

Since the invariant distributionµi(dxi) of the OU process(χi(t),t ≥ 0) is 1√
πqi

e
− x2

i
qi

dxi , we have

∫

R

sin4(xi)µi(dxi) =

∫ +∞

−∞
sin4(xi)

1√
πqi

e
− x2

i
q2
i dxi

=
3
8
− 1

2
e−q2

i +
1
8

e−4q2
i , G1(qi), (9.3.24)

∫

R2
sin3(xi)sin(x j)µi(dxi)× µ j(dxj)

=

∫ +∞

−∞

∫ +∞

−∞
sin3(xi)sin(x j)

1√
πqi

e
− x2

i
q2
i

1√
πq j

e
−

x2
j

q2
j dxidxj = 0, (9.3.25)

∫

R2
sin2(xi)sin2(x j)µi(dxi)× µ j(dxj)

=

∫ +∞

−∞

∫ +∞

−∞
sin2(xi)sin2(x j)

1√
πqi

e
− x2

i
q2
i

1√
πq j

e
−

x2
j

q2
j dxidxj

=
1
4
(1−e−q2

i )(1−e−q2
j ) , G2(qi ,q j), (9.3.26)

∫

R3
sin(xi)sin2(x j)sin(xk)µi(dxi)× µ j(dxj)× µk(dxk)

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
sin(xi)sin2(x j)sin(xk)

1√
πqi

e
− x2

i
q2
i

1√
πq j

e
−

x2
j

q2
j

1√
πqk

e
− x2

k
q2
k

×dxidxjdxk = 0. (9.3.27)
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Based on the above calculations together with (8.2.41), (8.2.42), (8.2.43), (8.2.44),
(8.2.45), substituting (9.3.23) into (9.3.21) and computing the average of each term
gives

0 = a2
i G0(qi)ũ

e
i

∂ 2hi

∂u2
i

(u∗)+a2
i G0(qi)

N

∑
j 6=i

ũe
j

∂ 2hi

∂ui∂u j
(u∗)

+

(
a2

i

2
G0(qi)(ũ

e
i )

2 +
a4

i

6
G1(qi)

)
∂ 3hi

∂u3
i

(u∗)

+a2
i G0(qi)ũ

e
i

N

∑
j 6=i

ũe
j

∂ 3hi

∂u2
i ∂u j

(u∗)

+
N

∑
j 6=i

(

a2
i

2
G0(qi)(ũ

e
j)

2 +
a2

i a2
j

2
G2(qi ,q j)

)

∂ 3hi

∂ui∂u2
j

(u∗)

+
N

∑
j 6=i

N

∑
k> j ,k6=i

a2
i G0(qi)ũ

e
j ũ

e
k

∂ 3hi

∂ui∂u j∂uk
(u∗)+O(max

i
a5

i ), (9.3.28)

or equivalently,

0 = ũe
i
∂ 2hi

∂u2
i

(u∗)+
N

∑
j 6=i

ũe
j

∂ 2hi

∂ui∂u j
(u∗)+

(
1
2
(ũe

i )
2 +

a2
i

6
G1(qi)

G0(qi)

)
∂ 3hi

∂u3
i

(u∗)

+ũe
i

N

∑
j 6=i

ũe
j

∂ 3hi

∂u2
i ∂u j

(u∗)+
N

∑
j 6=i

(

1
2
(ũe

j)
2 +

a2
j

2
G0(q j)

)

∂ 3hi

∂ui∂u2
j

(u∗)

+
N

∑
j 6=i

N

∑
k> j ,k6=i

ũe
j ũ

e
k

∂ 3hi

∂ui∂u j∂uk
(u∗)+O(max

i
a3

i ). (9.3.29)

Substituting (9.3.22) into (9.3.29) and matching first order powers ofai gives






0
...
0




= Ξ






b1
i
...

bN
i




 , i = 1, . . . ,N, (9.3.30)

which implies thatbi
j = 0 for all i, j sinceΞ is nonsingular by Assumption 9.2.

Similarly, matching second order termsa jak( j > k) anda2
j of a j , and substituting

bi
j = 0 to simplify the resulting expressions, yields
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




0
...
0




 = Ξ






d1
jk
...

dN
jk




 , j = 1, . . . ,N, j > k, (9.3.31)

and






0
...
0




 =






























Ξ






d1
j j
...

dN
j j




+






























1
2G0(q j)

∂ 3h1
∂u1∂u2

j
(u∗)

...
1
2G0(q j)

∂ 3h j−1

∂u j−1∂u2
j
(u∗)

1
6

G1(q j )

G0(q j )

∂ 3h j

∂u3
j
(u∗)

1
2G0(q j))

∂ 3h j+1

∂u2
j ∂u j+1

(u∗)

...
1
2G0(q j)

∂ 3hN
∂u2

j ∂uN
(u∗)



























































, (9.3.32)

Thus,di
jk = 0 for all i, j,k when j 6= k, anddi

j j is given by (9.2.14).
Therefore, by (9.3.22), the equilibrium of the average error system (9.3.20) is

ũe
i =

N

∑
j=1

di
j j a

2
j +O(max

i
a3

i ). (9.3.33)

By the Dominated Convergence Theorem, we obtain that the Jacobian Ψave =
(ψi j )N×N of the average error system (9.3.20) at ˜ue has elements given by

ψi j = ki

∫

RN
ai sin(xi)

∂hi

∂u j

(
u∗i + ũe

i +ai sin(xi),u
∗
−i + ũe

−i

+a−i sin(x−i))µ1(dx1)×·· ·×µN(dxN)

= kia
2
i G0(qi)

∂ 2hi

∂ui∂u j
(u∗)+O(max

i
a3

i ) (9.3.34)
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and is Hurwitz by Assumptions 9.1 and 9.2 for sufficiently small ai , which implies
that the equilibrium (9.3.33) of the average error system (9.3.20) is exponentially
stable. By the multi-input stochastic averaging theorem given in Theorem 8.1 of
Chapter 8, the theorem is proved.

9.4 Numerical Example

We consider two players with payoff functions

J1 = −u3
1+2u1u2 +u2

1−
3
4

u1, (9.4.35)

J2 = 2u2
1u2−u2

2 . (9.4.36)

Since J1 is not globally concave inu1, we restrict the action space toA =
{u1 ≥ 1/3, u2 ≥ 1/6} in order to avoid the existence of maximizing actions at in-
finity or Nash equilibria at the boundary of the action space.(However, we do not
restrict the extremum seeking algorithm toA . Such a restriction can be imposed
using parameter projection, but would complicate our exposition considerably.)

The game(J1,J2) yields two Nash equilibria:(u∗1
1 ,u∗1

2 )= (0.5,0.25), and(u∗2
1 ,u∗2

2 )

= (1.5,2.25). The corresponding matrices areΞ1 =

[
−1 2
2 −2

]

andΞ2 =

[
−7 2
6 −2

]

,

whereΞ1 is nonsingular but not Hurwitz, whileΞ2 is nonsingular and Hurwitz, and
both matrices are not diagonally dominant. From the proof ofthe algorithm conver-
gence, we know that diagonal dominance is only a sufficient condition for Ξ to be
nonsingular and is not required in general.

The average error system for this game is

dũave
1 (t)

dt
= k1a2

1G0(q1)(−3ũave2
1 −6u∗1ũ

ave
1 +2ũave

2 +2ũave
1 )−k1a

4
1G1(q1),

(9.4.37)
dũave

2 (t)
dt

= k2a2
2G0(q2)(−2ũave

2 +2ũave2
1 +4u∗1ũ

ave
1 )+2k2a

2
1a2

2G2(q1,q2),

(9.4.38)

whereu∗1 can beu∗1
1 or u∗2

1 . The equilibria(ũe
1, ũ

e
2) of this average system are
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ũe
1 = 1−u∗1±

√

(1−u∗1)
2−a2

1

(
G1(q1)

G0(q1)
−2G0(q1)

)

, (9.4.39)

ũe
2 = 2−2u∗1±2

√

(1−u∗1)
2−a2

1

(
G1(q1)

G0(q1)
−2G0(q1)

)

−a2
1
G1(q1)

G0(q1)
+3a2

1G0(q1),

(9.4.40)

and their postulated form is

ũe,p
1 =

1
2(1−u∗1)

(
G1(q1)

G0(q1)
−2G0(q1)

)

a2
1 +O(max

i
a3

i ), (9.4.41)

ũe,p
2 =

(
u∗1

1−u∗1

G1(q1)

G0(q1)
+

1−3u∗1
1−u∗1

G0(q1)

)

a2
1 +O(max

i
a3

i ). (9.4.42)

The corresponding Jacobian matrices are

Ψave=

[
(−6ũe

1−6u∗1+2)γ1 2γ1

(2ũe
1+4u∗1)γ2 −2γ2

]

, (9.4.43)

whereγi = kia2
i G0(qi), i = 1,2, and their characteristic equation is given by,λ 2 +

α1λ + α2 = 0, where

α1 = (6ũe
1+6u∗1−2)γ1+2γ2, (9.4.44)

α2 = (2ũe
1+u∗1−1)4γ1γ2. (9.4.45)

ThusΨave is Hurwitz if and only ifα1 andα2 are positive. For sufficiently smalla1,
which makes ˜ue ≈ (0,0), α1 andα2 are positive foru∗1 = 1.5 but foru∗1 = 0.5, α2 is
not positive, which is reasonable becauseΞ1 is not Hurwitz butΞ2 is Hurwitz. Thus,
(u∗1

1 ,u∗1
2 ) = (0.5,0.25) is an unstable Nash equilibrium but(u∗2

1 ,u∗2
2 ) = (1.5,2.25)

is a stable Nash equilibrium. We employ the multi-parameterstochastic extremum
seeking algorithm given in Section 9.2 to attain this stableequilibrium.

The top picture in Figure 9.2 depicts the evolution of the game in theũ plane,
initialized at the point(u1(0),u2(0)) = (0,3), i.e., at(ũ1(0), ũ2(0)) = (−1.5,0.75).
Note that the initial condition is outside ofA . This illustrates the point that the
region of attraction of the stable Nash equilibrium under the extremum seeking al-
gorithm is not a subset ofA but a large subset ofR2. The parameters are chosen
ask1 = 14,k2 = 6,a1 = 0.2,a2 = 0.02,ε1 = 0.01,ε2 = 0.8. The bottom two pic-
tures depict the two players’ actions in stochastically seeking the Nash equilibrium
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Fig. 9.2 Stochastic Nash equilibrium seeking with an OU process perturbation. Top: evolution of
the game in the ˜u plane. Bottom: two players’ actions.

(u∗1,u
∗
2) = (1.5,2.25). From Figure 9.2, the actions of the players converge to a small

neighborhood of the stable Nash equilibrium.
In the algorithm, bounded smooth functionsfi and the excitation processes

(ηi(t), t ≥ 0), i = 1, . . . ,N, can be chosen in other forms. We can replace the
bounded excitation signal sin(ηi(t)) = sin(χi(t/εi)) with the signalHT(η̌i(t/εi)),
whereη̌i(t) = [cos(Wi(t)),sin(Wi(t))]T is Brownian motion on the unit circle (see
[91]), andG = [g1,g2]

T is a constant vector.
Figure 9.3 depicts the evolution of the game in the ˜u plane for games with

Brownian motion on the unit circle as perturbation. The initial conditions are the
same with the case of the OU process perturbation. The parameters are chosen as
k1 = 5,k2 = 9,a1 = 0.2,a2 = 0.04,ε1 = 0.02,ε2 = 0.02. From Figure 9.3, the actions
of the players also converge to a small neighborhood of the stable Nash equilibrium.
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, ũe

2
) ≈ (0, 0)
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Fig. 9.3 Stochastic Nash equilibrium seeking with Brownian motion on the unit circle as pertur-
bation. Top: evolution of the game in the ˜u plane. Bottom: two players’ actions.

In these two simulations, possibly different high-pass filter for each player’s mea-
surement on the payoff is used to improve the asymptotic performance but is not
essential for achieving stability ([137]), which also can be seen from the stochastic
multi-parameter extremum seeking algorithm for static maps in Section 8.2.

9.5 Notes and References

Seeking Nash equilibria in continuous games is a difficult problem [76]. Researchers
in different fields, including mathematics, computer science, economics, and sys-
tem engineering, have interest and need for techniques for finding Nash equilibria.
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Most algorithms designed to achieve convergence to Nash equilibria require mod-
eling information for the game and assume that the players can observe the actions
of the other players. An early algorithm is [118], in which a gradient-type algo-
rithm is studied for convex games. Distributed iterative algorithms are designed for
the computation of equilibrium in [85] for a general class ofnon-quadratic convex
Nash games. In this algorithm, the agents do not have to know each other’s cost
functionals and private information, as well as the parameters and subjective prob-
ability distributions adopted by the others, but they have to communicate to each
other their tentative decisions during each phase of computation. A strategy known
as fictitious play is one such strategy that depends on the actions of the other play-
ers so that a player can devise a best response. A dynamic version of fictitious play
and gradient response is developed in [126]. In [150], a synchronous distributed
learning algorithm is designed to the coverage optimization of mobile visual sensor
networks. In this algorithm, players remember their own actions and utility values
from the previous two times steps, and the algorithm is shownto converge in proba-
bility to the set of restricted Nash equilibria. Other diverse engineering applications
of game theory include the design of communication networksin [4, 11, 98, 124],
integrated structures and controls in [114], and distributed consensus protocols in
[12, 100, 125].

Based on the extremum seeking approach with sinusoidal perturbations, in [73],
Nash equilibrium seeking is studied for noncooperative games with both finitely and
infinitely many players. In [133], Nash games in mobile sensor networks are solved
using extremum seeking.

Compared to the deterministic case, one advantage of stochastic extremum seek-
ing is that there is no need to choose different perturbationfrequencies for each
player and each player only needs to choose its own perturbation process indepen-
dently, which may be more realistic in a practical game with adversarial players.

In this chapter, we propose a multi-input stochastic extremum seeking algorithm
to solve the problem of seeking Nash equilibria for an N-player nonoperative game.
In our algorithm, each player independently employs his seeking strategy using only
the value of his own payoff but without any information aboutthe form of his payoff
function and other players’ actions. Our convergence result is local and the conver-
gence error is in proportion to the third derivatives of the payoff functions and is
dependent on the intensity of stochastic perturbation.



Chapter 10
Nash Equilibrium Seeking for Quadratic Games
and Applications to Oligopoly Markets and
Vehicle Deployment

In this chapter, we consider a special case of Chapter 9: a Nash game with quadratic
payoffs. The general case is considered in Section 10.1. As applications, we consider
an oligopoly market game in Section 10.2 and multi-agent deployment in the plane
in Section 10.3.

10.1 N-player Games with Quadratic Payoff Functions

10.1.1 General quadratic games

We consider static noncooperative games with N players thatwish to maximize their
quadratic payoff functions. Specifically, the payoff function of playeri is of the form

Ji(t) =
1
2

N

∑
j=1

N

∑
k=1

Di
jku j(t)uk(t)+

N

∑
j=1

di
ju j(t)+Ci, (10.1.1)

where the action of playerj is u j ∈U j = R, Di
jk,d

i
j , andCi are constants,Di

ii < 0,

andDi
jk = Di

k j.
From Proposition 4.6 in [10], it is known that the N-player game with payoff

function (10.1.1) admits a Nash equilibriumu∗ = [u∗1, . . . ,u
∗
N]T if and only if

189
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Di
ii u

∗
i + ∑

j 6=i

Di
i j u

∗
j +di

i = 0, i ∈ {1, . . . ,N}, (10.1.2)

admits a solution. Rewriting (10.1.2) in matrix form, we have

Du∗ = −d, (10.1.3)

where

D ,








D1
11 D1

12 · · · D1
1N

D2
21 D2

22 · · · D2
2N

...
...

. . .
...

DN
N1 DN

N2 · · · DN
NN








, d ,








d1
1

d2
2
...

dN
N








, (10.1.4)

andu∗ is unique ifD is invertible. We consider the following stronger assumptions
about this matrix:

Assumption 10.1.The matrixD given by (10.1) is strictly diagonally dominant, i.e.,

N

∑
j 6=i

|Di
i j | < |Di

ii |, i ∈ {1, . . . ,N}. (10.1.5)

By Assumption 10.1, the Nash equilibriumu∗ exists and is unique since strictly
diagonally dominant matrices are nonsingular by the Levy-Desplanques theorem.
We seek a method to attainu∗ stably in real time without any modeling information.
Let each player employ the stochastic extremum seeking strategy as (9.2.5) and
(9.2.6):

ui(t) = û(t)+ai fi(ηi(t)), (10.1.6)

dûi(t)
dt

= kiai fi(ηi(t))Ji(t), (10.1.7)

where for anyi = 1, . . . ,N, ai > 0 is the perturbation amplitude,ki > 0 is the adaptive
gain,Ji(t) is the measured payoff value for playeri, and fi is a bounded odd smooth
function that playeri chooses, e.g., a sine function. The independent ergodic pro-
cessesηi(t), i = 1, . . . ,N, are chosen by playeri, e.g., as the Ornstein-Uhlenbeck
(OU) processes

ηi =

√
εiqi

εis+1
[Ẇi ], or εidηi(t) = −ηi(t)dt+

√
ε iqidWi(t), (10.1.8)
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whereqi > 0, εi are small parameters satisfying 0< maxi εi < ε0 for fixed ε0 > 0,
andWi(t), i = 1, . . . ,N are independent 1-dimensional standard Brownian motion on
a complete probability space(Ω ,F ,P) with the sample spaceΩ , σ -field F , and
probability measureP.

If the players choosefi(x) = sinx for all i = 1, . . . ,N, andηi as OU processes
(10.1.8), we have the following convergence result.

Theorem 10.1.Consider the system (10.1.6)–(10.1.7) with (10.1.1) underAssump-
tion 10.1, where i∈ {1, . . . ,N}. Then there exists a constant a∗ > 0 such that
for max1≤i≤N ai ∈ (0,a∗) there exist constants r> o,c > 0,γ > 0 and a function
T(ε1) : (0,ε0) → N such that for any initial condition|Λ ε1

1 (0)| < r, and anyδ > 0,

lim
ε1→0

inf{t ≥ 0 : |Λ ε1
1 (t)| > c|Λ ε1

1 (0)|e−γt + δ +O(max
i

ai)} = ∞, a.s.(10.1.9)

and

lim
ε1→0

P{|Λ ε1
1 (t)| ≤ c|Λ ε1

1 (0)|e−γt + δ +O(max
i

ai),∀t ∈ [0,T(ε1)]} = 1(10.1.10)

with

lim
ε1→0

T(ε1) = ∞, (10.1.11)

where

Λ ε1(t) = [u1(t)−u∗1, . . . ,uN(t)−u∗N]T . (10.1.12)

Proof. Let ũi(t) = ûi(t)−u∗i denote the error relative to the Nash equilibrium. By
substituting (10.1.1) into (10.1.6)–(10.1.7), we obtain the error system

dũi(t)
dt

= kiai sin(ηi(t))

(

1
2

N

∑
j=1

N

∑
k=1

Di
jk(ũ j(t)+u∗j +a j sin(η j(t)))(ũk(t)+u∗k

+ak sin(ηk(t)))+
N

∑
j=1

di
j(ũ j(t)+u∗j +a j sin(η j(t)))+Ci

)

. (10.1.13)

Defineχi(t) = ηi(εit) andBi(t) = 1√
εi

Wi(εit). Then by (10.1.8) we have

dχi(t) = −χi(t)dt +qidBi(t), (10.1.14)
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where [B1(t), . . . ,BN(t)]T is an N-dimensional standard Brownian motion on the
space(Ω ,F ,P). Thus we rewrite the error system (10.1.13) as

dũi(t)
dt

= kiai sin(χi(t/εi))

(

1
2

N

∑
j=1

N

∑
k=1

Di
jk(ũ j(t)+u∗j +a j sin(χ j(t/ε j)))(ũk(t)+u∗k

+aksin(χk(t/εk)))+
N

∑
j=1

di
j(ũ j(t)+u∗j +a j sin(χ j(t/ε j)))+Ci

)

.(10.1.15)

Denote

εi =
ε1

ci
, i = 2, . . . ,N (10.1.16)

for some positive real constantsci ’s and consider the change of variable

Z1(t) = χ1(t), Z2(t) = χ2(c2t), . . . , ZN(t) = χ(cNt). (10.1.17)

Then the error system (10.1.15) can be transformed as one with a single small pa-
rameterε1:

dũi(t)
dt

= kiai sin(Zi(t/ε1))

(

1
2

N

∑
j=1

N

∑
k=1

Di
jk(ũ j(t)+u∗j +a j sin(Z j(t/ε1)))(ũk(t)+u∗k

+ak sin(Zk(t/ε1)))+
N

∑
j=1

di
j(ũ j(t)+u∗j +a j sin(Z j(t/ε1)))+Ci

)

.(10.1.18)

Rearranging terms yields

dũi(t)
dt

=
ki

2

N

∑
j=1

N

∑
k=1

Di
jk(ũ j(t)+u∗j )(ũk(t)+u∗k)ai sin(Zi(t/ε1))

+ki

N

∑
j=1

N

∑
k=1

Di
jk(ũ j(t)+u∗j )aiak sin(Zi(t/ε1))sin(Zk(t/ε1))

+
ki

2

N

∑
j=1

N

∑
k=1

Di
jkaia jak sin(Zi(t/ε1))sin(Z j(t/ε1))sin(Zk(t/ε1))

+ki

N

∑
j=1

di
j(ũ j(t)+u∗j +a j sin(Z j(t/ε1))ai sin(Zi(t/ε1))+kiCiai sin(Zi(t/ε1)).

(10.1.19)
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By (8.2.41),(8.2.42), (8.2.43), (8.2.44), and (8.2.45), together withDu∗ = −d, we
obtain the average system of (10.1.19):

dũave
i (t)
dt

= kia
2
i G0(qi)

N

∑
j=1

Di
i j (ũ

ave
j (t)+u∗j )+kia

2
i G0(qi)d

i
i

= kia
2
i G0(qi)

(
N

∑
j=1

Di
i j ũ

ave
j (t)+

N

∑
j=1

Di
i j u

∗
j +di

i

)

= kia
2
i G0(qi)

N

∑
j=1

Di
i j ũ

ave
j (t), ũave

i (0) = ũi(0), (10.1.20)

which in matrix form is

dũave(t)
dt

= Aũave(t), (10.1.21)

where

A =








k1a2
1G0(q1)D1

11 k1a2
1G0(q1)D1

12 · · · k1a2
1G0(q1)D1

1N
k2a2

2G0(q2)D2
21 k2a2

2G0(q2)D2
22 · · · k2a2

2G0(q2)D2
2N

...
...

. . .
...

kNa2
NG0(qN)DN

N1 kNa2
NG0(qN)DN

N2 · · · kNa2
NG0(qN)DN

NN








.(10.1.22)

Now we determine the stability of the average system (10.1.21). From the Gersh-
gorin Circle Theorem [49, Theorem 7.2.1], we have

λ (A) ⊆
N⋃

i=1

ρi, (10.1.23)

whereλ (A) denotes the spectrum ofA andρi is a Gershgorin disc,

ρi = kia
2
i G0(qi)

{

z∈ C

∣
∣
∣|z−Di

ii | < ∑
j 6=i

|Di
i j |
}

. (10.1.24)

SinceDi
ii < 0 andD is strictly diagonally dominant, the union of the Gershgorin

discs lies strictly in the left half of the complex plane, andwe conclude thatRe{λ}<
0 for all λ ∈λ (A) and thatA is Hurwitz. Thus, there exist positive definite symmetric
matricesP andQ that satisfy the Lyapunov equationPA+ATP=−Q. UsingV(t) =
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(ũave)TPũaveas a Lyapunov function, we obtain

V̇ = −(ũave)TQũave≤−λmin(Q)|ũave|2. (10.1.25)

BoundingV and applying the Comparison Lemma [58] gives

|ũave(t)| ≤ ce−γt |ũave(0)|, (10.1.26)

where

c =

√

λmax(P)

λmin(P)
, (10.1.27)

γ =
λmin(Q)

2λmax(P)
. (10.1.28)

By the multi-input stochastic averaging theorem given in Theorem 8.1 of Chapter
8, noticing thatui(t)−u∗i = ũi(t)+ai sin(ηi(t)) and thatai sin(ηi(t)) is O(maxi ai),
the proof is completed.

10.1.2 Symmetric quadratic games

If we further restrict the matrixD, we can develop a more precise expression for the
convergence rate. Specifically, we now assume the following:

Assumption 10.2.

Di
i j = D j

ji , for all i, j ∈ {1, . . . ,N}. (10.1.29)

With this additional assumption besides Assumption 10.1,D is a negative definite
symmetric matrix.

Corollary 10.1. Consider the system (10.1.6)–(10.1.7) with (10.1.1) underAssump-
tions 10.1 and 10.2, where i∈ {1, . . . ,N}. Then the convergence properties of The-
orem 10.1 hold with

c =

√

maxi{2kia2
i G0(qi)}

mini{2kia2
i G0(qi)}

=

√

maxi{kia2
i G0(qi)}

mini{kia2
i G0(qi)}

, (10.1.30)
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γ = min
i
{kia

2
i G0(qi)}min

i

{

−Di
ii −

N

∑
j 6=i

|Di
i j |
}

. (10.1.31)

Proof. From the proof of Theorem 10.1, there exist positive definitesymmetric ma-
tricesP andQ that satisfy the Lyapunov equationPA+ ATP = −Q sinceA, given
by (10.1.22), is Hurwitz. Under Assumption 10.2, we selectQ = −D and obtain

P = diag
(

1
2k1a2

1G0(q1)
, . . . , 1

2kNa2
NG0(qN)

)

. Then, we have

λmax(P) =
1

mini{2kia2
i G0(qi)}

, (10.1.32)

λmin(P) =
1

maxi{2kia2
i G0(qi)}

, (10.1.33)

and using the Gershgorin Circle Theorem [49, Theorem 7.2.1], we can obtain the
bound

λmin(Q) = λmin(−D) ≥ min
i

{

−Di
ii −

N

∑
j 6=i

|Di
i j |
}

, (10.1.34)

where we note thatDi
ii < 0. From (10.1.27), (10.1.28), (10.1.32), (10.1.33), and

(10.1.34), we obtain the result.

From this corollary, the coefficientc is determined completely by the stochastic
extremum seeking parameterski ,qi ,ai .

10.2 Oligopoly price games

Consider a static noncooperative game withN firms in an oligopoly market struc-
ture that compete to maximize their profits by setting the priceui of their product.
Assume that the profit of theith firm is

Ji(t) = si(t)(ui(t)−mi), (10.2.35)

wheremi is the marginal cost of playeri, andsi is its sales volume.
We model the sales volumesi as



19610 Nash Equilibrium Seeking for Quadratic Games and Applications to Oligopoly Markets and Vehicle Deployment

Fig. 10.1 A model of saless1,s2,s3 in a three-firm oligopoly with priceu1,u2,u3 and total salesS.
The desirability of producti is proportional to 1/Ri .

si(t) =
R||
Ri

(

S− ui(t)

Ri
+

N

∑
j 6=i

u j(t)
Rj

)

, (10.2.36)

whereSare the total sales of all the firms,Ri > 0 for all i, and

R|| =

(
N

∑
k=1

1
Rk

)−1

, Ri =

(
N

∑
k6=i

1
Rk

)−1

. (10.2.37)

The sales model (10.2.36) is motivated by an analogous electric circuit, shown in
Figure 10.1, whereS is an ideal current generator,ui are ideal voltage generators,
and most importantly, the resistorsRi represent the “resistance” that consumers
have toward buying producti. This resistance may be due to quality or brand im-
age considerations—the most desirable products have the lowestRi . The sales in
(10.2.36) are inversely proportional toRi and grow asui decreases and asu j , j 6= i,
increases. The profit (10.2.35), in electrical analogy, corresponds to the power ab-
sorbed by theui −mi portion of the voltage generatori.

Substituting (10.2.36) into (10.2.35) yields quadratic payoff functions of the form

Ji(t) =
R||
Ri

(

−u2
i

Ri
+ui

N

∑
j 6=i

u j

Rj
+

(
mi

Ri
+S

)

ui −mi

N

∑
j 6=i

u j

Rj
−Smi

)

, (10.2.38)

and the Nash equilibriumu∗ satisfiesDu∗ = −d. More specifically, we have
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








− 2R||
R1R1

R||
R1R2

· · · R||
R1RN

R||
R2R1

− 2R||
R2R2

· · · R||
R2RN

...
...

. . .
...

R||
RNR1

R||
RNR2

· · · − 2R||
RNRN










︸ ︷︷ ︸

D








u∗1
u∗2
...

u∗N








= −










m1R||
R1R1

+
SR||
R1

m2R||
R2R2

+
SR||
R2

...
mNR||
RNRN

+
SR||
RN










︸ ︷︷ ︸

d

. (10.2.39)

The matrixD has negative diagonal elements and is strictly diagonally dominant,
satisfying Assumption 10.1, since

N

∑
j 6=i

∣
∣
∣
∣

R||
RiRj

∣
∣
∣
∣
=

R||
RiRi

<

∣
∣
∣
∣
−

2R||
RiRi

∣
∣
∣
∣
, i ∈ {1, . . . ,N}. (10.2.40)

Thus, the Nash equilibrium of this game exists, is unique, and can be shown to be

u∗i =
Π1Ri

2Ri +Ri

(

RiS+mi +
N

∑
j=1

mjRi −miRj

2Rj +Rj

)

, (10.2.41)

whereΠ−1
1 = 1−∑N

j=1
Rj

2Rj+Rj
> 0. (The various parameters here are assumed to be

selected such thatu∗i is positive for alli.) Moreover,Di
i j = D j

ji , so D is a negative
definite symmetric matrix, satisfying Assumption 10.2.

Theorem 10.2.Consider the system (10.1.6)–(10.1.7), along with (10.2.35) and
(10.2.36), where i∈ {1, . . . ,N}. Then there exists a constant a∗ > 0 such that
for max1≤i≤N ai ∈ (0,a∗) there exist constants r> 0,c > 0,γ > 0 and a function
T(ε1) : (0,ε0) → N such that for any initial condition|Λ ε1

2 (0)| < r, and anyδ > 0,

lim
ε1→0

inf{t ≥ 0 : |Λ ε1
2 (t)| > c|Λ ε1

2 (0)|e−γt + δ +O(max
i

ai)} = ∞, a.s.

(10.2.42)

and

lim
ε1→0

P{|Λ ε1
2 (t)| ≤ c|Λ ε1

2 (0)|e−γt + δ +O(max
i

ai),∀t ∈ [0,T(ε1)]} = 1

(10.2.43)

with
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lim
ε1→0

T(ε1) = ∞, (10.2.44)

where

Λ ε1
2 (t) = [u1(t)−u∗1, . . . ,uN(t)−u∗N]T , (10.2.45)

c =

√

maxi{kia2
i G0(qi)}

mini{kia2
i G0(qi)}

, (10.2.46)

γ =
R||mini{kia2

i G0(qi)}
2maxi{RiΓi}

, (10.2.47)

Γi = min
j∈{1,...,N}, j 6=i

Rj . (10.2.48)

Proof. Since Assumptions 10.1 and 10.2 are satisfied for this game, Corollary 10.1

holds. From Corollary 10.1, we obtain the coefficientc =

√

maxi{kia2
i G0(qi)}

mini{kia2
i G(qi)}

and the

decay rateγ =
R||mini{kia2

i G0(qi)}
2maxi{RiΓi} since

λmin(Q) ≥ R||min
i

{

2

RiRi
−∑

j 6=i

∣
∣
∣
∣

1
RiRj

∣
∣
∣
∣

}

=
R||

maxi{RiRi}
. (10.2.49)

We further bound this decay rate to obtainγ by noting that maxi{RiRi}< maxi{RiΓi}.

10.3 Multi-agent Deployment in the Plane

In this section, we consider the problem of deployment of a group ofN autonomous
fully actuated vehicles (agents) in a non-cooperative manner in a planar signal field
using the method of stochastic extremum seeking.

10.3.1 Vehicle model and local agent cost

We consider vehicles modeled as velocity-actuated point masses,
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dxi

dt
= Vxi,

dyi

dt
= Vyi, (10.3.50)

where(xi ,yi) is the position of the vehicle in the plane, andvxi,vyi are the vehicle
velocity inputs. The subscripti is used to denote theith vehicle.

We assume that the nonlinear map defining the distribution ofthe signal field is
quadratic and takes the form

f (xi ,yi) = f ∗ +qx(xi −x∗)2 +qy(yi −y∗)2, (10.3.51)

where(x∗,y∗) is the minimizer, f ∗ = f (x∗,y∗) is the minimum, and(qx,qy) are
unknown positive constants. To account for the interactions between the vehicles
we assume that each vehicle can sense the distance,

d(xi ,x j ,yi ,y j) =
√

(xi −x j)2 +(yi −y j)2, (10.3.52)

between itself and other vehicles. The cost function

Ji(xi , . . . ,xN,y1, . . . ,yN) = f (xi ,yi)+ ∑
j∈N

qi j d
2(xi ,x j ,yi ,y j) (10.3.53)

includes inter-vehicle interactions, whereqi j ≥ 0 is the weighting that vehiclei puts
on its distance to vehiclej.

10.3.2 Control design

To deploy the agents about the source position, we propose a control scheme that uti-
lizes Brownian motion on the unit circle as the excitation signal to perform stochas-
tic extremum seeking.

We propose the following stochastic control algorithm for vehiclei:

Vxi = −axiη̇1i −cxiξiη1i + νxi, (10.3.54)

Vyi = −ayiη̇2i −cyiξiη2i + νyi, (10.3.55)

ξi =
s

s+hi
[Ji ], (10.3.56)

η̇1i = − 1
2εi

η1i −
η2i√

εi
Ẇi , (10.3.57)
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η̇2i = − 1
2εi

η2i +
η1i√

εi
Ẇi , (10.3.58)

where ξi is the output of the washout filter for the costJi , (η1i(t),t ≥ 0) and
(η2i(t), t ≥ 0) are used as perturbations in the stochastic extremum seeking scheme,
axi,ayi, cxi, cyi, εi ,hi > 0 are extremum seeking design parameters, andνxi,νyi ∈ R.
We consider vehicles withνxi,νyi 6= 0 to be the anchor agents and those with
νxi = νyi = 0 to be the follower agents. The signalẆi denotes the white noise, and
(Wi(t), t ≥ 0) is a 1-dimensional Brownian motion which is not necessarilystandard
in the formWi(0) = 0. The signalsW1(t),W2(t), . . . ,WN(t) are independent.

The equations (10.3.57) and (10.3.58) are equivalent to

dη1i = − 1
2εi

η1idt− η2i√
εi

dWi , (10.3.59)

dη2i = − 1
2εi

η2idt+
η1i√

εi
dWi , (10.3.60)

which means, by the definition of Ito stochastic differential equation, that

η1i(t) = η1i(0)−
∫ t

0

1
2εi

η1i(s)ds−
∫ t

0

η2i(s)√
εi

dWi(s), (10.3.61)

η2i(t) = η2i(0)−
∫ t

0

1
2εi

η2i(s)ds+
∫ t

0

η1i(s)√
εi

dWi(s). (10.3.62)

Thus it holds that

η1i(εit) = η1i(0)−
∫ t

0

1
2

η1i(εiu)du−
∫ t

0

η2i(s)√
εi

dWi(εiu), (10.3.63)

η2i(εit) = η2i(0)−
∫ t

0

1
2

η2i(εiu)du+

∫ t

0

η1i(s)√
εi

dWi(εiu). (10.3.64)

Define

Bi(t) =
1√
εi

W(εit), χ1i(t) = η1i(εit), χ2i(t) = η2i(εit). (10.3.65)

Then we have

dχ1i = −1
2

χ1i(t)dt− χ2i(t)dBi(t), (10.3.66)
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dχ2i = −1
2

χ2i(t)dt+ χ1i(t)dBi(t), (10.3.67)

whereBi(t) is a 1-dimensional Brownian motion which is also not necessarily stan-
dard in the formBi(0) = 0.

The solution of stochastic differential equations (10.3.66) and (10.3.67) is equiv-
alent to Brownian motion on the unit circleχi(t) = [cos(Bi(t)),sin(Bi(t))]T . Thus

ηi(t) = [η1i(t),η2i(t)]
T = χi(t/εi) = [cos(Bi(t/εi)),sin(Bi(t/εi))]

T .(10.3.68)

Hence, the control signals (10.3.54) and (10.3.55) become

Vxi = − axi

2εi
η1i −axi

η2i√
εi

Ẇi −cxiξiη1i + νxi, (10.3.69)

Vyi = − ayi

2εi
η1i +ayi

η1i√
εi

Ẇi −cyiξiη2i + νyi. (10.3.70)

10.3.3 Stability analysis

In this section, we present and prove the local stability in aspecific probabilistic
sense for a group of vehicles.

We define an output error variable

ei =
hi

s+hi
[Ji(t)]− f ∗, (10.3.71)

where hi
s+hi

is a low-pass filter applied to the costJi , which allows us to expressξi(t),
the signal from the washout filter, as

ξi(t) =
s

s+hi
[Ji(t)] = Ji(t)− f ∗−ei(t), (10.3.72)

noting also that ˙ei = hiξi .
We have the following stability result for a group of fully actuated vehicles with

control laws (10.3.54) -(10.3.58).

Theorem 10.3.Consider the closed-loop system
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dxi = − axi

2εi
η1idt−axi

η2i√
εi

dWi −cxiξiη1idt+ νxidt, (10.3.73)

dyi = − ayi

2εi
η2idt+ayi

η1i√
εi

dWi −cyiξiη2idt+ νyidt, (10.3.74)

dei = hξidt, (10.3.75)

dη1i = − 1
2εi

η1idt− η2i√
εi

dWi , (10.3.76)

dη2i = − 1
2εi

η2idt+
η1i√

εi
dWi , (10.3.77)

ξi = qx(xi −x∗)2 +qy(yi −y∗)2 +
N

∑
j=1

qi j d
2(xi ,x j ,yi ,y j)−ei, (10.3.78)

∀i ∈ {1,2, . . . ,N}, with the parametersνx = [νx1, . . . ,νxN]T ,νy = [νy1, . . . ,νyN]T ,
axi,ayi,cxi,cyi,hi ,qx,qy > 0 and qi j ≥ 0,∀i, j ∈ {1,2, . . . ,N}. If the initial conditions
x(0), y(0), e(0) are such that the quantities|xi(0)− x∗ − x̃eq

i |, |yi(0)− y∗ − ỹeq
i |,

|ei(0)−eeq
i |, are sufficiently small, where(x∗,y∗) is the minimizer of (10.3.51),

x̃eq = (cxax)
−1Q−1

x νx, (10.3.79)

ỹeq = (cyay)
−1Q−1

y νy, (10.3.80)

eeq
i = qx(x̃

eq
i )2 +qy(ỹ

eq
i )2 +

1
2
(qxa

2
xi +qya

2
yi)

+ ∑
j∈N

qi j [(x̃
eq
i −xeq

j )2 +(ỹeq
i −yeq

j )2],

+ ∑
j∈N, j 6=i

qi j

(
1
2
(a2

xi +a2
x j)+

1
2
(a2

yi +a2
y j)

)

(10.3.81)

and the matrices Qx and Qy, given by

Qxi j =

{−qx− ∑
k∈N,k6=i

qik, i = j

qi j , i 6= j
, (10.3.82)

Qyi j =

{−qy− ∑
k∈N,k6=i

qik, i = j

qi j , i 6= j
, (10.3.83)

and
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ax =








ax1 0 · · · 0
0 ax2 · · · 0
...

...
. . .

...
0 0 · · · axN








, ay =








ay1 0 · · · 0
0 ay2 · · · 0
...

...
. . .

...
0 0 · · · ayN








, νx =






νx1
...

νxN




 ,(10.3.84)

cx =








cx1 0 · · · 0
0 cx2 · · · 0
...

...
. . .

...
0 0 · · · cxN








, cy =








cy1 0 · · · 0
0 cy2 · · · 0
...

...
. . .

...
0 0 · · · cyN








, νy =






νy1
...

νyN




 .(10.3.85)

then there exist constants Cx,Cy,γx,γy > 0 and a function T(ε1) : (0,ε0) → N such
that for anyδ > 0

lim
ε1→0

inf{t ≥ 0 : |xi(t)−x∗−xeq
i | > Cxe

−γxt + δ +O(‖ax‖)} = ∞, a.s.,(10.3.86)

lim
ε1→0

inf{t ≥ 0 : |yi(t)−y∗−yeq
i | > Cye

−γyt + δ +O(‖ay‖)} = ∞, a.s.,(10.3.87)

and

lim
ε1→0

P{|xi(t)−x∗− x̃eq
i | ≤Cxe

−γxt + δ +O(‖ax‖),∀t ∈ [0,T(ε1)]} = 1,

(10.3.88)

lim
ε1→0

P{|yi(t)−y∗− ỹeq
i | ≤Cye

−γyt + δ +O(‖ay‖),∀t ∈ [0,T(ε1)]} = 1,

(10.3.89)

∀i ∈ {1,2, . . . ,N} with thelimε1→0T(ε1) = ∞. The constantsCx,Cy are dependent on
both the initial condition(x(0),y(0),e(0)) and the parameters ax,cx,cy,νx,νy,hi(i =
1, . . . ,N),qx,qy. The constantsγx,γy are dependent on the parameters ax,ay,cx,cy,νx,
νy, hi (i = 1, . . . ,N),qx,qy.

Proof. We start by defining the error variables

x̃i = xi −x∗−axiη1i , (10.3.90)

ỹi = yi −y∗−ayiη2i . (10.3.91)

Thus

dx̃i = dxi −axidη1i

= −cxiξiη1idt+ νxidt,
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= −cxiξiχ1i(t/εi)dt+ νxidt, (10.3.92)

dỹi = dyi −ayidη2i

= −cyiξiη2idt+ νyidt
= −cyiξiχ2i(t/εi)dt + νyidt. (10.3.93)

Hence we obtain the following dynamics for the error variables:

dx̃i

dt
= −cxiξi χ1i(t/εi)+ νxi, (10.3.94)

dỹi

dt
= −cyiξiχ2i(t/εi)+ νyi, (10.3.95)

dei

dt
= hiξi , (10.3.96)

ξi = qx(x̃i +axiχ1i(t/εi))
2 +qy(ỹi +ayiχ2i(t/εi))

2

+ ∑
j∈N

qi j
[
(x̃i +axiχ1i(t/εi)− x̃ j −ax jχ1 j(t/ε j))

2

+(ỹi +ayiχ2i(t/εi)− ỹ j −ay jχ2 j(t/ε j))
2]−ei, (10.3.97)

dχ1i(t) = −1
2

χ1i(t)− χ2i(t)dBi(t), (10.3.98)

dχ2i(t) = −1
2

χ2i(t)+ χ1i(t)dBi(t). (10.3.99)

We first calculate the average system of (10.3.94)–(10.3.96). Assume that

εi =
ε1

ci
, i = 2, . . . ,N (10.3.100)

for some positive real constantsci ’s. Denote

Z11(t) = χ11(t), Z21(t) = χ21(t), Z1i(t) = χ1i(cit), Z2i(t) = χ2i(cit),
i = 2, . . . ,N. (10.3.101)

Then (10.3.94)–(10.3.96) become

dx̃i

dt
= −cxiξiZ1i(t/ε1)+ νxi, (10.3.102)

dỹi

dt
= −cyiξiZ2i(t/ε1)+ νyi, (10.3.103)

dei

dt
= hiξi , (10.3.104)
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ξi = qx(x̃i +axiZ1i(t/ε1))
2 +qy(ỹi +ayiZ2i(t/ε1))

2

+ ∑
j∈N

qi j [(x̃i +axiZ1i(t/ε1)− x̃ j −ax jZ1 j(t/ε1))
2

+(ỹi +ayiZ2i(t/ε1)− ỹ j −ay jZ2 j(t/ε1))
2]−ei. (10.3.105)

The signalsZ1i and Z2i are both components of the Brownian motion on a unit
circle, which is known to be exponentially ergodic with invariant distributionµ(S)=
l(S)
2π for any setS⊂ T = {(x,y) ∈ R

2|x2 + y2 = 1}, wherel(S) denotes the length
(Lebesgue measure) ofS. The integral over the entire space of functions of Brownian
motion on a unit circle can be reduced to the integral from 0 to2π . Since

∫

T

x2k+1µ(dx,dy) =
∫ 2π

0
cos2k+1(θ )

1
2π

dθ = 0, (10.3.106)

∫

T

x2µ(dx,dy) =

∫ 2π

0
cos2(θ )

1
2π

dθ =
1
2
, (10.3.107)

∫

T2
x1x2µ(dx1,dy1)× µ(dx2,dy2) =

∫ 2π

0

∫ 2π

0
cos(θ1)cos(θ2)

1
4π2dθ1dθ2

= 0, (10.3.108)

(note that the same applies to they case) and

∫

T

xyµ(dx,dy) =

∫ 2π

0
cos(θ )sin(θ )

1
2π

dθ = 0, (10.3.109)

∫

T

xy2µ(dx,dy) =
∫ 2π

0
cos(θ )sin2(θ )

1
2π

dθ = 0, (10.3.110)

∫

T2
x1y2

2µ(dx1,dy1)× µ(dx2,dy2) =

∫ 2π

0

∫ 2π

0
cos(θ1)sin2(θ2)

1
4π2dθ1dθ2

= 0, (10.3.111)
∫

T2
y1x2

2µ(dx1,dy1)× µ(dx2,dy2) =
∫ 2π

0

∫ 2π

0
sin(θ1)cos2(θ2)

1
4π2dθ1dθ2

= 0, (10.3.112)
∫

T2
x1x2

2µ(dx1,dy1)× µ(dx2,dy2) =

∫ 2π

0

∫ 2π

0
cos(θ1)cos2(θ2)

1
4π2dθ1dθ2

= 0, (10.3.113)

we obtain the average system
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dx̃ave
i

dt
= axicxi

[

−qxx̃
ave
i − ∑

j∈N, j 6=i

qi j (x̃
ave
i − x̃ave

j )

]

+ νxi, (10.3.114)

dỹave
i

dt
= ayicxi

[

−qyỹ
ave
i − ∑

j∈N, j 6=i

qi j (ỹ
ave
i − ỹave

j )

]

+ νyi, (10.3.115)

deave
i

dt
= hi

[

−eave
i +qx(x̃

ave
i )2 +qy(ỹ

ave
i )2 +

1
2
(qxa

2
xi +qya

2
yi)

+ ∑
j∈N, j 6=i

qi j
(
(x̃ave

i − x̃ave
j )2 +(ỹave

i − ỹave
j )2

+
1
2
(a2

xi +a2
x j)+

1
2
(a2

yi +a2
y j)

)]

. (10.3.116)

Rewriting the above systems in the matrix form, we have

dx̃ave

dt
= cxaxQxx̃

ave+ νx, (10.3.117)

dỹave

dt
= cyayQyỹ

ave+ νy, (10.3.118)

deave
i

dt
= hi

(

−eave
i +qx(x̃

ave
i )2 +qy(ỹ

ave
i )2 +

1
2
(qxa

2
xi +qya

2
yi)

)

+hi ∑
j∈N

qi j
(
(x̃ave

i − x̃ave
j )2 +(ỹave− ỹave

j )2)

+hi ∑
j∈N, j 6=i

qi j

(
1
2
(a2

xi +a2
x j)+

1
2
(a2

yi +a2
y j)

)

. (10.3.119)

The average error system has equilibria (10.3.79), (10.3.80), and (10.3.81) with
the Jacobian

ϒ =





cxaxQx 0 0
0 cyayQy 0
0 0 −hI



 , (10.3.120)

where

h =








h1 0 · · · 0
0 h2 · · · 0
...

...
.. .

...
0 0 0 hN








. (10.3.121)
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Since matricesQx andQy are given by (10.3.82) and (10.3.83), by Gershgorin Circle
Theorem ([49, Theorem 7.2.1]), we know that as long as the constantsqx,qy > 0,
the matricesQx,Qy have all of their eigenvalues on the left hand side. ThusQx,Qy

are Hurwitz and invertible, which implies thatϒ is Hurwitz and that the equilibria
(10.3.79), (10.3.80), and (10.3.81) are exponentially stable.

Using the multi-input stochastic averaging theorem given in Theorem 8.1 of
Chapter 8, there exist constantsc> 0, r > 0,γ > 0 and a functionT(ε1) : (0,ε0)→N,
such that for anyδ > 0, and any initial conditions|Λ ε1(0)| < r

lim
ε1→0

inf{t ≥ 0 : |Λ ε1(t)| > c|Λ ε1(0)|e−γt + δ} = ∞, a.s., (10.3.122)

and

lim
ε1→0

P{|Λ ε1(t)| ≤ c|Λ ε1(0)|e−γt + δ ,t ∈ [0,T(ε1)]} = 1, (10.3.123)

with limε1→0 T(ε1) = ∞, whereΛ ε1(t) = [x̃−xeq, ỹ−yeq,e−eeq]T .
The results (10.3.122) and (10.3.123) state that the norm ofthe error vector

Λ ε1(t) exponentially converges, both almost surely and in probability, to a point
below an arbitrarily small residual valueδ over an arbitrarily long time interval,
which tends to infinity asε1 goes to zero. In particular, each ˜xi-component and ˜yi-
component for alli ∈ {1,2, . . . ,N} of the error vector converges to belowδ , which
gives us (10.3.86)- (10.3.89).

10.3.4 Simulation

In this section, we show numerical results for a group of vehicles with the control
scheme presented in Section 10.3.2. For the following simulations, without loss of
generality, we let the unknown location of the signal field beat the origin(x∗,y∗) =
(0,0), and let the unknown signal field parameters be(qx,qy) = (1,1).

In Figure 10.2 we consider 13 vehicles. We choose the design parameters as
a = 0.01,cx = cy = 150,h = 10, and define agents 1 through 6 as the anchor agent
with the forcing terms,

(νxi,νyi) = 0.05

(

cos(
iπ
3

),sin(
iπ
3

)

)

, (10.3.124)
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Fig. 10.2 Stochastic extremum seeking of a group of vehicles. The anchors agents are denoted by
red triangles and the follower agents are denoted by blue dots. The agents start inside the dashed
line and converge to a circular formation around the source.

wherei = 1, . . . ,6. In addition to the design parameters, we picked in the interaction
gainqi j such that

qi j =







qi,i+1 = qi+1,i = 0.5, i ∈ {1, . . . ,12}, i 6= 6
qi,13 = 0.5, i ∈ {7, . . . ,12}
qi,i−6 = qi−6,i = 1, i ∈ {7, . . . ,12}
qi, j = 0, otherwise

(10.3.125)

Figure 10.2 shows the ability of the control algorithm to produce a circular distribu-
tion around the source with a higher density of vehicles nearthe source. In this plot,
the trajectories of the vehicles are not shown, in order to avoid obscuring the final
vehicle formation.
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10.4 Notes and References

In this chapter we specialize the general results of Chapter9 to games with quadratic
payoffs and illustrate the results with a solution to the problem of seeking a Nash
equilibrium in an economic competition formulated as an oligopoly market, which is
treated in the game theory classic [10] and in numerous references in economics. In
our solution companies compete using product pricing and measure only their own
profits, while the customers’ perceptions of their and the competitors’ products, and
even the competitors’ product pricing are unknown to them. Despite such a lack of
model knowledge, the stochastic ES algorithms attain the Nash equilibrium.

In [32, 82, 149], multi-agent deployment is considered as a GPS-enabled game
problem where each agent is trying to maximize its own cost function, but in these
algorithms the agents also require the cost information of their neighbors. In this
chapter, we investigate a stochastic version of non-cooperative source seeking by
navigating the autonomous vehicles with the help of a randomperturbation. The
vehicles have no knowledge of their own position, nor the position of the source, and
are only required to sense the distances between their neighbors and themselves.





Chapter 11
Newton-Based Stochastic Extremum Seeking

The stochastic extremum seeking algorithms presented in the previous chapters are
based on the gradient algorithm. In this chapter, we presenta Newton-based stochas-
tic extremum seeking algorithm. The key advantage of the more complicated New-
ton algorithm relative to the gradient algorithm is that, while the convergence of
the gradient algorithm is dictated by the second derivative(Hessian matrix) of the
map, which is unknown, rendering the convergence rate unknown to the user, the
convergence of the Newton algorithm is independent of the Hessian matrix and can
be arbitrarily assigned.

This chapter is organized as follows. Section 11.1 presentsthe single-parameter
stochastic extremum seeking algorithm based on Newton optimization method. Sec-
tion 11.2 presents the multi-parameter Newton algorithm for static maps. Section
11.3 presents the stochastic extremum seeking Newton algorithm for dynamic sys-
tems.

11.1 Single-Parameter Newton Algorithm for Static Maps

We consider the following nonlinear static map

y = f (θ ), (11.1.1)

where f (·) is not known, but it is known thatf (·) has a maximumy∗ = f (θ ∗) at
θ = θ ∗.

211
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We make the following assumption:

Assumption 11.1. f (·) is twice continuously differentiable and has a unique global
maximum,θ ∗ ∈ R, such that

d f(θ )

dθ
= 0 if and only if θ = θ ∗, (11.1.2)

d2 f (θ )

dθ 2

∣
∣
∣
θ=θ∗

, H < 0. (11.1.3)

If f (·) is known, the following Newton optimization algorithm can be used to
find θ ∗:

dθ
dt

= −
(

d2 f (θ )

dθ 2

)−1
d f(θ )

dθ
. (11.1.4)

If f (·) is unknown, then an estimator is needed to approximated f(θ)
dθ and d2 f (θ)

dθ2 .
The purpose of this section is to combine the continuous Newton optimization algo-
rithm (11.1.4) with estimators of the first and second derivatives to achieve stochas-
tic extremum seeking in such a way that the closed-loop system approximates the
behavior of (11.1.4).

Let θ̂ denote the estimate ofθ and letΓ be the estimate ofH−1 =
(

d2 f (θ)
dθ2

∣
∣
∣
θ=θ∗

)−1
.

We introduce the algorithm

dθ̂ (t)
dt

= −kΓ (t)M(η(t))y, k > 0, (11.1.5)

dΓ (t)
dt

= h1Γ (t)−h1Γ 2(t)N(η(t))y, Γ (0) < 0, (11.1.6)

whereM(·) andN(·) are any bounded and odd continuous functions, andη(t) is an
ergodic stochastic process with an invariant distribution. In the stochastic extremum
seeking algorithm (11.1.5), we useM(η)y to estimate the first-order derivative of
f . For the estimateΓ of the inverse of the second-order derivative off , an alge-
braic division in the form 1/Ĥ would create difficulties when the estimatêH of
d2 f (θ)

dθ2

∣
∣
∣
θ=θ∗

is close to zero. To deal with this problem, we employ a dynamic esti-

mator to calculate the inverse ofĤ using a Riccati equation. Consider the following
filter
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dΞ
dt

= −h1Ξ +h1Ĥ, (11.1.7)

whereh1 > 0 is a constant, which guarantees that the stateΞ of the stable filter
(11.1.7) converges tôH. DenoteΓ = Ξ−1. Then

dΓ
dt

= −Ξ−2dΞ
dt

. (11.1.8)

Thus by (11.1.7) we get the following differential Riccati equation

dΓ
dt

= h1Γ −h1Γ 2Ĥ, (11.1.9)

which has two equilibria:Γ ∗ = 0,Ĥ−1. Sinceh1 > 0, the equilibriumΓ ∗ = 0 is
unstable, whereas the equilibriumΓ ∗ = Ĥ−1 is exponentially stable. This shows
that after a transient, the Riccati equation (11.1.9) converges to the actual value of
the inverse ofH if Ĥ is a good estimate ofH. Comparing (11.1.6) and (11.1.9), we
use the stochastic excitation signalN(η) to generate the estimatêH = N(η)y of H.

Now we perform an illustrative analysis of stability of algorithm (11.1.5), (11.1.6).
Denote the estimate errorθ̃ = θ̂ −θ ∗, Γ̃ = Γ −H−1 andθ = θ̂ +asin(η). Then we
have the error system

dθ̃
dt

= −k
(
Γ̃ +H−1)M(η) f (θ ∗ + θ̃ +asin(η)), (11.1.10)

dΓ̃
dt

= h1
(
Γ̃ +H−1)−h1

(
Γ̃ +H−1)2

N(η) f (θ ∗ + θ̃ +asin(η)).

(11.1.11)

For simplicity and clarity, we consider a quadratic map

f (θ ) = f ∗ +
f ′′(θ ∗)

2
(θ −θ ∗)2 = f ∗ +

H
2

(θ −θ ∗)2. (11.1.12)

Then the error system is

dθ̃
dt

= −k
(
Γ̃ +H−1)M(η)

(

f ∗ +
H
2

(θ̃ +asin(η))2
)

, (11.1.13)

dΓ̃
dt

= h1
(
Γ̃ +H−1)−h1

(
Γ̃ +H−1)2

N(η)

(

f ∗ +
H
2

(θ̃ +asin(η))2
)

.
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(11.1.14)

To obtain an exponentially stable average system, we chooseM(η),N(η) such that

Ave(M(η)y) ,

∫

R

M(x)

(

f ∗ +
H
2

(θ̃ +asin(x))2
)

µ(dx) = Hθ̃ , (11.1.15)

Ave(N(η)y) ,

∫

R

N(x)

(

f ∗ +
H
2

(θ̃ +asin(x))2
)

µ(dx) = H, (11.1.16)

whereµ is the invariant distribution of the ergodic processη(t). We choose the
ergodic process as an OU process satisfying

εdη = −ηdt+
√

εqdW, (11.1.17)

which has invariant distributionµ(dx) = 1√
πq

e
− x2

q2 dx. To satisfy (11.1.15) and

(11.1.16), we chooseM(η) andN(η) that satisfy
(

f ∗ +
H
2

θ̃ 2
)

×Ave(M(η)) = 0, (11.1.18)

Hθ̃a×Ave(M(η)sin(η)) = Hθ̃ , (11.1.19)
H
2

a2×Ave(M(η)sin2(η)) = 0, (11.1.20)
(

f ∗ +
H
2

θ̃ 2
)

×Ave(N(η)) = 0, (11.1.21)

Haθ̃ ×Ave(N(η)sin(η)) = 0, (11.1.22)
H
2

a2×Ave(N(η)sin2(η)) = H. (11.1.23)

Since

∫

R

sin2k+1(x)µ(dx) =
∫ +∞

−∞
sin2k+1(x)

1√
πq

e
− x2

q2 dx= 0, (11.1.24)

∫

R

sin2(x)µ(dx) =

∫ +∞

−∞
sin2(x)

1√
πq

e
− x2

q2 dx=
1
2
(1−e−q2

) , G0(q), (11.1.25)

∫

R

sin4(x)µ(dx) =

∫ +∞

−∞
sin4(x)

1√
πq

e
− x2

q2 dx=
3
8
− 1

2
e−q2

+
1
8

e−4q2
, G1(q),

(11.1.26)



11.2 Multi-Parameter Newton Algorithm for Static Maps 215

we choose

M(η) =
1

aG0(q)
sin(η), (11.1.27)

N(η) =
4

a2G2
0(
√

2q)

(
sin2(η)−G0(q)

)
, (11.1.28)

whereG2
0(
√

2q) = 2
(
G1(q)−G2

0(q)
)
. Thus we obtain the average system

dθ̃ ave

dt
= −kθ̃ ave−kΓ̃ aveHθ̃ ave, (11.1.29)

dΓ̃ ave

dt
= −h1Γ̃ ave−h1(Γ̃ ave)2H, (11.1.30)

which has a locally exponentially stable equilibrium at(θ̃ ave,Γ̃ ave) = (0,0), as well
as an unstable equilibrium at(0,−1/H). Thus, according to the averaging theorem,
we have the following result:

Theorem 11.1.Consider the quadratic map (11.1.12) under the parameter update
law (11.1.5)–(11.1.6). Then there exist constants r> 0, c> 0, γ > 0 and a function
T(ε) : (0,ε0) → N such that for any initial condition|Λ(0)| < r and anyδ > 0,

lim
ε→0

inf
{

t ≥ 0 : |Λ(t)| > c|Λ(0)|e−γt + δ
}

= ∞, a.s. (11.1.31)

and

lim
ε→0

P
{
|Λ(t)| ≤ c|Λ(0)|e−γt + δ ,∀t ∈ [0,T(ε)]

}
= 1, with lim

ε→0
T(ε) = ∞,

(11.1.32)

whereΛ(t) , (θ̃ (t),Γ̃ (t))T .

11.2 Multi-Parameter Newton Algorithm for Static Maps

11.2.1 Problem formulation

Consider the static map
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y = f (θ ), θ ∈ R
n. (11.2.33)

We make the following assumption:

Assumption 11.2.There exist a constant vectorθ ∗ ∈ Rn such that

∂ f (θ )

∂θ

∣
∣
∣
θ=θ∗

= 0, (11.2.34)

∂ 2 f (θ )

∂ 2θ

∣
∣
∣
θ=θ∗

< 0. (11.2.35)

Assumption 11.2 means that the map (11.2.33) has a local maximum atθ ∗. The cost
function is not known in (11.2.33), but, as usual, we assume that we can measurey
and manipulateθ . The gradient-based extremum seeking scheme for this multivari-
able static map is (shown in Fig. 11.1):

dθ̂ (t)
dt

= KM(η(t))y, θ (t) = θ̂ (t)+S(η(t)), (11.2.36)

whereK = diag(k1, . . . ,kn) with ki > 0,

S(η(t)) = [a1sin(η1(t)), . . . ,ansin(ηn(t))]
T , (11.2.37)

M(η(t)) =

[
1

a1G0(q1)
sin(η1(t)), . . . ,

1
anG0(qn)

sin(ηn(t))

]T

(11.2.38)

are perturbation signals, and the independent processesηi(t), i = 1, . . . ,n satisfy

εidηi = −ηidt+
√

εiqidWi . (11.2.39)

In the parameter error variablẽθ = θ̂ − θ ∗, the closed-loop system in Fig. 11.1
is given by

dθ̃ (t)
dt

= KM(η(t)) f (θ ∗ +S(η(t))+ θ̃). (11.2.40)

For the case of a quadratic static map,f (θ ) = f ∗ + 1
2(θ −θ ∗)TH(θ −θ ∗), the av-

erage system of (11.2.40) is given by

dθ̃ ave(t)
dt

= KHθ̃ ave(t), (11.2.41)
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( )f
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s

y

ˆ Ĝ ( ( ))M t( ( ))S t

Fig. 11.1 Gradient-based stochastic extremum seeking scheme for a static map.

whereH is the Hessian matrix of the static map, and it is negative definite. This
observation reveals two things: (i) the gradient-based extremum seeking algorithm
is locally convergent, and (ii) the convergence rate is governed by the unknown
Hessian matrixH. In the next section, we give a stochastic ES algorithm basedon
Newton optimization method, which eliminates the dependence of the convergence
rate on the unknownH.

11.2.2 Algorithm design and stability analysis

The Newton-based stochastic extremum seeking algorithm for a static map is shown
in Fig. 11.2, whereh is a positive real number. There are two vital parts in the
Newton-based algorithm: the perturbation matrixN(η(t)), which generates an esti-
mateĤ = N(η)y of the Hessian matrix, and the Riccati equation, which generates
an estimate of the inverse of Hessian matrix, even when the estimate of the Hessian
matrix is singular.

The detailed algorithm is as follows:

θi = θ̂i +ai sin(ηi), (11.2.42)

dθ̂
dt

= −KΓ M(η)y, (11.2.43)

dΓ
dt

= hΓ −hΓ N(η)yΓ , Γ (0) < 0, (11.2.44)
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( )f

K

s

y

( ( ))S t

ˆ
Ĝ

( ( ))M t

Ĝ

ˆh h H

( ( ))N tĤ

Fig. 11.2 Newton-based stochastic extremum seeking scheme for a static map.

whereK = diag(k1, · · · ,kn) andh > 0 are design parameters,M(·) ∈ Rn is given
by (11.2.38),N(·) ∈ Rn×n is to be determined,Γ ∈ Rn×n is used to approximate
(

∂ 2 f (θ)

∂θ2

)−1 ∣
∣
∣
θ=θ∗

,

(
∂ 2 f (θ∗)

∂θ2

)−1
, and ηi(t), i = 1, . . . ,n are independent ergodic

processes.

Denote the estimate error variablesΓ̃ = Γ −
(

∂ 2 f (θ∗)
∂θ2

)−1
, θ̃ = θ̂ −θ ∗. Then we

have the estimate error system

dθ̃
dt

= −KΓ̃ M(η)y−K

(
∂ 2 f (θ ∗)

∂θ 2

)−1

M(η)y, (11.2.45)

dΓ̃
dt

= hΓ̃ +h

(
∂ 2 f (θ ∗)

∂θ 2

)−1

−hΓ̃ N(η)yΓ̃ −hΓ̃ N(η)y

(
∂ 2 f (θ ∗)

∂θ 2

)−1

−h

(
∂ 2 f (θ ∗)

∂θ 2

)−1

N(η)yΓ̃ −h

(
∂ 2 f (θ ∗)

∂θ 2

)−1

N(η)y

(
∂ 2 f (θ ∗)

∂θ 2

)−1

.

(11.2.46)

For the general map case, the stability analysis is conducted in Section 11.3. Here
we first give the stability analysis of a quadratic static map.

Consider the quadratic static map,

f (θ ) = f ∗ +
1
2
(θ −θ ∗)TH(θ −θ ∗), (11.2.47)

whereH is negative definite. Then the error system (11.2.45)–(11.2.46) becomes
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dθ̃ (t)
dt

= −KΓ̃ M(η)

[

f ∗ +
1
2
(θ̃ +asin(η))TH(θ̃ +asin(η))

]

−KH−1M(η)

[

f ∗ +
1
2
(θ̃ +asin(η))TH(θ̃ +asin(η))

]

, (11.2.48)

dΓ̃ (t)
dt

= hΓ̃ +hH−1−hΓ̃ N(η)

[

f ∗ +
1
2
(θ̃ +asin(η))TH(θ̃ +asin(η))

]

Γ̃

−hΓ̃ N(η)

[

f ∗ +
1
2
(θ̃ +asin(η))TH(θ̃ +asin(η))

]

H−1

−hH−1N(η)

[

f ∗ +
1
2
(θ̃ +asin(η))TH(θ̃ +asin(η))

]

Γ̃

−hH−1N(η)

[

f ∗ +
1
2
(θ̃ +asin(η))TH(θ̃ +asin(η))

]

H−1. (11.2.49)

Similar to the single parameter case, to make the average system of the error system
(11.2.48)–(11.2.49) exponentially stable, we choose the matrix functionN as

(N)ii =
4

a2
i G2

0(
√

2qi)

(
sin2(ηi)−G0(qi)

)
, (11.2.50)

(N)i j =
sin(ηi)sin(η j)

aia jG0(qi)G0(q j)
, i 6= j. (11.2.51)

Thus we obtain the average system of the error system (11.2.48)–(11.2.49)

dθ̃ ave

dt
= −Kθ̃ ave−KΓ̃ aveHθ̃ ave, (11.2.52)

dΓ̃ ave

dt
= −hΓ̃ ave−hΓ̃ aveHΓ̃ ave, (11.2.53)

whereKΓ̃ aveHθ̃ ave is quadratic in(Γ̃ ave, θ̃ ave), andhΓ̃ aveHΓ̃ ave is quadratic inΓ̃ ave.
The linearization of this system has all of its eigenvalues at −K and−h. Hence, un-
like the gradient algorithm, whose convergence is governedby the unknown Hessian
matrixH, the convergence rate of the Newton algorithm can be arbitrarily assigned
by the designer with an appropriate choice ofK andh. By the multi-input stochastic
averaging theorem given in Theorem 8.1, we arrive at the following theorem:

Theorem 11.2.Consider the static map (11.2.47) under the parameter update law
(11.2.43)–(11.2.44). Then there exist constants r> 0, c > 0, γ > 0 and a function
T(ε1) : (0,ε0) → N such that for any initial condition|θ̃ (0)| < r and anyδ > 0,
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lim
ε1→0

inf
{
t ≥ 0 : |θ̃ (t)| > c|θ̃ (0)|e−γt + δ

}
= ∞, a.s. (11.2.54)

and

lim
ε1→0

P
{
|θ̃ (t)| ≤ c|θ̃ (0)|e−γt + δ ,∀t ∈ [0,T(ε1)]

}
= 1, with lim

ε1→0
T(ε1) = ∞.

(11.2.55)

11.3 Newton Algorithm for Dynamic Systems

Consider a general multi-input single-output (MISO) nonlinear model

ẋ = f (x,u), (11.3.56)

y = h(x), (11.3.57)

wherex∈R
m is the state,u∈R

n is the input,y∈R is the output, andf : R
m×R

n →
Rm andh : Rm → R are smooth. Suppose that we know a smooth control law

u = α(x,θ ) (11.3.58)

parameterized by a vector parameterθ ∈ Rn. Then the closed-loop system

ẋ = f (x,α(x,θ )) (11.3.59)

has equilibria parameterized byθ . As in the deterministic case [6], we make the
following assumptions about the closed-loop system.

Assumption 11.3.There exists a smooth functionl : Rn → Rm such that

f (x,α(x,θ )) = 0 if and only ifx = l(θ ). (11.3.60)

Assumption 11.4.For eachθ ∈ Rn, the equilibriumx = l(θ ) of system (11.3.59) is
exponentially stable uniformly inθ .

Assumption 11.5.There existsθ ∗ ∈ Rn such that

∂ (h◦ l)
∂θ

(θ ∗) = 0, (11.3.61)



11.3 Newton Algorithm for Dynamic Systems 221
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Fig. 11.3 Gradient-based stochastic extremum seeking scheme.
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Fig. 11.4 Newton-based stochastic extremum seeking scheme. The initial conditionΓ (0) should
be chosen negative definite and symmetric.

∂ 2(h◦ l)
∂θ 2 (θ ∗) = H < 0, H = HT . (11.3.62)

Our objective is to develop a feedback mechanism which maximizes the steady-state
value ofy but without requiring the knowledge of eitherθ ∗ or the functionsh andl .
In Chapter 5, the gradient-based extremum seeking design inthe single parameter
case achieves this objective. The multi-parameter gradient-based algorithm is shown
schematically in Fig. 11.3, whereas Newton-based algorithm is shown in Fig. 11.4.

We introduce error variables

θ̃ = θ̂ −θ ∗, θ = θ̂ +S(η(t)), (11.3.63)

ζ̃ = ζ −h◦ l(θ ∗), Γ̃ = Γ −H−1, (11.3.64)

H̃ = Ĥ −H, (11.3.65)
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whereS(η) is given in (11.2.37). Then we can summarize the system in Fig. 11.4 as

d
dt











x
θ̃
Ĝ
Γ̃
H̃
ζ̃











=











f (x,α(x,θ ∗ + θ̃ +S(η(t))))
−KΓ Ĝ

−h1Ĝ+h1(y− ζ )M(η(t))
h0Γ −h0Γ ĤΓ

−h1Ĥ +h1(y− ζ )N(η(t))
−h2ζ +h2y











=











f (x,α(x,θ ∗ + θ̃ +S(η(t))))
−K(Γ̃ +H−1)Ĝ

−h1Ĝ+h1(y−h◦ l(θ ∗)− ζ̃)M(η(t))
h0(Γ̃ +H−1)(I − (H̃ +H)(Γ̃ +H−1))

−h1H̃ −h1H +h1(y−h◦ l(θ ∗)− ζ̃ )N(η(t))
−h2ζ̃ +h2(y−h◦ l(θ ∗))











(11.3.66)

Denoteχi(εit) = ηi(t) andχ(t)= [χ1(t), . . . ,χn(t)]T . Then we change the system
(11.3.66) as

dx
dt

= f (x,α(x,θ ∗ + θ̃ +S(χ(t/ε)))), (11.3.67)

d
dt









θ̃
Ĝ
Γ̃
H̃
ζ̃









=









−K(Γ̃ +H−1)Ĝ
−h1Ĝ+h1(y−h◦ l(θ ∗)− ζ̃ )M(χ(t/ε))
h0(Γ̃ +H−1)(I − (H̃ +H)(Γ̃ +H−1))

−h1H̃ −h1H +h1(y−h◦ l(θ ∗)− ζ̃)N(χ(t/ε))

−h2ζ̃ +h2(y−h◦ l(θ ∗))









,(11.3.68)

where

S(χ(t/ε)) = [a1sin(χ1(t/ε1)), . . . ,ansin(χn(t/εn))]
T , (11.3.69)

M(χ(t/ε)) =

[
1

a1G0(q1)
sin(χ1(t/ε1)), . . . ,

1
anG0(qn)

sin(χn(t/εn))

]T

,

(11.3.70)

(N(χ(t/ε)))ii =
4

a2
i G2

0(
√

2qi)
(sin2(χi(t/εi))−G0(qi)), (11.3.71)

(N(χ(t/ε)))i j =
sin(χi(t/εi))sin(χ j(t/ε j))

aia jG0(qi)G0(q j)
, i 6= j. (11.3.72)
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Now, treatingε as large compared to the size of parameters in (11.3.67), we “freeze”
x in (11.3.67) at its quasisteady-state equilibrium valuex = l(θ ∗ + θ̃ + S(χ(t/ε)))
and substitute it into (11.3.68), getting the reduced system

d
dt









θ̃r

Ĝr

Γ̃r

H̃r

ζ̃r









=









−K(Γ̃r +H−1)Ĝr

−h1Ĝr +h1(v(θ̃r +S(χ(t/ε)))− ζ̃r)M(χ(t/ε))
h0(Γ̃r +H−1)(I − (H̃r +H)(Γ̃r +H−1))

−h1H̃r −h1H +h1(v(θ̃r +S(χ(t/ε)))− ζ̃r)N(χ(t/ε))

−h2ζ̃r +h2v(θ̃r +S(χ(t/ε)))









,

(11.3.73)

wherev(z) = h◦ l(θ ∗+z)−h◦ l(θ ∗). In view of Assumption 11.5,v(0)= 0, ∂v
∂z(0)=

0, and ∂ 2v
∂z2 (0) = H < 0.

Denoteεi = ε1
ci

for some constantsci . Then we get the average system of the
reduced system (11.3.73) as

d
dt









θ̃ a
r

Ĝa
r

Γ̃ a
r

H̃a
r

ζ̃ a
r









=









−K(Γ̃ a
r +H−1)Ĝa

r
−h1Ĝa

r +h1
∫

Rn v(θ̃r +S(σ))M(σ)µ1(dσ1)×·· ·×µn(dσn)
h0(Γ̃ a

r +H−1)(I − (H̃a
r +H)(Γ̃ a

r +H−1))
−h1H̃a

r −h1H +h1
∫

Rn v(θ̃r +S(σ))N(σ)µ1(dσ1)×·· ·×µn(dσn)

−h2ζ̃ a
r +h2

∫

Rn v(θ̃r +S(σ))µ1(dσ1)×·· ·×µn(dσn)









,

(11.3.74)

The equilibrium(θ̃ a,e
r ,Ĝa,e

r ,Γ̃ a,e
r ,H̃a,e

r , ζ̃ a,e
r ) of the average reduced system satisfies

Ĝa,e
r = 0n×1, (11.3.75)

∫

Rn
v(θ̃ a,e

r +S(σ))M(σ)µ1(dσ1)×·· ·×µn(dσn) = 0n×1, (11.3.76)

ζ̃ a,e
r =

∫

Rn
v(θ̃ a,e

r +S(σ))µ1(dσ1)×·· ·×µn(dσn), (11.3.77)

H̃a,e
r +H =

∫

Rn
v(θ̃ a,e

r +S(σ))N(σ)µ1(dσ1)×·· ·×µn(dσn), (11.3.78)

(H̃a,e
r +H)(Γ̃ a,e

r +H−1) = I . (11.3.79)

By (11.3.76), for anyp = 1, . . . ,n,

∫

Rn
v(θ̃ a,e

r +S(σ))
1

apG0(qp)
sin(σp)µ1(dσ1)×·· ·×µn(dσn) = 0.(11.3.80)
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By postulating theith elementθ̃ a,e
r,i of θ̃ a,e

r in the form

θ̃ a,e
r,i =

n

∑
j=1

bi
ja j +

n

∑
j=1

n

∑
k≥ j

ci
j ,ka jak +O(|a|3), (11.3.81)

wherebi
j andci

j ,k are real numbers, defining

v(z) =
1
2

n

∑
i=1

n

∑
j=1

∂ 2v
∂zi∂zj

(0)zizj +
1
3!

n

∑
i=1

n

∑
j=1

n

∑
k=1

∂ 3v
∂zi∂zj ∂zk

(0)zizj zk +O(|z|4).

(11.3.82)

and substituting (11.3.82) into (11.3.80), we have

0 =

∫

Rn

[
n

∑
i=1

n

∑
j=1

1
2

∂ 2v
∂zi∂zj

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
3!

∂ 3v
∂zi∂zj ∂zk

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

×(θ̃ a,e
r,k +aksin(σk))+O(|a|4)

] 1
apG0(qp)

sin(σp)µ1(dσ1)×·· ·×µn(dσn).

(11.3.83)

By calculating the average of each term, we have

0 = θ̃ a,e
r,p

∂ 2v
∂z2

p
(0)+

n

∑
j 6=p

θ̃ a,e
r, j

∂ 2v
∂zp∂zj

(0)+

(
1
2
(θ̃ a,e

r,p )2 +
1
3!

a2
p
G1(qp)

G0(qp)

)
∂ 3v
∂z3

p
(0)

+θ̃ a,e
r,p ∑

j 6=p

θ̃ a,e
r, j

∂ 3v
∂z2

p∂zj
(0)+

n

∑
j 6=p

(θ̃ a,e
r, j )2 +a2

j G0(q j)

2
∂ 3v

∂zp∂z2
j

(0)

+
n

∑
j 6=p,k> j

n

∑
k6=p

θ̃ a,e
r, j θ̃ a,e

r,k
∂ 3v

∂zp∂zj ∂zk
(0)+O(|a|3). (11.3.84)

Substituting (11.3.81) in (11.3.84) and matching first order powers ofai gives






0
...
0




= H






b1
i
...

bn
i




 , i = 1, . . . ,n, (11.3.85)
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which implies thatbi
j = 0 for all i, j sinceH is negative definite (thus nonsingular).

Similarly, matching second order terma jak( j > k) anda2
j of a j , and substitutingbi

j
to simplify the resulting expressions, yields






0
...
0




= H






c1
jk
...

cn
jk




 , j = 1, . . . ,n, j > k, (11.3.86)

and






0
...
0




=





















H






c1
j j
...

cn
j j




+





















1
2G0(q j)

∂ 3v
∂z1∂z2

j
(0)

...
1
2G0(q j)

∂ 3v
∂zj−1∂z2

j
(0)

1
6

G1(q j )

G0(q j )
∂ 3v
∂z3

j
(0)

1
2G0(q j)

∂ 3v
∂z2

j ∂zj+1
(0)

...
1
2G0(q j)

∂ 3v
∂z2

j ∂zn
(0)









































(11.3.87)

Thusci
jk = 0 for all i, j,k when j 6= k, andci

j j is given by
















c1
j j
...

ci−1
j j

ci
j j

ci+1
j j
...

cn
j j
















= −H−1





















1
2G0(q j)

∂ 3v
∂z1∂z2

j
(0)

...
1
2G0(q j)

∂ 3v
∂zj−1∂z2

j
(0)

1
6

G1(q j )

G0(q j )
∂ 3v
∂z3

j
(0)

1
2G0(q j)

∂ 3v
∂z2

j ∂zj+1
(0)

...
1
2G0(q j)

∂ 3v
∂z2

j ∂zn
(0)





















,∀i, j ∈ {1,2, . . . ,n}. (11.3.88)

Thus
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θ̃ a,e
r,i =

n

∑
j=1

ci
j j a

2
j +O(|a|3). (11.3.89)

By (11.3.100), we have

ζ̃ a,e
r =

∫

Rn
v(θ̃ a,e

r +S(σ))µ1(dσ1)×·· ·×µn(dσn)

=
∫

Rn

[
n

∑
i=1

n

∑
j=1

1
2

∂ 2v
∂zi∂zj

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
3!

∂ 3v
∂zi∂zj ∂zk

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

×(θ̃ a,e
r,k +aksin(σk))+O(|a|4)

]

µ1(dσ1)×·· ·×µn(dσn)

=
n

∑
i=1

n

∑
j=1

1
2

∂ 2v
∂zi∂zj

(0)
(

θ̃ a,e
r,i θ̃ a,e

r, j +a2
i G0(qi)

)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
3!

∂ 3v
∂zi∂zj ∂zk

(0)θ̃ a,e
r,i θ̃ a,e

r, j θ̃ a,e
r,k

+
n

∑
i=1

n

∑
j=k

1
3!

∂ 3v

∂zi∂z2
j

(0)θ̃ a,e
r,i a2

j G0(q j)+O(|a|4). (11.3.90)

This together with (11.3.89) gives

ζ̃ a,e
r =

1
2

n

∑
i=1

Hii a
2
i G0(qi)+O(|a|4). (11.3.91)

By (11.3.101), we have

(H̃a,e
r )pp =

∫

Rn
v(θ̃ a,e

r +S(σ))(N(σ))ppµ1(dσ1)×·· ·×µn(dσn),

=

∫

Rn

[
n

∑
i=1

n

∑
j=1

1
2

∂ 2v
∂zi∂zj

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
3!

∂ 3v
∂zi∂zj ∂zk

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

×(θ̃ a,e
r,k +aksin(σk))+O(|a|4)

] 4

a2
pG2

0(
√

2qp)
(sin2(σp)−G0(qp))

×µ1(dσ1)×·· ·×µn(dσn)− (H)pp,



11.3 Newton Algorithm for Dynamic Systems 227

=

∫

Rn

1
2

∂ 2v
∂z2

p
(0)a2

psin2(σp)
4

a2
pG2

0(
√

2qp)
(sin2(σp)−G0(qp))

+

∫

Rn

n

∑
i=p

1
2

∂ 3v
∂z2

p
(0)θ̃ a,e

r,i a2
psin2(σp)

4

a2
pG2

0(
√

2qp)
(sin2(σp)−G0(qp))− (H)pp,

= (H)pp+
n

∑
i=1

∂ 3v
∂zi∂z2

p
θ̃ a,e

r,i − (H)pp

=
n

∑
i=1

∂ 3v
∂zi∂z2

p
θ̃ a,e

r,i . (11.3.92)

and

(H̃a,e
r )pm =

∫

Rn
v(θ̃ a,e

r +S(σ))(N(σ))pmµ1(dσ1)×·· ·×µn(dσn),

=

∫

Rn

[
n

∑
i=1

n

∑
j=1

1
2

∂ 2v
∂zi∂zj

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
3!

∂ 3v
∂zi∂zj ∂zk

(0)(θ̃ a,e
r,i +ai sin(σi))(θ̃ a,e

r, j +a j sin(σ j))

×(θ̃ a,e
r,k +aksin(σk))+O(|a|4)

] sin(σp)sin(σm)

apamG0(qp)G0(qm)
×µ1(dσ1)×·· ·×µn(dσn)− (H)pm,

=
∫

Rn

∂ 2v
∂zp∂zm

(0)apamsin(σp)sin(σm)
sin(σp)sin(σm)

apamG0(qp)G0(qm)
×µ1(dσ1)×·· ·×µn(dσn)

+
∫

Rn

n

∑
i=1

1
3!

∂ 3v
∂zi∂zp∂zm

(0)θ̃ a,e
r,i amapsin(σm)sin(σp)

sin(σp)sin(σm)

apamG0(qp)G0(qm)

×µ1(dσ1)×·· ·×µn(dσn)− (H)pm

= (H)pm+
n

∑
i=1

∂ 3v
∂zi∂zp∂zm

(0)θ̃ a,e
r,i − (H)pm

=
n

∑
i=1

∂ 3v
∂zi∂zp∂zm

(0)θ̃ a,e
r,i . (11.3.93)

This together with (11.3.89) gives

H̃a,e
r =

n

∑
i=1

n

∑
j=1

Wici
j j a

2
j +[O(|a|3)]n×n, (11.3.94)
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whereWi is an×n matrix defined by

(Wi) j ,k =
∂ 3v

∂zi∂zj ∂zk
(0), ∀i, j, andk∈ {1,2, . . . ,n}. (11.3.95)

By (11.3.79), we have

Γ̃ a,e
r = (H̃a,e

r +H)−1−H−1

= (H(H−1H̃a,e
r + I))−1−H−1

= (H−1H̃a,e
r + I)−1H−1−H−1

= ((H−1H̃a,e
r + I)−1− I)H−1

= (−H−1H̃a,e
r +(H−1H̃a,e

r )2− (H−1H̃a,e
r )3 + · · ·)H−1. (11.3.96)

This together with (11.3.94) gives that

Γ̃ a,e
r = −

n

∑
i=1

n

∑
j=1

H−1WiH−1ci
j j a

2
j +[O(|a|3)]n×n, (11.3.97)

Thus by (11.3.89), (11.3.76), (11.3.97) (11.3.94) and (11.3.91), the equilibrium of
the average system is

θ̃ a,e
r,i =

n

∑
j=1

ci
j j a

2
j +O(|a|3), (11.3.98)

Ĝa,e
r = 0n×1, (11.3.99)

Γ̃ a,e
r = −

n

∑
i=1

n

∑
j=1

H−1WiH−1ci
j j a

2
j +[O(|a|3)]n×n, (11.3.100)

H̃a,e
r =

n

∑
i=1

n

∑
j=1

Wici
j j a

2
j +[O(|a|3)]n×n, (11.3.101)

ζ̃ a,e
r =

1
2

n

∑
i=1

Hii a
2
i G0(qi)+O(|a|4). (11.3.102)

The Jacobian of the average system (11.3.74) at the equilibrium is

Ja,e
r =

[
A2n×2n 02n×(2n+1)

B(2n+1)×2n C(2n+1)×(2n+1)

]

, (11.3.103)
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A =

[

0n×n −K(H−1+ ˜Γ a,e
r )

h1
∫

Rn
∂

∂ θ̃ (vM(σ))µ(dσ) −h1In×n

]

, (11.3.104)

B =






0n×n 0n×n

h1
∫

Rn
∂

∂ θ̃ (vN(σ))µ(dσ) 0n×n

h2
∫

Rn
∂

∂ θ̃ (v)µ(dσ) 01×n




 , (11.3.105)

C =





−h0In×n+O1 −h0H−2 +O2 0n×1

0n×n −h1In×n 0n×1

01×n 01×n −h2



 , (11.3.106)

O1 = h0

n

∑
i=1

n

∑
j=1

H−1Wici
j j a

2
j +[O(|a|3)]n×n, (11.3.107)

O2 = h0

n

∑
i=1

n

∑
j=1

H−1(WiH−1−H−1Wi)H−1ci
j j a

2
j +[O(|a|3)]n×n,

(11.3.108)

whereµ(dσ) , µ1(dσ1)×·· ·×µn(dσn). SinceJa,e
r is block-lower-triangular, it is

Hurwitz if and only if

A21 = h1

∫

Rn
M(σ)

∂
∂ θ̃

v(θ̃ a,e
r +S(σ))µ1(dσ1)×·· ·×µn(dσn) < 0. (11.3.109)

With a Taylor expansion we get thatA21 = h1H +[O(|a|)]n×n. Hence we have

det(λ I2n×2n−A)
= det(λ (λ +h1)In×n +K(H−1+ Γ̃ a,e

r )A21)
= det((λ 2 +h1λ )In×n +K(H−1+[O(|a|2)]n×n)(h1H +[O(|a|)]n×n))
= det((λ 2 +h1λ )In×n +h1K +[O(|a|)]n×n), (11.3.110)

which, in view ofH < 0, proves thatJa,e
r is Hurwitz fora that is sufficiently small in

norm. This implies that the equilibrium (11.3.98)–(11.3.102) of the average system
(11.3.74) is exponentially stable if all elements of vectora are sufficiently small.
Then according to the multi-input stochastic average theorem given in Theorem 8.1,
we have the following result.

Theorem 11.3.Consider the reduced system (11.3.73). Then there exist a∗ > 0 such
that for all |a| ∈ (0,a∗), there exist constants r> 0, c > 0, γ > 0 and a function
T(ε1) : (0,ε0) → N such that for any initial condition|Λ(0)| < r and anyδ > 0,
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lim
ε1→0

inf{t ≥ 0 : |Λ(t)| > c|Λ(0)|e−γt + δ +O(|a|3)} = ∞, a.s. (11.3.111)

and

lim
ε1→0

P{|Λ(t)| ≤ c|Λ(0)|e−γt + δ +O(|a|3),∀t ∈ [0,T(ε1)]} = 1, with lim
ε1→0

T(ε1) = ∞.

(11.3.112)

whereΛ(t), (θ̃r,i(t),Ĝr(t),Γ̃r(t),H̃r(t), ζ̃r(t))−
(

∑n
j=1ci

j j a
2
j ,0,−∑n

i=1 ∑n
j=1H−1WiH−1ci

j j a
2
j ,

∑n
i=1 ∑n

j=1Wici
j j a

2
j ,

1
2 ∑n

i=1Hii G0(qi)a2
i

)

.

11.4 Simulation

To illustrate the results, we consider the static quadraticinput-output map:

y = f (θ ) = f ∗ +
1
2
(θ −θ ∗)TH(θ −θ ∗). (11.4.113)

Figure 11.5 displays the simulation results withf ∗ = 1,θ ∗ = [0,1]T , H =
[

2 2
2 4

]

in the static map (11.2.47) anda1 = 0.1,a2 = 0.1,k1 = 1,k2 = 1,h0 =

0.1,h1 = 0.08,h2 = 0.08,q1 = q2 = 40,ε1 = 0.25,ε2 = 0.01 in the parameter up-
date law (11.2.43)–(11.2.44) and initial conditionθ̃1(0) = 1, θ̃2(0) = −1, θ̂1(0) =
−1, θ̂2(0) = 2,Γ11(0) = 1/100,Γ22(0) = 1/200,Γ12(0) = Γ21(0) = 0.

Comparing Fig. 11.5 with Figure 8.1, we see that Newton-based stochastic ex-
tremum seeking converges faster than gradient-based stochastic extremum seeking
by choosing proper design parameters. Note that it was necessary, for the gradient-
based simulation in Figure 8.1, to use gains that are different for the different com-
ponents of theθ vector (with a gain ratiok1/k2 = 3/4) to achieve balanced conver-
gence between̂θ1 andθ̂2. In Figure 11.5 the Newton algorithm achieves balanced
convergence automatically.
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11.5 Notes and References

A Newton-based extremum seeking algorithm was introduced in [104] where, for
the single-input case, an estimate of the second derivativeof the map was employed
in a Newton-like continuous-time algorithm. A generalization, employing a differ-
ent approach than in [104], was presented in [108], where a methodology for gen-
erating estimates of higher-order derivatives of the unknown single-input map was
introduced, for emulating more general continuous-time optimization algorithms,
with a Newton algorithm being a special case.

The power of the Newton algorithm is particularly evident inmulti-input opti-
mization problems. With the Hessian being a matrix, and withit being typically
very different from the identity matrix, the gradient algorithm typically results in
different elements of the input vector converging at vastlydifferent speeds. The
Newton algorithm, when equipped with a convergent estimator of the Hessian ma-
trix, achieves convergence of all the elements of the input vector at the same, or at
arbitrarily assignable, rates.

In this chapter we generate the estimate of the Hessian matrix by generalizing
the idea proposed in [108] for the scalar sinusoid-perturbed case to the multivariable
stochastically-perturbed case.

The stochastic continuous-time Newton algorithm that we propose is novel, to
our knowledge, even in the case when the cost function being optimized is known.
The state-of-the-art continuous-time Newton algorithm in[3] employs a Lyapunov
differential equation for estimating the inverse of the Hessian matrix—see (3.2) in
[3]. The convergence of this estimator is actually governedby the Hessian matrix
itself. This means that the algorithm in [3] removes the difficulty with inverting the
estimate of the Hessian, but does not achieve independence of the convergence rate
from the Hessian. In contrast, our algorithm’s convergencerate is independent from
the Hessian and is user-assignable.

This chapter parallels the deterministic Newton-based extremum seeking devel-
opment in [47].
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Fig. 11.5 Newton-based stochastic extremum seeking. Top: output andextremum values. Others:
estimate values.



Appendix A
Some Properties ofp-limit and p-infinitesimal
Operator

Let F ε
t = σ{Xε

s ,Ys/ε ,0≤ s≤ t} = σ{Ys/ε ,0≤ s≤ t} = σ{Ys,0≤ s≤ t
ε }, andEε

t
denote the expectation conditioning onF ε

t . Let M ε be the linear space of real-
valued processesf (t,ω) , f (t) progressively measurable with respect to{F ε

t }
such thatf (t) has a finite expectation for allt, andM

ε
be one subspace ofM ε

defined byM
ε

=
{

f ∈ M ε : supt≥0 E| f (t)| < ∞
}

. A function f is said to bep-
right continuous (or right continuous in the mean) if for each t,

E| f (t + δ )− f (t)| → 0 asδ ↓ 0 and (A.1)

sup
t≥0

E| f (t)| < ∞. (A.2)

Following [78, 116], we define thep-limit and thep-infinitesimal operator ˆA ε as
follows. Let f , f δ ∈ M

ε
for eachδ > 0. Then we say thatf = p-limδ→0 f δ if

sup
t,δ

E| f δ (t)| < ∞ and (A.3)

lim
δ→0

E| f δ (t)− f (t)| = 0 for eacht. (A.4)

We say thatf ∈ D( ˆA ε), the domain of ˆA ε , and ˆA ε f = g if f andg are inM
ε
,

and

p- lim
δ→0

Eε
t [ f (t + δ )]− f (t)

δ
= g(t). (A.5)

233
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For our need, the most useful properties ofˆA ε are given by the following theorem:

Theorem A.1 ([78]).Let f(·) ∈ D( ˆA ε). Then

M f
ε (t) = f (t)− f (0)−

∫ t

0
ˆA
ε f (u)du (A.6)

is a zero-mean martingale with respect to{F ε
t }, and

Eε
t [ f (t +s)]− f (t) =

∫ t+s

t
Eε

t

[
ˆA
ε f (u)]du, a.s..

Furthermore, ifτ and σ are bounded{F ε
t } stopping times and each takes only

countably many values andσ ≥ τ, then

Eε
τ [ f (σ)]− f (τ) = Eε

τ

[∫ σ

τ
ˆA
ε f (u)du

]

. (A.7)

If f (·) is right continuous almost surely, we can drop the “countability” require-
ment.
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Lemma B.1 ([79], Lemma 4.4).Letξ (·) be aφ -mixing process. LetF t
0 = σ{ξ (s) :

0≤ s≤ t}, F∞
t = σ{ξ (s) : s≥ t}. Suppose that h(t) is bounded with bound K> 0,

measurable onF∞
t . Then
∣
∣E
[
h(t +s)|F t

0

]
−E[h(t +s)]

∣
∣≤ K φ(s). (B.1)

Lemma B.2.gε
δ (t) ∈ M

ε
δ .

Proof. By (3.3.98) and (3.3.99)

G̃(x,y) = G(x,y)− Ḡ(x) =

(
∂V(x)

∂x

)T

(a(x,y)− ā(x)). (B.2)

Then we have that

∂ G̃(x,y)
∂x

=

(
∂ 2V(x)

∂x2

)T

(a(x,y)− ā(x))+

(
∂a(x,y)

∂x
− ∂ ā(x)

∂x

)T ∂V(x)
∂x

.(B.3)

By (B.3), (3.2.27), (3.3.90), (3.3.90), (3.3.89), (3.2.23), and (3.2.26), we get that
there existsCδ > 0 such that for anyx ∈ Dδ+1 = {x′ ∈ Rn : |x′| ≤ δ + 1} and any
y∈ SY,

∣
∣
∣
∣

∂ G̃(x,y)
∂x

∣
∣
∣
∣
≤Cδ . (B.4)
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First, we prove that for anyx = [x1, . . . ,xn] ∈ Dδ , t ≥ 0, ands≥ 0,

∂Eε
t [G̃(x,Ys/ε)]

∂x
= Eε

t

[

∂ G̃(x,Ys/ε)

∂x

]

. (B.5)

Without loss of generality, we only need to prove that

∂Eε
t [G̃(x,Ys/ε)]

∂x1
= Eε

t

[

∂ G̃(x,Ys/ε)

∂x1

]

. (B.6)

The proofs about the partial derivatives with respect tox2, . . . ,xn are similar. By
linearity of conditional expectation, the differential mean value theorem, and the
dominated convergence theorem for conditional expectation (cf. (B.4)), we obtain

∂Eε
t [G̃(x,Ys/ε)]

∂x1

= lim
∆x1→0

Eε
t [G̃(x1 + ∆x1,x2, . . . ,xn,Ys/ε)]−Eε

t [G̃(x1,x2, . . . ,xn,Ys/ε)]

∆x1

= lim
∆x1→0

Eε
t

[
∂ G̃
∂x1

(x1 + θ∆x1,x2, . . . ,xn,Ys/ε)

]

(where 0< θ < 1)

= Eε
t

[

lim
∆x1→0

∂ G̃
∂x1

(x1 + θ∆x1,x2, . . . ,xn,Ys/ε)

]

= Eε
t

[
∂ G̃
∂x1

(x1,x2, . . . ,xn,Ys/ε)

]

, (B.7)

i.e.,
∂Eε

t [G̃(x,Ys/ε) ]

∂x1
= Eε

t

[
∂ G̃(x,Ys/ε )

∂x1

]

holds. For simplicity, we denote

Q(x,y) =

(
∂ 2V(x)

∂x2

)T

a(x,y)+

(
∂a(x,y)

∂x

)T ∂V(x)
∂x

. (B.8)

Then we have that

∫

SY

Q(x,y)µ(dy) =

(
∂ 2V(x)

∂x2

)T ∫

SY

a(x,y)µ(dy)+

(∫

SY

∂a(x,y)
∂x

µ(dy)

)T ∂V(x)
∂x
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=

(
∂ 2V(x)

∂x2

)T

ā(x)+

(
∂ ā(x)

∂x

)T ∂V(x)
∂x

,

(B.9)

where in the last equality, we used

∫

SY

∂a(x,y)
∂x

µ(dy) =
∂
∂x

∫

SY

a(x,y)µ(dy), (B.10)

which can be proved by following the deduction in (B.7). By (B.8), (3.2.27),
(3.3.90), (3.3.89), and (3.2.26), we get that for anyx∈ Rn with |x| ≤ δ , andy∈ SY,

|Q(x,y)| ≤ (c3 +c4)kδ |x|. (B.11)

By (B.5), (B.3), (B.8), (B.9), the fact thatF ε
t = FY

t/ε , (B.11), Lemma B.1, (3.3.90),
and (3.3.91), we obtain that for anyx∈ Dδ ,
∣
∣
∣
∣
∣
∣

∫ τε
δ

τε
δ (t)

[

∂Eε
t [G̃(x,Ys/ε)]

∂x

]T

a(x,Yt/ε )ds

∣
∣
∣
∣
∣
∣

≤
∫ τε

δ

τε
δ (t)

∣
∣
∣
∣
∣
∣

[

∂Eε
t [G̃(x,Ys/ε)]

∂x

]T

a(x,Yt/ε)

∣
∣
∣
∣
∣
∣

ds

=

∫ τε
δ

τε
δ (t)

∣
∣
∣
∣
∣
∣

Eε
t

[

∂ G̃(x,Ys/ε)

∂x

]T

a(x,Yt/ε )

∣
∣
∣
∣
∣
∣

ds

= ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣
∣
∣
Eε

t

[
∂ G̃(x,Yu)

∂x

]T

a(x,Yt/ε )

∣
∣
∣
∣
∣
du (by change of variable)

= ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣
∣
Eε

t

[

Q(x,Yu)−
∫

SY

Q(x,y)µ(dy)

]∣
∣
∣
∣

∣
∣a(x,Yt/ε )

∣
∣du

(by (B.3),(B.8),(B.9))

= ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣
∣
Eε

t

[

Q(x,Yu)−
∫

SY

Q(x,y)(Pu(dy)−Pu(dy)+ µ(dy))

]∣
∣
∣
∣

∣
∣a(x,Yt/ε)

∣
∣du

≤ ε
∫ τε

δ
ε

τε
δ (t)

ε

|E[Q(x,Yu)|F ε
t ]−E[Q(x,Yu)]|

∣
∣a(x,Yt/ε )

∣
∣du
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+ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣
∣

∫

SY

Q(x,y)(Pu(dy)− µ(dy))

∣
∣
∣
∣

∣
∣a(x,Yt/ε )

∣
∣du

≤ ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣E
[

Q(x,Yu)|FY
t/ε

]

−E[Q(x,Yu)]
∣
∣
∣

∣
∣a(x,Yt/ε )

∣
∣du

+ε
∫ τε

δ
ε

τε
δ (t)

ε

∣
∣
∣
∣

∫

SY

Q(x,y)(Pu(dy)− µ(dy))

∣
∣
∣
∣

∣
∣a(x,Yt/ε )

∣
∣du

≤ ε(c3 +c4)kδ |x| ·kδ |x|
∫ τε

δ
ε

τε
δ (t)

ε

φ
(

u−
τε

δ (t)

ε

)

du

+ε
√

2c5(c3 +c4)kδ |x| ·kδ |x|
∫ τε

M

τε
M(t)

ε

e−
α
2 udu

≤ εC2(δ )|x|2, (see(3.3.92),(3.3.93),(3.3.94),(3.3.95)), (B.12)

whereC2(δ ) =
c6(c3+c4)k

2
δ

β +
2
√

2c5(c3+c4)k
2
δ

α . Hence, by (3.3.101), (B.12), (3.3.98),
(3.2.26), (3.3.90),

sup
t≥0

E[
∣
∣gε

δ (t)
∣
∣] ≤ sup

t≥0
E
[

I{t<τε
δ } ·
(
|Ḡ(Xε

t )|+ εC2(δ )|Xε
t |2
)]

≤ sup
t≥0

E

[

sup
|x|≤δ

{∣
∣
∣
∣
∣

(
∂V(x)

∂x

)T

ā(x)

∣
∣
∣
∣
∣
+ εC2(δ )|x|2

}]

≤ sup
|x|≤δ

{
c3kδ |x|2 + εC2(δ )|x|2

}

≤ (c3kδ + εC2(δ ))δ 2 < ∞,
(B.13)

and thusgε
δ (t) ∈ M

ε
δ .

Lemma B.3. p- lim
δ ′↓0

Eε
t [Vε(Xε

τε
δ (t+δ ′),t + δ ′)]−Vε(Xε

τε
δ (t),t)

δ ′ = gε
δ (t)

Proof. We prove a stronger result

lim
δ ′↓0

Eε
t [Vε(Xε

τε
δ (t+δ ′),t + δ ′)]−Vε(Xε

τε
δ (t),t)

δ ′ = gε
δ (t), a.s., (B.14)
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from which the statement of the lemma follows. Denote
(

∂V(x)
∂x

)T
|x=Xε

τε
δ (t)

by

VT
x (Xε

τε
δ (t)). By (3.3.87), (3.3.88), (B.2) and the definition ofVε(Xε

τε
δ (t),t), the prop-

erty of conditional expectation, we have that

Eε
t [Vε(Xε

τε
δ (t+δ ′), t + δ ′)]−Vε(Xε

τε
δ (t),t)

δ ′

=
1
δ ′

{

Eε
t

[

V(Xε
τε

δ (t+δ ′))

+
∫ τε

δ

τε
δ (t+δ ′)

Vx(X
ε
τε

δ (t+δ ′))E
ε
t+δ ′

[

a(Xε
τε

δ (t+δ ′),Ys/ε)− ā(Xε
τε

δ (t+δ ′))
]

ds

]

−
[

V(Xε
τε

δ (t))+

∫ τε
δ

τε
δ (t)

Vx(X
ε
τε

δ (t))E
ε
t

[

a(Xε
τε

δ (t),Ys/ε)− ā(Xε
τε

δ (t))
]

ds

]}

=
1
δ ′

{

Eε
t [V(Xε

τε
δ (t+δ ′))]−V(Xε

τε
δ (t))

}

− 1
δ ′

∫ τε
δ (t+δ ′)

τε
δ (t)

Vx(X
ε
τε

δ (t))E
ε
t

[

a(Xε
τε

δ (t),Ys/ε)− ā(Xε
τε

δ (t))
]

ds

+
1
δ ′

∫ τε
δ

τε
δ (t+δ ′)

{

Eε
t

[

Vx(X
ε
τε

δ (t+δ ′))
(

a(Xε
τε

δ (t+δ ′),Ys/ε)− ā(Xε
τε

δ (t+δ ′))
)

− Vx(X
ε
τε

δ (t))
(

a(Xε
τε

δ (t),Ys/ε)− ā(Xε
τε

δ (t))
)]}

ds

=
1
δ ′

{

Eε
t [V(Xε

τε
δ (t+δ ′))]−V(Xε

τε
δ (t))

}

− 1
δ ′

∫ τε
δ (t+δ ′)

τε
δ (t)

Eε
t

[

G̃(Xε
τε

δ (t),Ys/ε)
]

ds

+
1
δ ′

∫ τε
δ

τε
δ (t+δ ′)

Eε
t

[

G̃(Xε
τε

δ (t+δ ′),Ys/ε)− G̃(Xε
τε

δ (t),Ys/ε)
]

ds

, gε,δ
1 (t,δ ′)−gε,δ

2 (t,δ ′)+gε,δ
3 (t,δ ′). (B.15)

Following the proof of (B.7), we get

lim
δ ′↓0

gε,δ
1 (t,δ ′) = lim

δ ′↓0

1
δ ′

{

Eε
t [V(Xε

τε
δ (t+δ ′))]−V(Xε

τε
δ (t))

}

= lim
δ ′↓0

Eε
t





VT
x

(

Xε
τε

δ (t) + θ
(

Xε
τε

δ (t+δ ′) −Xε
τε

δ (t)

))(

Xε
τε

δ (t+δ ′) −Xε
τε

δ (t)

)

δ




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= lim
δ ′↓0

Eε
t






VT
x

(

Xε
τε

δ (t) + θ
(

Xε
τε

δ (t+δ ′) −Xε
τε

δ (t)

))
∫ τε

δ (t+δ ′)
τε

δ (t) a(Xε
u ,Yu/ε)du

δ






= lim
δ ′↓0

Eε
t





VT
x

(

Xε
τε

δ (t) + θ
(

Xε
τε

δ (t+δ ′) −Xε
τε

δ (t)

))
∫ t+δ ′
t a(Xε

u ,Yu/ε)I{u<τε
δ }du

δ





= VT
x (Xε

τε
δ (t))a(Xε

t ,Yt/ε ) · I{t<τε
δ }

= VT
x (Xε

t )a(Xε
t ,Yt/ε) · I{t<τε

δ }, a.s., (B.16)

lim
δ ′↓0

gε,δ
2 (t,δ ′) = lim

δ ′↓0

1
δ ′

∫ τε
δ (t+δ ′)

τε
δ (t)

Eε
t

[

G̃(Xε
τε

δ (t),Ys/ε)
]

ds

= lim
δ ′↓0

1
δ ′

∫ τε
δ∧(t+δ ′)

τε
δ∧t

Eε
t

[

G̃(Xε
τε

δ (t),Ys/ε)
]

ds

= lim
δ ′↓0

1
δ ′

∫ t+δ ′

t
Eε

t

[

G̃(Xε
τε

δ (t),Ys/ε)
]

I{s<τε
δ }ds

= G̃(Xε
τε

δ (t),Yt/ε )I{t<τε
δ }

= G̃(Xε
t ,Yt/ε )I{t<τε

δ }, a.s. (B.17)

Following the proof of (B.16) and by (B.5), we get that

lim
δ ′↓0

gε,δ
3 (t,δ ) = lim

δ ′↓0

1
δ ′

∫ τε
δ

τε
δ (t+δ ′)

Eε
t

[

G̃(Xε
τε

δ (t+δ ′),Ys/ε)− G̃(Xε
τε

δ (t),Ys/ε)
]

ds

= lim
δ ′↓0

∫ τε
δ

τε
δ (t+δ ′)

Eε
t





G̃(Xε
τε

δ (t+δ ′),Ys/ε)− G̃(Xε
τε

δ (t),Ys/ε)

δ ′



ds

= lim
δ ′↓0

∫ τε
δ

τε
δ (t+δ ′)

Eε
t





G̃T
x

(

Xε
τε

δ (t) + θ (Xε
τε

δ (t+δ ′) −Xε
τε

δ (t)),Ys/ε

)

(Xε
τε

δ (t+δ ′) −Xε
τε

δ (t))

δ ′



ds

= lim
δ ′↓0

∫ τε
δ

τε
δ (t+δ ′)

Eε
t





G̃T
x

(

Xε
τε

δ (t) + θ (Xε
τε

δ (t+δ ′) −Xε
τε

δ (t)),Ys/ε

)

δ ′
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×
∫ t+δ ′

t
a(Xε

u ,Yu/ε)I{u<τε
δ }du

]

ds

=
∫ τε

δ

τε
δ (t)

Eε
t

[

G̃T
x

(
Xε

t ,Ys/ε
)

a(Xε
t ,Yt/ε )I{t<τε

δ }
]

ds

= I{t<τε
δ }

∫ τε
δ

τε
δ (t)




∂Eε

t [G̃(x,Ys/ε)]

∂x

∣
∣
∣
∣
∣
x=Xε

t





T

a(Xε
t ,Yt/ε)ds, a.s., (B.18)

which together with (B.15), (B.17), (3.3.98), and (3.3.101), implies that (B.14)
holds.

Lemma B.4. ˆA ε
M

(

Vε (Xε
τε
M(t), t) · I{t<τε

M}
)

= gε
M(t), i.e.,

p-lim
δ↓0

Eε
t [Vε(Xε

τε
M(t+δ )

, t + δ ) · I{t+δ<τε
M}]−Vε (Xε

τε
M(t),t) · I{t<τε

M}

δ
= gε

M(t).

Proof. As in the proof of Lemma B.3, we prove

lim
δ↓0

Eε
t [Vε(Xε

τε
M(t+δ )

, t + δ )I{t+δ<τε
M}]−Vε(Xε

τε
M(t),t)I{t<τε

M}

δ
= gε

M(t), a.s.

(B.19)

Denote
(

∂V(x)
∂x

)T
|x=Xε

τε
M (t)

by VT
x (Xε

τε
M(t)). By the definition ofVε(Xε

τε
M(t),t), follow-

ing the proof of Lemma B.3, we get that

Eε
t [Vε(Xε

τε
M(t+δ )

, t + δ )I{t+δ<τε
M}]−Vε(Xε

τε
M(t),t)I{t<τε

M}

δ
=

1
δ

{

Eε
t

[

V(Xε
τε
M(t+δ ))I{t+δ<τε

M} + I{t+δ<τε
M}

∫ τε
M

τε
M(t+δ )

Vx(X
ε
τε
M(t+δ ))·

Eε
t+δ

[

a(Xε
τε
M(t+δ ),Ys/ε)− ā(Xε

τε
M(t+δ ))

]

ds
]

−
[

V(Xε
τε
M(t))I{t<τε

M}

+I{t<τε
M}

∫ τε
M

τε
M(t)

Vx(X
ε
τε
M(t))E

ε
t

[

a(Xε
τε
M(t),Ys/ε)− ā(Xε

τε
M(t))

]

ds

]}

=
1
δ

{

Eε
t

[

V(Xε
τε
M(t+δ ))I{t+δ<τε

M}

+

∫ τε
M

τε
M(t+δ )

Vx(X
ε
τε
M(t+δ ))E

ε
t+δ

[

a(Xε
τε
M(t+δ ),Ys/ε)− ā(Xε

τε
M(t+δ ))

]

ds

]
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−
[

V(Xε
τε
M(t))I{t<τε

M} +

∫ τε
M

τε
M(t)

Vx(X
ε
τε
M(t))E

ε
t

[

a(Xε
τε
M(t),Ys/ε)− ā(Xε

τε
M(t))

]

ds

]}

=
1
δ

{

Eε
t [V(Xε

τε
M(t+δ )) · I{t+δ<τε

M}]−V(Xε
τε
M(t)) · I{t<τε

M}
}

− 1
δ

∫ τε
M(t+δ )

τε
M(t)

Vx(X
ε
τε
M(t))E

ε
t

[

a(Xε
τε
M(t),Ys/ε)− ā(Xε

τε
M(t))

]

ds

+
1
δ

∫ τε
M

τε
M(t+δ )

{

Eε
t

[

Vx(X
ε
τε
M(t+δ ))

(

a(Xε
τε
M(t+δ ),Ys/ε)− ā(Xε

τε
M(t+δ ))

)

− Vx(X
ε
τε
M(t))

(

a(Xε
τε
M(t),Ys/ε)− ā(Xε

τε
M(t))

)]}

ds

(by the property of conditional expectation)

=
1
δ

{

Eε
t [V(Xε

τε
M(t+δ )) · I{t+δ<τε

M}]−V(Xε
τε
M(t)) · I{t<τε

M}
}

− 1
δ

∫ τε
M(t+δ )

τε
M(t)

Eε
t

[

G̃(Xε
τε
M(t),Ys/ε)

]

ds

+
1
δ

∫ τε
M

τε
M(t+δ )

Eε
t

[

G̃(Xε
τε
M(t+δ ),Ys/ε)− G̃(Xε

τε
M(t),Ys/ε)

]

ds

, ḡε,M
1 (t,δ )−gε,M

2 (t,δ )+gε,M
3 (t,δ ), (B.20)

where the functionsgε,M
2 (·, ·) and gε,M

3 (·, ·) are the same with the corresponding

ones in (B.15) withδ replaced byM. And so we need only to consider ¯gε,M
1 (t,δ ).

Following the proof of (B.16), we get that

lim
δ↓0

ḡε,M
1 (t,δ ) = lim

δ↓0

1
δ

{

Eε
t [V(Xε

τε
M(t+δ ))I{t+δ<τε

M}]−V(Xε
τε
M(t))I{t<τε

M}
}

= lim
δ↓0

Eε
t

[
V(Xε

τε
M(t+δ )

)I{t+δ<τε
M}−V(Xε

τε
M(t))I{t<τε

M}

δ

]

= lim
δ↓0

Eε
t




V(Xε

τε
M(t+δ )

)
(

I{t+δ<τε
M}− I{t<τε

M}
)

δ





+ lim
δ↓0

Eε
t





(

V(Xε
τε
M(t+δ )

)−V(Xε
τε
M(t))

)

I{t<τε
M}

δ




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= 0+ lim
δ↓0

Eε
t





(

V(Xε
τε
M(t+δ )

)−V(Xε
τε
M(t))

)

I{t<τε
M}

δ





= lim
δ↓0

Eε
t




VT

x

(

Xε
τε
M(t) + θ

(

Xε
τε
M(t+δ )

−Xε
τε
M(t)

))(

Xε
τε
M(t+δ )

−Xε
τε
M(t)

)

δ
I{t<τε

M}





= lim
δ↓0

Eε
t




VT

x

(

Xε
τε
M(t) + θ

(

Xε
τε
M(t+δ )

−Xε
τε
M(t)

))
∫ τε

M(t+δ )

τε
M(t) a(Xε

u ,Yu/ε)du

δ
I{t<τε

M}





= lim
δ↓0

Eε
t




VT

x

(

Xε
τε
M(t) + θ

(

Xε
τε
M(t+δ )

−Xε
τε
M(t)

))
∫ t+δ
t a(Xε

u ,Yu/ε)I{u<τε
M}du

δ
I{t<τε

M}





= VT
x (Xε

τε
M(t))a(Xε

t ,Yt/ε) · I{t<τε
M}I{t<τε

M}

= VT
x (Xε

t )a(Xε
t ,Yt/ε)I{t<τε

M}
= lim

δ↓0
gε,M

1 (t,δ ). (B.21)

Hence by the proof of Lemma B.3, we get that (B.19) holds.

Lemma B.5.Mε
t is a martingale relative to{F ε

t }.

Proof. For anys, t ≥ 0, by (3.3.139), the property of conditional expectation, and
ˆA ε
M

(

Vε (Xε
τε
M(t), t) · I{t<τε

M}
)

= ˆA ε
MVε (Xε

τε
M(t),t) (see Lemma B.4), we have that

E[Mε
t+s−Mε

t |F ε
t ]

= E
[

e2γ̂(t+s)Vε(Xε
τε
M(t+s), t +s)I{t+s<τε

M}−e2γ̂tVε(Xε
τε
M(t),t)I{t<τε

M}

−
∫ t+s

t
e2γ̂u( ˆA

ε
M +2γ̂)

(

Vε(Xε
τε
M(u),u)I{u<τε

M}
)

du

∣
∣
∣
∣
F

ε
t

]

+E
[

e2γ̂τε
MV(Xε

τε
M
)I{τε

M≤t+s}−e2γ̂τε
MV(Xε

τε
M
)I{τε

M≤t}
∣
∣
∣F

ε
t

]

= E
[

e2γ̂(t+s)Vε(Xε
τε
M(t+s), t +s) · I{t+s<τε

M}
∣
∣
∣F

ε
t

]

−e2γ̂tVε(Xε
τε
M(t),t) · I{t<τε

M}

−
∫ t+s

t
E
[

e2γ̂u( ˆA
ε

M +2γ̂)
(

Vε(Xε
τε
M(u),u) · I{u<τε

M}
)∣
∣
∣F

ε
t

]

du

+E
[

e2γ̂τε
MV(Xε

τε
M
) · I{τε

M≤t+s}−e2γ̂τε
MV(Xε

τε
M
) · I{τε

M≤t}
∣
∣
∣F

ε
t

]
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=
{

E
[

e2γ̂(t+s)Vε(Xε
τε
M(t+s),t +s)

∣
∣
∣F

ε
t

]

−e2γ̂tVε(Xε
τε
M(t),t)

−
∫ t+s

t
E
[

e2γ̂u( ˆA
ε

M +2γ̂)
(

Vε(Xε
τε
M(u),u)

)∣
∣
∣F

ε
t

]

du

}

−
{

E
[

e2γ̂(t+s)Vε(Xε
τε
M(t+s),t +s)I{t+s≥τε

M}
∣
∣
∣F

ε
t

]

−e2γ̂tVε(Xε
τε
M(t),t)I{t≥τε

M}

−
∫ t+s

t
E
[

2γ̂e2γ̂uVε(Xε
τε
M(u),u)I{u≥τε

M}
∣
∣
∣F

ε
t

]

du

}

+E
[

e2γ̂τε
MV(Xε

τε
M
)I{τε

M≤t+s}−e2γ̂τε
MV(Xε

τε
M
)I{τε

M≤t}
∣
∣
∣F

ε
t

]

, g1(t,s,ω)−g2(t,s,ω)+g3(t,s,ω). (B.22)

Foru≥ t, define

f (u,ω) = E
[

e2γ̂(u)Vε(Xε
τε
M(u),u)|F ε

t

]

(ω). (B.23)

Then for anyu≥ t, we have (ifu = t, we consider the right derivative)

f ′(u,ω) = lim
s→0

f (u+s,ω)− f (u,ω)

s

= lim
s→0

E
[

e2γ̂(u+s)Vε(Xε
τε
M(u+s),u+s)|F ε

t

]

−E
[

e2γ̂(u)Vε(Xε
τε
M(u)

,u)|F ε
t

]

s

= lim
s→0

E




e2γ̂(u+s)Vε(Xε

τε
M(u+s),u+s)−e2γ̂uVε (Xε

τε
M(u)

,u)

s

∣
∣
∣
∣
∣
∣

F
ε
t





= lim
s→0

E





(

e2γ̂(u+s)−e2γ̂u
)

Vε(Xε
τε
M(u+s),u+s)

s

∣
∣
∣
∣
∣
∣

F
ε
t





+ lim
s→0

E




e2γ̂u

(

Vε (Xε
τε
M(u+s),u+s)−Vε(Xε

τε
M(u)

,u)
)

s

∣
∣
∣
∣
∣
∣

F
ε
t





= E
[

e2γ̂u( ˆA
ε

M +2γ̂)
(

Vε(Xε
τε
M(u),u)

)∣
∣
∣F

ε
t

]

, (B.24)

and thus
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g1(t,s,ω) = f (t +s,ω)− f (t,ω)−
∫ t+s

t
f ′(u,ω)du= 0, a.s. (B.25)

By the definitions ofτε
M andVε(x,t), we have

g2(t,s,ω) = E
[

e2γ̂(t+s)V(Xε
τε
M
)I{t+s≥τε

M}
∣
∣
∣F

ε
t

]

−e2γ̂tV(Xε
τε
M
)I{t≥τε

M}

−
∫ t+s

t
E
[

2γ̂e2γ̂uV(Xε
τε
M
)I{u≥τε

M}
∣
∣
∣F

ε
t

]

du

= E
[

e2γ̂(t+s)V(Xε
τε
M
)I{t+s≥τε

M}−e2γ̂tV(Xε
τε
M
)I{t≥τε

M}

−
∫ t+s

t
2γ̂e2γ̂uV(Xε

τε
M
)I{u≥τε

M}du

∣
∣
∣
∣
F

ε
t

]

. (B.26)

Now, we analyze the item within the conditional expectationon the right-hand side
of (B.26). For simplicity, let

h(t,s,ω) = e2γ̂(t+s)V(Xε
τε
M
) · I{t+s≥τε

M}−e2γ̂tV(Xε
τε
M
) · I{t≥τε

M}

−
∫ t+s

t
2γ̂e2γ̂uV(Xε

τε
M
) · I{u≥τε

M}du. (B.27)

Case 1:t +s< τε
M(ω). Thenh(t,s,ω) = 0.

Case 2:t ≥ τε
M(ω). Then we have

h(t,s,ω) = e2γ̂(t+s)V(Xε
τε
M
)−e2γ̂tV(Xε

τε
M
)−

∫ t+s

t
2γ̂e2γ̂uV(Xε

τε
M
)du= 0, (B.28)

since

d
(

e2γ̂uV(Xε
τε
M
)
)

du
= 2γ̂e2γ̂uV(Xε

τε
M
). (B.29)

Case 3:t < τε
M(ω) ≤ t +s. Then by (B.27) and (B.29), we have

h(t,s,ω) = e2γ̂(t+s)V(Xε
τε
M
)−

∫ t+s

τε
M

2γ̂e2γ̂uV(Xε
τε
M
)du= e2γ̂τε

MV(Xε
τε
M
). (B.30)

Hence we have

−g2(t,s,ω) = −E [h(t,s,ω)|F ε
t ]
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= −E
[

e2γ̂τε
MV(Xε

τε
M
) · I{t<τε

M≤t+s}
∣
∣
∣F

ε
t

]

= −E
[

e2γ̂τε
MV(Xε

τε
M
)I{τε

M≤t+s}−e2γ̂τε
MV(Xε

τε
M
)I{τε

M≤t}
∣
∣
∣F

ε
t

]

,

(B.31)

which implies that

−g2(t,s,ω)+g3(t,s,ω) = E[0|F ε
t ] = 0, a.s. (B.32)

This together with (B.22) and (B.25) proves that

E[Mε
t+s−Mε

t |F ε
t ] = 0, a.s. (B.33)
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41. P. Frihauf, M. Krstic, and T. Başar, “Nash equilibrium seeking for games with non-quadratic
payoffs”,Proceedings of 49th IEEE Conference on Decision and Control, Atlanta GA, USA,
Dec. 15-17, pp. 881–886, 2010.
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137. Y. Tan, D. Nešić, and I. M. Y. Mareels, “On non-local stability properties of extremum seek-
ing controllers”,Automatica, vol. 42, pp. 889–903, 2006.

138. G. Tao,Adaptive Control Design and Analysis, John Wiley & Sons, 2003.
139. V. M. Volosov, Averaging in systems of ordinary differential equations,Russian Math. Sur-

veys,vol. 17, no. 6, pp. 1-126. 1962.
140. H. -H. Wang and M. Krstic, “Extremum seeking for limit cycle minimization”,IEEE Trans-

actions on Automaic Control, vol. 45, pp. 2432–2437, 2000.
141. H.-H. Wang, M. Krstic, and G. Bastin, “Optimizing bioreactors by extremum seeking,”In-

ternational Journal of Adaptive Control and Signal Processing, vol. 13, pp. 651–669, 1999.
142. H. -H. Wang, S. Yeung, and M. Krstic, “Experimental application of extremum seeking on

an axial-flow compressor”,IEEE Translations on Control Systems Technology, vol. 8, pp.
300–309, 2000.

143. W. Wehner and E. Schuster, “Stabilization of neoclassical tearing modes in tokamak fusion
plasmas via extremum seeking”,Proceedings of the 3rd IEEE Multi-conference on Systems
and Control (MSC 2009), Saint Petersburg, Russia, July 8-10, 2009.

144. O. Wiederhold, L. Neuhaus, R. King, W. Niese, L. Enghardt, B. R. Noack, and M. Swoboda,
“Extensions of extremum-seeking control to improve the aerodynamic performance of axial
turbomachines”,Proceedings of the 39th AIAA Fluid Dynamics Conference, AIAA 2009-
4175, San Antonio, Texas, U.S.A., 2009.

145. G. Yin and Q. Zhang, “Near optimality of stochastic control in systems with unknown pa-
rameter processes”,Appl. Math. Optim.vol. 29, pp. 263–284, 1994.

146. C. Zhang, D. Arnold, N. Ghods, A. Siranosian, and M. Krstic, “Source seeking with nonholo-
nomic unicycle without position measurement and with tuning of forward velocity”,Systems
and Control Letters, vol. 56, pp. 245–252, 2007.

147. C. Zhang, A. Siranosian, and M. Krstic, “Extremum seeking for moderately unstable systems
and for autonomous vehicle target tracking without position measurements”,Automatica,
vol. 43, pp. 1832–1839, 2007.

148. X. T. Zhang, D. M. Dawson, W. E. Dixon, B. Xian, “Extremum-seeking nonlinear controllers
for a human exercise machine”,IEEE/ASME Transactions on Mechatronics, vol. 11, pp. 233–
240, 2006.

149. M. Zhu and S. Martinez, “Distributed coverage games formobile visual sensors (ii): Reach-
ing the set of nash equilibria”,48th IEEE Int. Conference on Decision and Control, pp.
169-174, 2009.

150. M. Zhu and S. Martinez, “Distributed coverage games formobile visual sensor networks”,
SIAM Journal on Control and Optimization, submitted, January 2010. Available at arxiv.

151. W. Q. Zhu, “Stochastic averaging methods in random vibration,” Appl. Mech. Rev. ASME,
vol. 41, no. 5, pp. 189–199, 1988.



References 255

152. W. Q. Zhu and Y. Q. Yang, “Stochastic averaging of quasi-non integrable-Hamiltonian sys-
tems”,Journal of Applied Mechanics, vol. 64, pp. 157–164, 1997.





Index

φ -mixing, 26, 235
p-infinitesimal operator, 40, 50, 233
p-limit, 233

almost sure convergence, 8
almost surely exponentially stable, 54
asymptotically periodic, 54
asymptotically stability in probability, 28
averaging method, 5
average system, 2, 5, 6, 23, 27
averaging principle, 3, 4, 14
averaging theory, 1

Birkhoff ergodic theorem, 69, 82, 85
boundness in probability, 29, 51, 53
Brownian motion on the unit circle, 27, 56, 60

convergence in probability, 8

deterministic averaging, 1

extremum seeking, 11
ergodic, 26
ergodicity, 60
exponential convergence, 119
exponentially ergodic, 27, 57, 61
exponential practical stability in probability,

24, 25
exponential stable, 27

Fatou’s lemma, 48
Fubini’s theorem, 52

Gaussian white noise signals, 16
general averaging, 7
general stochastic averaging, 116
globally asymptotically stable in probability,

28, 45
globally exponentially stable, 28
gradient algorithm, 211

invariant distribution, 57, 60, 93, 153
invariant measure, 26

law of iterated Logarithm, 55
Lyapunov estimates, 37

multi-agent deployment, 198
multi-input averaging theorem, 154

Nash equilibrium seeking, 173
Newton algorithm, 211
nonholonomic vehicles, 109

Oligopoly price games, 195
Ornstein-Uhlenbeck (OU) process, 60, 90

periodic excitation signals, 12
periodic perturbation, 91
perturbed Lyapunov function, 36
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practical stability, 59

quadratic games, 189

Riccati equation, 213

sinusoidal excitation signals, 12
slope seeking, 151, 161
source seeking, 109, 141
stability in probability, 41
stochastic averaging, 1, 7, 151
stochastic extremum seeking, 12, 89

uniform convergence condition, 25
uniform strong ergodic, 22, 26

vehicle deployment, 189

washout filter, 14, 112
weak attractivity, 63
weak boundedness, 63
weak convergence, 7, 25
weakly asymptotically stable, 63, 66
weakly exponentially stable, 63, 66
weakly stable, 63, 66


