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Preface

This book explores the development of PDE (partial differential equation) backstep-
ping controllers for the suppression of stop-and-go instabilities and oscillations in
congested traffic flows. As such, the book should be considered at least as much as
an addition to the literature on boundary control of coupled systems of first-order
hyperbolic PDEs as an addition to the traffic control literature.

The motivation for the work comes from traffic dynamics in the congested regime.
It is only in the congested regime, when the vehicles are relatively close by, that stop-
and-go oscillations develop. Stop-and-go is simply the consequence of sensory and
cognitive limitations of the humans participating in traffic. Every driver has a reaction
delay that is on the order of a second. Moreover, an average human driver is not even
able to predict the dynamic response of his own vehicle to the accelerator and brake
pedal inputs that he applies, let alone predicting the motion of the vehicle in front of
him, and even much less the motion of the whole chain of vehicles further ahead. In
conclusion, as long as operating their own vehicles is an option that humans are free
to exercise, stop-and-go oscillations will be a part of traffic flows.

Stop-and-go does not only carry a high cost in comfort and frustration. Societal
cost in traffic safety, the additional fuel consumption, and the total driving time are
enormous. These are the reasons that make even partial suppression of stop-and-go
oscillations an important pursuit.

For us personally, the importance of this pursuit is not less worthy due to the
complex control design task of developing feedback laws for the extremely high-
dimensional traffic flow systems, whose neatest modeling is in the form of PDEs,
and which, in spite of their high dimensionality, have to be controlled using one or
very few inputs, such as ramp metering or variable speed limits. That one input,
or those few inputs, are located at boundaries of freeway segments and the entire
traffic between the locations of such inputs, which involves hundreds, and sometimes
thousands of vehicles, needs to be controlled from the boundary. It is this type of a
control design challenge that attracts PDE control designers to traffic flows.

While variable speed limit signs are not uncommon in certain metropolitan areas,
ramp metering, applied with traffic lights that let on only one or two cars onto the
freeway, at certain time intervals (on the order of seconds, or tens of seconds), are
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very common. By not keeping the length of those time intervals constant, but by
varying them instead, it is possible to vary the flow of traffic at the location of the
on-ramp.

An increased flow at the on-ramp influences the drivers approaching the on-ramp
on the freeway mainline to respond to the increased flow from the on-ramp by
slowing down. In particularly concrete terms, the following process takes place: the
vehicles entering from the on-ramp are trying to merge into the freeway traffic flow;
the drivers on the freeway observe the vehicles entering the freeway on their right;
the drivers on the mainline freeway respond to the fact that vehicles are merging
from the on-ramp by adjusting their speeds, in order to avoid a collision with the
merging vehicles.

So, the modulation of the duration of the red and green lights on the on-ramp
influences the speed, and the density, of the vehicles immediately upstream of the
on-ramp. How can this control capability of the on-ramp traffic lights be exploited
to impact the traffic flow a great distance away from the on-ramp?

Four possibilities exist in this regard. Ramp metering can be employed to control
traffic both downstream and upstream. And the traffic on either freeway segment
(downstream or upstream of the on-ramp) can be in either the free or the congested
regime. So, there exists a set of 2 X 2, namely, four combinations of traffic flow
possibilities.

Among those four combinations, one is not controllable (traffic upstream of the
on-ramp in the free regime), two are trivial, requiring either no control (traffic
downstream of the on-ramp in free regime) or a simple collocated proportional
feedback (traffic downstream of the ramp in the congested regime), and only one of
these four cases is challenging and truly interesting: control of traffic flow upstream
of the on-ramp in the congested regime.

How can one possibly control the dynamics of traffic upstream of an on-ramp by
varying the duration of the on-ramp’s traffic lights? In the congested regime, this is
possible. In the congested regime, the vehicles are relatively close by and the drivers
respond to the changes in the distances relative to the cars immediately in front of
them. These responses are “chain reactions,” which propagate upstream. In intuitive
terms, in congested traffic, the reactions of drivers to the variations in distance
progress in the upstream direction faster than the cars move in the downstream
direction. It is due to this effect, of a “human behavioral wave” (of braking or
accelerating) that modulations of a traffic light at an on-ramp can affect the traffic
dynamics a long distance upstream of the ramp.

The colloquial depiction of the possibility of controlling congested traffic up-
stream of an on-ramp also has its formal, rigorous representation in PDE models
of traffic. The suitable model for stop-and-go oscillations is the Aw-Rascle-Zhang
(ARZ) model. This model incorporates two coupled nonlinear first-order hyperbolic
PDE:s, one for the density and one for velocity. In such a model with two hyperbolic
PDEs, two waves arise, which propagate in certain directions and at certain speeds.
It happens so that in the free traffic the two waves both propagate in the downstream
direction, whereas in the congested traffic one wave propagates in the downstream
direction whereas the other wave propagates in the upstream direction.
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It is this wave in the system of two hyperbolic PDEs, which propagates in the
upstream direction in the congested regime, that is related to the drivers’ responses to
the distance fluctuations and that runs “backward,” being passed to the driver behind
the reacting driver.

In summary, in the congested regime, the ARZ PDE model of traffic is control-
lable by ramp metering in the upstream direction. It is this property that we build
on, advancing from the mere controllability to a feedback design methodology for
stabilizing the stop-and-go oscillations.

Our feedback design is based on the method of PDE backstepping. While PDE
control can be approached also with linear quadratic (LQR, LQG) methods, as well
as methods based on pole placement for reduced models of PDEs, backstepping has
the advantages of neither requiring model reduction of the PDE plant nor the ap-
proximation of solutions of nonlinear infinite-dimensional equations such as operator
Riccati equations.

Backstepping, introduced by the second author, with early contributions by his
student Andrey Smyshlyaev and postdocs Weijiu Liu and Andras Balogh, initially
for parabolic PDEs, employs a spatial Volterra transformation to convert the plant
PDE, which may be unstable, into a “target system.” The target system is chosen by
the designer, as a PDE of a relatively simple and familiar form, within the same class
as the plant PDE. By its very selection, the target system’s stability is relatively easy
to establish.

The Volterra kernel of the backstepping transformation is a linear PDE of the
Goursat form which can be transformed from a PDE into an integral equation. In
its integral equation form, this transformation kernel can be computed fairly easily,
using successive approximations. The existence and uniqueness of solutions to this
kernel PDE can be established much more easily than for operator Riccati equations
or other standard PDEs that are not in the Goursat form.

It is for these reasons that PDE backstepping has seen a wide adoption, both
among theorists and in PDE control applications. The applications are numerous
and we leave out the common strings and beams but emphasize turbulent flows,
water canals, phase change in materials, including thermal dynamics with liquid-
solid transitions, as in 3D printing, and industrial applications in state estimation for
Lithium-ion batteries and in oil drilling.

The interest in developing backstepping controllers for traffic began in 2007, with
the one-semester stay of the second author at University of California, Berkeley,
where he taught a course on PDE backstepping control. At that time, backstepping
was not yet developed for hyperbolic PDEs. The breakthrough in this development
took place in the 2013 paper on PDE backstepping for 2 X 2 hyperbolic systems by
Coron, Vazquez, Krstic, and Bastin.

Our work on applying PDE backstepping for hyperbolic PDEs to traffic flows
began in 2016 with the development of an adaptive control design for the ARZ model
of traffic with unknown parameters. Backstepping makes parameter-adaptivity viable
in PDE control due to the nearly-explicit form of the gain functions. This and other
results in this book have been developed in the course of the first author’s doctoral
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and postdoctoral research at UC San Diego with the second author, from 2016 until
2021.

What Does the Book Cover?

Whom Is the Book For?

This book deals with control theory, dynamical systems, partial differential equa-
tions, and traffic flows. In integrating these subjects, it may offer material of interest
to readers who conduct research in these areas and have training in areas as diverse
as electrical engineering, mechanical engineering, civil engineering and transporta-
tion, applied mathematics, applied physics, and even machine learning and computer
science.

In dealing with suppression of traffic instability, the primary audience of this
research monograph are control theorists working on control of systems modeled by
PDEs and traffic engineers and applied scientists working unsteady traffic flows.

For PDE control theorists, especially those focusing on feedback design and
stability analysis, this book provides an entry point into one of the most exciting
application areas for PDE control, especially for application of PDE control of
hyperbolic PDEs. While coupled hyperbolic PDEs arise in many relevant sub-areas
of flow control, including control of compressible fluids, such as those that are
encountered in oil drilling, control of traffic flows offers as much technical challenge
as any applications in one-dimensional fluid dynamics, while carrying the potential
for orders of magnitude more in societal impact. In fact, stabilization of unsteady
congested traffic is arguably the application of PDE control that is the most relatable
of for a lay audience. We know no PDE control application for which a non-expert
has a comparable level of intuition and unequivocal belief in its importance. For
this reason, we are hopeful that this book will serve to advance the interest in PDE
control, and especially boundary control of PDEs, beyond the specific content of this
book and our own work.

For a PDE control theorist interested in the range of capabilities of the PDE
backstepping method we particularly recommend Chapter 9 in which, in the context
of a two-class traffic (such as a mix of large/inert and small/agile vehicles, or a mix
of defensie and aggressive drivers) a coupled hyperbolic heterodirectional structure
of the form (3 + 1) x (3 + 1) arises, in which a boundary control input (by ramp
metering) is available only in one PDE channel, which convects in the upstream
direction, whereas the three unactuated PDE channels convect in the downstream
direction. This is a good example of the capability of PDE backstepping to stabilize
a system of four PDEs using a single boundary input.

For traffic engineers and scientists, this book provides tools that have been previ-
ously unavailable for suppressing stop-and-go oscillations in congested traffic using
actuation that is very sparsely located along the freeway, such as ramp metering or
variable speed limits. During the next one or several decades, until automation of
vehicles and their connectivity (such as in CAVs—connected and automated vehi-
cles) achieves sufficient levels of penetration (the pace of which appears a lot slower
than the predictions of about a decade ago), and until such vehicle-level automation
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makes the suppression of traffic flow instabilities easier to achieve, the advanced and
fairly complex methods introduced by this book will be an important option for the
designer of traffic flow management systems.

PDE backstepping, the method upon which the designs presented in this book
rely, are not simple to learn even for advanced control theorists. So we do not expect
these methods’ effortless adoption by traffic engineers, whose core training in control
may be around methods like LQR or basic nonlinear control for finite-dimensional
systems. Cognizant of this challenge, we have made our exposition as accessible as
possible, as self-contained as possible, and as stripped of mystifying conventions that
are common in the exposition of material within mathematical fields like analysis
of PDEs and PDE control. This deliberate commitment to accessibility deprives the
more mathematical specialist in PDE control nearly nothing that they will not infer
themselves from the context.

Parts of the book will be of interest to control engineers who do not intend to
specialize in PDE control but specialize in other areas. For example, a specialist in
extremum seeking will be inspired by the role this model-free optimization method-
ology has to play in traffic control by reading Chapter 14. Likewise, a specialist
in delay systems will find it revealing that predictor-based feedback designs, for
compensation of input delays, are the key ingredient for regulating the position of
a moving shock in traffic density on a congested freeway by reading Chapter 13. A
specialist in adaptive control will see how far the boundaries of this classical field
can be taken by reading about adaptive control design for the ARZ PDE model of
traffic in Chapter 5. A specialist in sampled-data control, used to studies in emulating
continuous-time control designs for linear and nonlinear PDEs, will see how those
techniques extend to PDE control, with the aid of ISS and small-gain theorems for
PDE:s, by reading Chapter 6.

Finally, for a specialist outside of the classical field of control theory—a reader
interested in reinforcement learning and, more generally, machine learning and Al
methods—the book offers, in Chapter 7 a thought-provoking comparison between
model-based PDE control and learning-based acquisition of a similar capability
through simulation-based training.

Huan Yu
Miroslav Krstic
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Chapter 1
Introduction

The preface of this book has much to say about the book’s scope. The reader
is encouraged not to skip the Preface as we don’t reiterate here what is already
expressed there.

This whole book—except the present chapter—is devoted to feedback design
for traffic flows, predominantly in the congestion-induced unstable (or very lightly
damped) regime.

The control and observer designs for traffic flows begin in Chapter 3, after a
general introduction to backstepping for hyperbolic PDEs in Chapter 2.

This introductory chapter reviews material other than control: the macroscopic
(PDE) models of traffic flows, the notions of free and congested regimes of traffic,
the linearized versions of the PDE models of traffic and their structural distinctions
in the free and congested regimes, a study of eigenvalues and linear stability of the
PDE models of traffic, the options of actuation (applying inputs) on freeways and in
PDE models of freeway traffic, and numerical methods for simulating PDE models
of traffic.

1.1 The Basics of Traffic Flow Modeling
Macroscopic and microscopic models

Traffic flow theory and modeling have their origins in the 1930s when Bruce D.
Greenshields carried out an experiment on a highway, using photographic measure-
ments to characterize the relations between traffic flow, traffic density, and speed.
Since then, researchers have developed a wide variety of models that describe traffic
flow dynamics at different aggregation levels and present them as different mathemat-
ical structures. The traffic models are mostly classified into macroscopic, mesoscopic
and microscopic models [?, ?].
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Macroscopic models describe collective behaviors of traffic flows, analogously to
the flows of fluids such as gases flowing through ducts. The traffic flow state variables
are aggregated quantities: traffic density, speed, and flow. Since the models focus on
the spatial and temporal evolution of the traffic states, they are particularly suited
to describe the accumulated traffic phenomena such as freeway traffic congestion
and propagation of traffic waves. The macroscopic models are governed by Partial
Differential Equations (PDE) in which traffic states are functions of continuous time
and space.

In contrast to the macroscopic models, microscopic models focus on single
vehicle-driver units or road units. They may model the traffic dynamics of a road unit
or the velocity and position of single vehicle. The car-following models describe how
each vehicle reacts to the surrounding traffic while the cellular automation models
depict the evolution of traffic dynamics on divided sections of a road. Microscopic
models are given by Ordinary Differential Equations (ODE) because such models
consider discretized space, as in cellular automata models, or individual driver-
vehicle unit, as in car-following models. In comparison with the macroscopic mod-
els, the microscopic models are able to describe individual human driving behavior
and assess interactions between different traffic components.

Mesoscopic traffc models are hybrids of the microscopic and macroscopic models.

LWR and ARZ macroscopic models

This book mainly focuses on the freeway traffic congestion problems, which are
collective traffic phenomena and benefit from being described by macroscopic PDE
models. Two macroscopic models that are used throughout the book are introduced
in this chapter.

In the development of macroscopic traffic models, the first and widely-used one is
proposed by Ligthill, Whitham, and Richards (LWR) [?, ?] in 1950s, which is a first-
order, scalar conservation law of density. The LWR model predicts the formation and
propagation of traffic shockwaves on the freeway but fails to describe the stop-and-
go oscillatory phenomenon, which does not obey the static density-velocity relation
as depicted by the LWR model. In particular, the velocity oscillations in the stop-
and-go traffic need more sophisticated models. Several second-order models have
been developed over the decades to allow the deviation from the density-velocity
equilibrium by adding a velocity equation to the LWR model.

The state-of-the-art Aw-Rascle [?] and Zhang [?] (ARZ) models have been pro-
posed to describe the stop-and-go traffic instabilities. On the basis of the LWR
model, a family of flow-density relation is parameterized in the ARZ model by
characterizing each vehicle’s property as opposed to the averaged static dynamics
of the flow-density relation depicted by the LWR model. The macroscopic model
predicts the evolution of continuous traffic states in the temporal and spatial domain
by employing hyperbolic PDEs to govern the dynamics of traffic density and velocity.
The ARZ model is a quasilinear second-order hyperbolic PDE system. In the later
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chapters, we mainly use the LWR model and ARZ model to describe various traffic
phenomena on the freeway.

1.2 Macroscopic Traffic PDE Models
Lighthill-Whitham-Richards model

Consider the dynamics of traffic density on a freeway segment of length L. Traffic
density p(x, t) is governed by the following first-order nonlinear hyperbolic PDE,

9ip +0x(Q(p)) =0, (1.1)

where x € [0, L], t € [0, 00), and Q(p) is a fundamental diagram which describes
the equilibrium relation between the density and traffic flow rate. The fundamental
diagram Q(p) is defined as

Q(p) =pV(p), (1.2)

and shown in the example in Fig. 1.1. The equilibrium velocity V(p) is a decreasing
function of density. For example, we choose the following Greenshield’s model,

Y
V(p) =Vm —Vm (ﬁ) , (1.3)
Pm

where vy, is the maximum speed, pp, is the maximum density, g, is the maximum
flow rate, y > 0. The Greenshield’s model V(p) of density and velocity relation
yields a strictly concave fundamental diagram Q(p) of density and flow relation, as
in Fig. 1.1. The concavity of the fundamental diagram guarantees the hyperbolicity
of the LWR model. The free and congested traffic regimes are also captured by the
fundamental diagram which will be discussed in more detail later in this chapter.

Aw-Rascle-Zhang model

The evolution of the dynamics of the traffic density p(x,t) and velocity v(x, 1),
defined for x € [0, L], t € [0, c0), on a road segment of length L, is modeled by the
ARZ model,

0rp + 9x(pv) =0, (1.4)

0. (p(v + p(p) + (v (v + plp) = - LTV, (1.5)
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Fig. 1.1 Equilibrium relations of velocity and flow relative to density; v = V (p), g = Q(p), and
Q(p) =pV (p).

where the function p(p) is defined as the traffic pressure, an increasing function of
density,

p(p) =Cop?, (1.6)

where Co,y € Ry, p’(p) > 0, and p(0) = 0 are assumed. The coefficient y > 0
represents the aggressiveness of an individual driver, reflecting the driver’s change
of speed in response to the increase or decrease of local density. The pressure
function p(p) is chosen to relate the equilibrium velocity-density function V(p) in
the following fashion:

p(p) =V(0)=V(p) =vm —V(p). (1.7)

Given V(p) in (1.3), from (1.6) the traffic pressure (1.7) becomes

o0\
p(pP) =vm (—) . (1.8)
Pm

The inhomogeneous ARZ model includes a relaxation term on the right hand
side of the velocity PDE (1.5). The constant parameter 7 is the relaxation time
which describes the drivers’ behavior of adapting to the equilibrium density-velocity
relation V(p) over time.

There are no explicit solutions for the LWR and ARZ PDE models. The approxi-
mations to the solutions of these PDEs can be computed numerically. Our primary
interest is in neither analytical nor numerical solutions but in pursuing stabilization
of these PDE systems by feedback control.
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1.3 Linearized Models and Free/Congested Regimes
Linearized LWR model

To linearize the LWR PDE model around the steady-state p* > 0, let us introduce
the density variation

p(x, 1) =p(x,1) — p*. (1.9)
The linearized LWR model is then given by
0:p(x, 1) + A0, p(x,1) = 0. (1.10)

where A represents the characteristic speed of density variations propagation and
satisfies

A= Q,(p)lp:p* = V(P*) + p*V,(p)|p:p*. (L.11)

In the LWR PDE (1.10), density variations propagate with the characteristic speed
A. The characteristic speed characterizes the free and congested regimes of traffic,
which is also illustrated by the fundamental diagram in Fig. 1.1. There is a critical
density p. > O such that Q’(p)|y*=p, = Ois satisfied, thatis, V(p.) +p. V' (0)lp=p. =
0. This critical density,

Pm

S (1.12)

Pc

segregates the free and congested traffic density of the LWR PDE model.

* Free-flow regime : 1 > 0, namely, p* < pe.
In the free-flow regime with light traffic, the traffic density variations are trans-
ported in the downstream direction with the characteristic speed Q'(p)|p=p* > 0.

» Congested regime : A > 0, namely, p* > pc.
The congested regime with denser traffic has its density variations transported in
the upstream direction with the characteristic speed Q’(p)|,=p+ < 0.

The traffic becomes bumper-to-bumper jammed when the traffic density reaches its
maximum and the traffic speed equals zero. The steady-state density then satisfies
p* = pn and its corresponding static velocity is V (pp) = 0.

For illustration, let us consider the LWR model with Greenshield’s map (1.3)
with ¥y = 1. The critical density in that case is p. = % Pm- When the steady-state
density p* < % Pm, the traffic is in the free regime. When the steady-state density is
p* > % Pm, the traffic is in the congested regime.
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Linearized ARZ model

The traffic density is the number of vehicles per unit length. The traffic flow rate is
defined as the number of vehicles per unit time which cross a given point on the
road. The traffic flow rate g is alternatively defined as the product of density and
velocity, namely,

q(x,t) = p(x,H)v(x,1). (1.13)

Traffic flow ¢ and velocity v are the most accessible physical variables to measure
in freeway traffic. Flow ¢ is commonly measured by loop detectors and v can be
obtained by GPS or high-speed cameras. Therefore, we rewrite the ARZ model in
the state variables of traffic flow ¢ and traffic velocity v for x € [0, L], t € [0, o),

q(yp - V) q(vm -p-v)
TV ’

0;q +voyxq = (1.14)

8 — (yp —v) dyv =M_ (1.15)
There is no explicit solution to the above quasilinear hyperbolic (g, v)-system in
(1.14), (1.15). To gain easier understanding of the dynamics of the ARZ traffic
model, we linearize the model around the steady-state (¢*, v*). The small variations
from the steady-states are defined as

q(x’ t) :CI(X’ t) - q*’ (116)
P(x,1) =v(x, 1) —v*. (1.17)

The linearized ARZ model is described with the following (g, V)-system,

* * ok * (1 1
BriCrt) +v* Gy - P V) 5 gy = (L
v* T \v*  yp*
(1.18)
*
07 (x,1) = (yp* = v¥)0x¥(x,1) = N(x 1) - —61(x 1),
(1.19)
where the two characteristic speeds of the above linearized PDE model are
A =v*, (1.20)
A== (yp* =v¥). (1.21)

We define the free and congested regimes of the ARZ model by studying the two
characteristic speeds 4; and A, of flow and velocity variations ¢ and . In particular,
we are interested in the sign of the characteristic speed A, because 1; = v* > 0 is
always satisfied.

When 4, > 0, it is straightforward to obtain the following inequalities:
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* Pm * Y
P <(1+7)1/7 = 2R >y+1vm. (1.22)

When 4, < 0, the following inequalities hold:

* Pm * Y
P >(1+7)1/7 = Y <y+1vm. (1.23)

¢ Free-flow regime : 4| > 0, 4, >0
In the free-flow regime, both the variations of traffic flow and the variations of
velocity travel downstream, at the respective characteristic speeds 1, and 1,. The
linearized ARZ model in the free-flow regime is a homo-directional hyperbolic
system.

* Congested regime: 11 >0, 45 <0
In the congested regime, the traffic density is greater than the critical value p,,
which satisfies Q(p)’lp. = 0, and the second characteristic speed 1> becomes
negative. Therefore, the variations of the traffic speed travel upstream with the
speed A, while the variations of the traffic flow are carried downstream with the
characteristic speed A;. The hetero-directional propagations of variations force
the vehicles into the stop-and-go driving. This kind of instability in traffic causes
unsafe driving conditions, extra fuel consumption and may ultimately evolves
into a bumper-to-bumper jam.

The traffic becomes bumper-to-bumper jammed when the traffic density reaches its
maximum and traffic speed equals zero. The steady-state density and velocity satisfy
p* = pm and v* = 0.

1.4 Traffic Actuation

The freeway traffic management systems regulate traffic flow on freeways by con-
trolling the vehicles in a collective manner. In order to improve the performance of
traffic networks, static and dynamic traffic control are implemented.

Dynamic traffic control refers to automatic methods that are designed to regulate
traffic in response to real-time scenarios. By mitigating freeway traffic congestion,
the control objective is to improve stability, efficiency, safety of traffic flow and
other performance such as total travel time, fuel consumption, drivers’ comfort,
and pollutant emissions [?]. There are also traffic management operations that are
non-automated, performed by human operators at some traffic control centers, and
provided for emergency services, e.g., road signs for work-zones.

In contrast to dynamic traffic control, static control usually refers to time-invariant
control strategies in a period of time. The fixed-time control strategies, namely,
open-loop control signals, use historical traffic data to determine control schedules
for traffic regulation such as metering rates of on-ramp traffic lights [?, ?]. The
variations in the traffic demand and spatio-temporal evolution of the actual real-time
traffic are not taken into account, which may lead to worsening of traffic congestion.
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varying speed limit

ramp metering

Fig. 1.2 Freeway boundary actuation in which control is implemented by ramp metering and/or
varying speed limits.

For this reason, static control of certain operations is mainly studied in the field of
transportation planning, managing traffic demand over longer timescales, through
traffic policy development, new road constructions, and software traffic assignment.

Control Measures: Ramp Metering (RM) and Variable Speed Limits
(VSL)

The dynamic control measures are implemented mainly through two types of road
infrastructures: ramp metering (RM) and varying speed limits (VSL). Road-based
control strategies have been applied through RM and VSL in many countries world-
wide, including the United States [?], the European countries [?] and Canada [?].
As sketched in Fig. 1.2, RM is located at on-ramp entries to facilitate the merging
of on-ramp flows into the mainstream traffic. The RM control strategies are designed
to reduce traffic congestion and to optimize traffic conditions on the mainline [?], [?].
VSL employ variable message signs to display driving velocity in response to the real-
time traffic conditions. VSL are employed to homogenize the velocities of individual
vehicles and are also used to slow down the traffic and create controlled mainstream
flow such that the traffic safety is improved and the formation of congestion is
prevented [?], [?]. The RM and VSL control strategies can be combined with other
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control measures that redirect drivers to different lanes or routes due to work zones
or accidents, for example, lane control [?] or route guidance control [?].

We use the acronym VSL as both singular and plural, namely, to refer to either
one or multiple signs. We follow this acronym convention because we consider
repeatedly writing VSL to be cumbersome.

Distributed and in-domain actuation: CAVs

In addition to the road-based traffic control systems, vehicle-based traffic control
measures are being explored. The emerging development of Connected and Au-
tomated Vehicles (CAV) provides new opportunities for control of transportation
systems through information sharing and vehicle coordination operations [?, ?, 2, ?].
The overall traffic efficiency could be greatly improved in mixed traffic by avoiding
the dependence on static infrastructures and drivers’ compliance. The previously
mentioned infrastructure-based control strategies can be combined with vehicle-
based traffic control measures through vehicle-to-infrastructure communication [?].

Vehicle-based traffic control is out of the scope of this book. We have a strong
reason for restricting our attention to RM and VSL control at the traffic segment
boundaries. The CAV capability, which introduces the possibility of distributed
in-domain actuation of traffic, does not necessarily completely trivialize the stabi-
lization of stop-and-go traffic, the task of suppression of stop-and-go is vastly more
complex by boundary control, having to rely on the behavioral interactions among
the drivers, rather than on a wireless connectivity among the vehicles. Therefore, as
long as RM and VSL are the primary actuation options, and the CAV penetration is
low, the boundary control designs, and particularly those developed based on PDE
backstepping in this book, will be an important tool for suppression of stop-and-go
instabilities.

1.5 A Brief Review of Literature on Traffic Control

This section provides an overview of dynamic traffic control strategies for freeway
traffic systems in the currently existing literature. Macroscopic models represent
the traffic dynamics at an aggregate level, and therefore are particularly useful for
freeway traffic sensing and actuation. They may be used for control design in their
original PDE forms, through ODEs that are derived from discretization of PDEs in
space, and as difference equations that are derived from discretization of PDEs both
in space and time.

The macroscopic models, namely, the LWR and ARZ PDE models, have been
extensively discussed in Section 1.1. The discrete traffic models are obtained by
discretization of macroscopic models in time and space. The most commonly used
first-order discrete traffic model is the Cell Transmission Model (CTM). This ODE
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model is derived from the first-order LWR PDE model for a road segment [?] and
then is extended to traffic networks [?]. Variations of CTM include [?, ?, ?]. Discrete
versions of second-order traffic models have also been developed, such as in [?],
based on Payne-Whitham (PW) PDE model [?, ?], and have been extended to a
freeway network named METANET [?].

Dynamic traffic control techniques that are applied to freeway traffic systems can
be categorized into the following three major control methodologies.

Control employing PI and backstepping feedback

In feedback (closed-loop) control a measured state or output of the controlled system
is introduced back into the traffic flow through a control input so that a desired
stability, transient behavior, or disturbance attenuation properties of the traffic system
are ensured.

For macroscopic traffic models that are described by PDEs and are continuous
in space and time, the feedback control laws are usually constructed by application
of a particular control design method to the model of the traffic system dynamics.
Closed-loop stability is obtained by using a Lyapunov proof, either subsequently to
the control design or simultaneously with the control design.

In-domain speed control laws of freeway traffic are developed in [?, ?] and ensure
local exponential stability.

Boundary feedback control laws are proposed in [?, 2, ?, 2, 2, ?], on the basis of
the ARZ model, for stop-and-go traffic mitigation. In particular, in [?], a nonlinear
boundary feedback law is designed which actuates the inlet flow and achieves global
stabilization for a modified second-order ARZ model. In [?, ?, ?], we introduce
backstepping boundary control designs, based on the linearized inhomogeneous
ARZ models of multi-lane and multi-class traffic, to achieve stop-and-go suppression
by guaranteeing exponential stability and finite-time convergence in the spatial L?
sense. The applicability of PI controllers is studied in [?, ?] for inlet traffic flow
rate control through ramp metering and outlet velocity control through VSL. The
control gains are chosen such that exponential stability is achieved for the linearized
homogenous ARZ model.

For discrete macroscopic traffic models given by difference equations, local feed-
back control strategies have been proposed for ramp metering including a propor-
tional controller based on occupancy measurement upstream of the ramp [?], a
widely-used integral regulator ALINEA based on occupancy measurement down-
stream of the ramp [?], and an extended version of a proportional—integral controller
called PI-ALINEA [?]. The more sophisticated variations based on ALINEA and
PI-ALINEA were developed in [?, 2, ?, ?, ?]. Based on ALINEA, local feedback
strategies were developed for VSL in [?, 2, 2, 2, 2, 2, ?]. The coordinated RM
and VSL strategies were developed by integrating on-ramp control and mainstream
VSL[?2,?2,?2,?].
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Optimal control

Optimal control has been widely applied in freeway traffic systems, from macroscopic
to microscopic models. The control problem is formulated in terms of an objective
function which describes the system’s performance over a given period of time and
the controller is computed to obtain optimal solutions to the objective function.

For macroscopic traffic models, [?, ?, 2, 2, 2, 2, ?] formulated PDE model-based
traffic network control problems whose objectives are to minimize total travel time
or maximize the system outflow. The PDE models are usually discretized in space
using the Godunov method and then the resulting nonlinear or linear optimal control
problems are solved numerically.

For discrete macroscopic traffic models, optimal control problems are numerically
solved for the first-order CTM models in [?, ?, ?, ?] and for the second-order
METANET models in [?, ?].

Model predictive control

The freeway traffic control has been extensively studied using model predictive
control (MPC). MPC employs dynamic models to predict the future system output
over a finite horizon and iteratively solves optimal control problems at each time step
in a receding-horizon framework, to minimize an objective function with updated
measurements. Theresultsin [?, ?, 2, ?, ?] consider the discrete CTM model for traffic
prediction and solve a finite-horizon optimal control problem. In contrast, second-
order dynamics are considered in [?, ?, ?, ?], which solve MPC problems based on
the METANET models in which control is realized with RM, VSL or coordination
of the both. The MPC approaches generally demand relatively high computational
power as the associated finite-time optimal control problems are solved with large
numbers of variables at each time step.

Other control problems and strategies

Traffic state estimation plays an important role in traffic control. The state informa-
tion is predicted with partially observed traffic data and some prior knowledge of
traffic. Traffic state estimation approaches fall into three categories [?]: model driven,
data driven, and streaming data driven. Among them, the model-driven approach is
the most popular one and has been widely used to solve various traffic estimation
problems [?,?2,2,2,2,2,2,2,2,?] and can be integrated with traffic control strategies
directly.

The application of control approaches for freeway traffic networks has been ex-
plored with hierarchical control in which multi-layer control architectures were
established with supervisory controllers. The upper level of a hierarchical architec-



14 1 Introduction

ture is used for coordination whereas the lower-level controllers are used for local
regulation [?, 2, 2,2, ?].

Dynamic routing regulates the traffic by guide traffic flow to alternative paths
in a traffic network when there is bottleneck on the main road. The method of
routing guidance consists in controlling the split ratio of the traffic flow at some
junction nodes and is usually realized with vehicle-based navigation devices or
variable message signs that rely on compliance of drivers [?]. The control objective
of dynamic routing is to reach some system optimum or user equilibrium [?, ?, 2, ?].

System resilience based on directed graphs of traffic networks are studied in [?,
?,2,2,2,2,?]. Other results include traffic control facing stochastic disturbances [?,
2,71

Dynamic toll pricing strategies were developed to provide systematic optimal
pricing schemes for congestion control of traffic network [?, 2, ?, 2, 2, ?].

Over the recent decades, modelling, stability analysis and controlling the dynam-
ics of vehicular traffic using CAV-based control and sensing have drawn the interest
by many researchers [?, 2,2, 2,2, 2, 2, 2, 2, 2, 2, ., ., 2, ., 0,2, ., .2, 0,2, 2,
2,2,2,2,2,2,2,2,2,2,?,2,2,?]. Future developments of traffic control systems
will likely increasingly rely on CAV paradigms.

Collision avoidance control for CAVs has been studied in [?, 2, 2, 2, ?].

Electric autonomous vehicles (EAV) and charging system planning have been
extensively studied to enhance energy efficiency and to reduce green-house gas
emission of the transportation system [?, ?, ?, ?]. Many traffic modeling and control
strategies focus on the aspect of energy use and environmental impact [?].

For more detailed and comprehensive surveys of the literature on freeway traffic
control, the reader is referred to [?, ?, ?, ?]. For control of urban traffic network,
readers are referred to [?2, 2,2, 72,2, 2, ?]

1.6 Boundary Control by RM or VSL

We take the ARZ model as an example to illustrate how the road-based traffic
boundary control is formulated in the macroscopic PDE model. Traffic flow ¢ and
traffic velocity v are the most readily measurable state variables. Recall that the ARZ
PDE model governs the dynamics of the traffic flow rate and velocity, as given by
(1.14) and (1.15) for x € [0, L], ¢ € [0, o), and repeated here for convenience,

qvm —p—)
v ’

0V +

(1.24)

B +vieq =10P =)
v

—p-v

Ov—(yp—v)dyv —m (1.25)
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Traffic flow boundary control by Ramp Metering

When we consider on-ramp metering control as shown in Fig. 1.2, the actuated
boundary condition, located at x = 0, is defined as

q(0,1) = ¢* + Up(1), (1.26)

where ¢* represents a nominal flow rate, which is the sum of the equilibrium mainline
flow and the equilibrium on-ramp inflow, whereas Uy () is the control input applied
by flow rate variations.

Depending on the traffic scenario we consider, and on the direction of the charac-
teristic speeds of the traffic waves, the flow rate and the velocity could be controlled
at either boundary. More details will be discussed in the later chapters.

Traffic velocity boundary control by Varying Speed Limits

When we consider VSL control as shown in Fig. 1.2, the actuated boundary condition,
located at x = L, is defined as

v(L,t) =v* +Ur(1), (1.27)

where v* represents a nominal velocity of the vehicles leaving the segment and Uy ()
is the control input applied by velocity variations and is to be designed (assuming
that the drivers obey signs just as in RM).

1.7 Open-loop Stability

In this section we discuss the linear stability of the LWR and ARZ models in the free
and congested regimes, respectively, when constant, equilibrium-inducing control is
applied at the boundaries.

Linear stability of LWR model

Consider the LWR model,

dip(x,1) +0x(Q(p(x,1))) =0, (1.28)

where x € [0, L], ¢ € [0, ), with a flow rate control applied at the inlet boundary
if the traffic is in the free-flow regime, with flow given by
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p(0,0)V(p(0,1) = g% + Uy (1), (1.29)

or with a velocity control applied at the outlet boundary if the traffic is in the
congested regime, with flow given by

V(p(L,1)) =v* + Uy (2). (1.30)

We take y = 1 for the Greenshield’s model in (1.3),
Vm
V(p) =vm — —p, (1.31)
Pm

0(p) =vmp - ;—“‘pz, (1.32)

Then the linearized LWR model around the steady-state density p* is
0:p(x, 1) + A0, p(x,1) = 0. (1.33)

where g (x, 1) = p(x, t) — p* represents the density variations around the steady-state
and A = Q’(p)|,=p* is the characteristic speed of density variations propagation.
The initial condition is 5(0,1) = po € L?([0, L]). If the traffic is in the free-flow
regime, i.e., when A > 0, it is only feasible to have a boundary condition at x = 0
which, by linearizing (1.29), becomes

Q'(p")p(0,1) = Uy (1), (1.34)

whereas if the traffic is in the congested regime, we have a boundary condition at
x = L which, by linearizing (1.30), becomes

V(p")p(L,1) = Uy (). (1.35)

The PDE (1.33) is referred to as the transport PDE. It carries a signal from the inlet
boundary of the PDE to the outlet boundary. An explicit solution can be obtained for
the initial-boundary value problem of the transport PDE. The explicit solution to the
linearized LWR PDE (1.33) with the initial condition p( and the boundary condition
(1.34) is given for the free regime as

N | Po(x = 1), t
pen={ 361 r

lmalx

’ (1.36)

vV A

With the boundary condition (1.35), for the congested regime, the solution is

~ Po(x + A1), t< fzx,
X, 1) =1". x X (1.37)
P {p(L’t_LT)’ re b
Substituting the boundary control inputs, one has (1.36) for the free regime after

x
[Zz,
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1 X
px,t) = ——U (z - —), (1.38)
0'(p) T\ 2
or (1.37) for the congested regime after ¢ > %
1 L—x
plx,t) = ——=U, (r - ) . (1.39)
V'(p*) 1

For the open-loop system, zero boundary control inputs (equilibrium values and no
variations) are considered, namely, U, () = 0 and U, (¢) = 0. In that case, we have
after t > %, the solution

p(x,1) = 0. (1.40)

for both the free-flow and congested regimes. When we use the LWR model to
describe the traffic dynamics, only transport behavior of traffic flow is exhibited.
The linearized PDE of the LWR model in both free and congested regimes has no
spectrum (except at negative infinity, therefore, no stability issue arises).

Linear stability of ARZ model

Consider the ARZ model,
0,q +vOxq :q()/p—v)axv+ q(vm—p—v)’ (1.41)
v TV
Ov —(yp —v) oy =M. (1.42)

We apply an open-loop flow rate control at the inlet boundary and a constant density
at the outlet boundary,

q(0,1) = g* + Uy (1), (1.43)

v(L,t) = %q(L,t). (1.44)

The linearized ARZ model with state variations §(x,t) and ¥(x,t) around steady-
states (g*, v*) is then given for x € [0, L], r € [0, o), by
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* * * * *
U 07 el ) DU LR WO 7 e
q:r +Vv gx — - Vx——7(v—*—yp* V_TV* s (1.45)
. . * V* B * N
w= (pt = v v - g (1.46)
TV Tq
4(0,1) =0, (1.47)
1
(L. 1) =—G(L.1), (1.48)
P
where the flow rate and velocity variations are defined as
G(x,1) =q(x,1) - g%, (1.49)
P(x,t) =v(x, 1) —v*, (1.50)

and the input U, (¢) = 0 is considered for the open-loop system.

In order to analyze stability of the above open-loop PDE system with zero input
in (1.45)—(1.48), we seek the spectrum of the linearized PDE by representing the
infinite-dimensional PDE state as the sum of a set of linearly independent basis
functions. The solution of the PDE is then written as a sum of orthogonal basis
functions. We then analyze stability of the PDE by studying the corresponding
eigenvalue problems. In particular, we find under what conditions the flow and
velocity variations grow in the traffic flow and ultimately cause the traffic congestion.

We analyze stability of the linearized ARZ model (1.45)—(1.48). Applying the
Fourier transform with respect to the spatial variable x and the Laplace transform
with respect to temporal variable ¢, we have

ik
G(x, 1) =q(k) exp (% +A(k>r) : (1.51)
5 ikx
V(x,1) =v(k) exp (T + /l(k)t) , (1.52)
where the solution ansatz assumes that the flow rate and velocity variations are

represented by periodic functions as exp (lka) = cos (kL—x) +1sin (k—Lx) Substituting
(1.51), (1.52) into (1.45)—(1.46), we obtain

L s O [ A
yp 1+ kv Zyp ) _7pT —v v(k) 0/’

Tq* x

where the eigenvalue A represents the growth rate of the flow rate and velocity
perturbations over time. To obtain the kth pair of eigenvalues, we solve the quadratic
equation

* _ * *(yk * * *
/124_(2‘}—71)1]{4.1)/1_‘}(‘} PP IR  o (153)

T L2 TL

The discriminant is given by
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* 2 * 2

2 1
A= (&ik) +ﬂik+(—) , (1.54)

L 7L T

which is a complete square
* 1 2
A= (ﬂilm—) : (1.55)
L T

In conclusion, there is one set of eigenvalues in the left half plane, and one set on
the imaginary axis, given, respectively by

* _ K
=2 "V (1.56)
L
| RV
Ay == - - ik, (1.57)

Let us examine these eigenvalues. The eigenvalues A; only contain imaginary parts.
As for 1, the longer the relaxation time 7, the smaller the negative real part of A,.
We are interested in the congested regime of the ARZ model such that

yp* —v* > 0. (1.58)
As T — oo and k — oo,

A1 — Im(+c0), (1.59)

Ay — Im(—00). (1.60)

In summary, according to the above spectral analysis, two sets of eigenvalues have
their loci along the imaginary axis. The linearized ARZ model is marginally stable
and there are persistent oscillations in the domain when the input to the system is
zero in (3.46)—(3.49), which results from the positive and negative imaginary parts
in (1.56)-(1.57).

The linearized model around (¢*, v*) can be unstable when the traffic pressure
function p(p) happens to be such that the following inequality is satisfied:

p'(p*) < =V'(p*). (1.61)

In that case there is a positive real part appearing in A1, for which we refer the
interested reader to [?].

We conclude that small variations of the flow rate and velocity in the congested
traffic exhibit oscillatory(or at least lightly damped) behaviors and, under certain
conditions, grow into stop-and-go instabilities in the traffic flow. Therefore, it is
meaningful to study control design for the congested ARZ PDE system.



20 1 Introduction

1.8 Numerical Simulation

This section presents the basic options for the numerical simulation of the LWR and
ARZ nonlinear PDE models.

Numerical simulation of the LWR PDE model

The LWR model is a scalar conservation law,

Orp +0x(Q(p)) = 0. (1.62)

We apply the Godunov scheme [?] to numerically approximate the LWR model. The
scheme is first-order accurate in space and time. The finite volume Godunov method
is designed based on the integral form of the conservation law. The numerical flow
is defined as Q = Q(p). Using the Godunov scheme on a grid of cell size Ax and
time step At, the Courant-Friedrichs-Lewy (CFL) condition, a necessary condition
for numerical convergence, is defined as:

Ax
max [ < A (1.63)

The cell average is updated at each time step by the following equation

At
n+l _ n _ =% n  _ nn
Pyt =) - (2, -0, (1.64)
where
0., =}l .69
0", =Q(p™. P} (1.66)
Jj=3 P P
The numerical flow is defined as
(1.69)

Q(pr,pr) = min Q(p)if pr <pr, max Q(p),
PLSP=<PR P

RSPZPL

where pr and pg represent the state values evaluated at the left cell interface and
right cell interface. The entropy condition is satisfied with the above definition of
numerical flow which guarantees a unique weak solution when there are shock waves.

We illustrate the propagation and formation of a traffic shock wave modeled
by the LWR model with the following simulation example. We simulate a traffic
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Fig. 1.3 Density spatial profile evolution over time.

200

m)

< 150 -

h/

[}
=100

density

400 550 0

position x (m) time (s)

Fig. 1.4 Density evolution of the open-loop LWR PDE model.

condition in a 500-meter freeway segment where the upstream traffic is free and
the downstream traffic is congested. The maximum velocity is vy, = 144 km/hr and
maximum density is py, = 160 veh/km. The initial condition of the traffic profile
consists of free traffic of p} = 32 veh/km before around 300 m and congested traffic
of p¢ = 128 veh/km after around 300 m, as shown in Fig. 1.3. The red line shows the
initial density profile at # = 0. The downstream congested traffic propagates upstream
and gradually forms the traffic shockwave, namely the density discontinuity at# = 10
s. Fig. 1.4 shows how the density evolves in the temporal and spatial domain, where
the congested downstream traffic propagates upstream. The boundary conditions are
marked with blue and the initial condition is marked with red. The corresponding
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density spatial profile at # = 10 s is also illustrated in the Fig. 1.4. We discuss how to
halt such congestion propagation in Chapter 13 with closed-loop bilateral boundary
control.

Numerical simulation of the ARZ PDE model

We apply a two-stage Lax-Wendroff scheme to both nonlinear ARZ model and
linearized model. The scheme is second-order accurate in space and time. The grid
resolution is chosen to be small so that the numerical errors are smaller than the
model errors and therefore the simulation is valid for this continuum model. The
inhomogeneous nonlinear ARZ model written in the conservative form is given by

P+ (pv)x =0, (1.70)
e+ (y)x=- % (1.71)

where p and y are conservative variables, and y is defined as y = p(v — V(p)). The
numerical flowes are defined as

Fp =y +pV(p), (1.72)
y2
Fy =5t yV(p), (1.73)

We use the Lax-Wendroff scheme on a grid of cell size Ax and time step Af. The
CFL condition, a necessary condition for numerical convergence, is defined as

Ax

max [d; 2| < A (1.74)

1 1

At the first stage, the update law of (p’.‘, y'?) to (pr,wrl2 , yr,Hf) is given by
o Jtz Tt
n+l 1 n n At n n
Pt =3 (pj +p‘,-+1) T oAr ((Fp e (Fp)j), (1.75)
+1 1 ; At At

V= () - aae (B = Eg) = 5 (b +05) . A76)

Then we calculate the numerical flow at the intermediate points of the state variables
and then obtain the final stage as

At 1 1
n+1 _n n+ n+
Py =P T A ((Fp)HZ - (Fp)j_z), (1.77)
At ntk ntt At [ nel nel
n+tl _.n __ 2V 7 _ 2| _ 3 7
Yim 7T A ((Fy)ﬁ% (Fy)j—i) 27 (yj+% +yj—é)' (7%
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Fig. 1.5 Density and velocity evolution of the open-loop ARZ PDE model.

We specify the state values at both x = 0 and x = L boundaries by implementing the
boundary conditions. The numerical scheme picks up some combination of p and
v at each of the two boundaries, depending on the direction of characteristics. The
same numerical method is also applied to the linearized ARZ model with the same
order of numerical simulation errors.

We are interested in the stop-and-go traffic described by the nonlinear ARZ
PDE model, so we assume that the initial conditions are spatial sinusoids around
the steady-states (p*,v*), with values p* = 120 veh/km and v* = 36 km/hr. The
steady-state traffic is in the congested regime. The initial conditions are chosen as

3
o(x,0) =0.1sin(%)p*+p*, (1.79)
v(x,0) =—0.1sin(3%)v*+v*. (1.80)

We consider a 500-meter freeway segment and evolution of traffic states density
and velocity are shown for 4 min. The maximum velocity is vy, = 144 km/hr and
maximum density is py, = 160 veh/km. We consider a constant incoming flow and
constant outgoing density for boundary conditions (1.43), (1.44).

In Fig. 1.5, traffic density and velocity are lightly damped and keep oscillating
in the domain. It takes the vehicles that are initially in the domain only 50 seconds
to leave it, however, the density-velocity oscillations sustain for more than 4 min,
which means the following incoming vehicles enter the acceleration-deceleration
cycles under the influence of the stop-and-go waves that are left in the wake of their
predecessor vehicles in the domain. The traffic equilibrium is chosen to be in the
congested regime and the stop-and-go phenomenon is demonstrated in the simulation
in Fig. 1.5. In Chapters 3-7, we discuss how to design boundary controllers to
suppress stop-and-go traffic oscillations.

time (min)
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1.9 Notes and References

In order to represent more sophisticated traffic dynamics on the freeway, multi-lane
traffic with lane-changing and multi-class traffic with heterogeneous drivers and
creeping effect have been studied. A first-order multi-lane model is introduced in [?]
and second-order multi-lane models are developed in [?, ?, ?]. A multi-class traffic
flow model as an extension of LWR model with heterogeneous drivers is formulated
in [?]. The macroscopic second-order multi-class models are introduced in [?] and
in particular the ones based on the ARZ PDE model are developed in [?, ?]. The
ARZ model with phase transitions is developed in [?].

For large-scale freeway traffic modeling, the macroscopic models have been ex-
tended to different road networks. The macroscopic traffic network model based on
the LWR model is developed in [?, ?]. A two-dimensional conservation law for a
dense urban area is studied in [?]. More recently, the macroscopic road networks
based on the ARZ family of models have been developed in [?, ?].

Freeway traffic control based on the macroscopic traffic PDE models can be
categorized into feedback control and optimal control. In-domain feedback control
approach in [?] is based on an extended LWR model and the VSL control is applied
continuously in time and space to regulate freeway traffic. Boundary feedback control
have been widely developed for RM and VSL controlin [?, ?, 2, ?]. In [?], a nonlinear
boundary feedback law was designed that controls the inlet flow and achieves global
stabilization for a modified ARZ model. Using the integration of ramp metering
and VSL, [?] considers PI boundary control for homogeneous ARZ model. The
backstepping control approach is first proposed for the ARZ model in [?], which
provides an effective and systematic way to design boundary feedback control for
traffic stabilization. In this book, we mainly discuss the application of backstepping
control in traffic control problems.



Chapter 2
Backstepping for Coupled Hyperbolic PDEs

2.1 A Brief History of PDE Backstepping

The backstepping method was initially developed, around 1990 and through the rest
of that decade, for nonlinear and adaptive ODE systems [?]. In finite dimension
(for ODEs), this method is referred to as integrator backstepping. The notion of
backstepping through integrators does not extend to infinite dimension—it fails to
converge, just as the Brunowsky form does not have a meaningful infinite limit. The
backstepping method has had to be developed for PDEs using a different formulation,
employing spatial Volterra operators.

PDE backstepping, as a feedback stabilization method, was conceived in the late
1990s by the second author of this book and pursued in the work with and by his
postdocs and students at the time (Balogh, Boskovic, and Liu). The breakthrough
in the development of PDE backstepping came with the paper [?, ?] by Smyshlyaev
and Krstic. At that time the focus in developing this design approach was on unstable
parabolic PDEs.

A glance at the graduate textbook [?] gives insight into the status of this subject
around 2008: hyperbolic PDE systems had still barely received any consideration by
PDE backstepping, except for wave equations and singe first-order hyperbolic partial
integro-differential equations. No backstepping design applicable to traffic control
was yet available. The field was still about three years away from the breakthrough
in extending backstepping from parabolic to coupled hyperbolic PDEs, first reported
in the conference paper [?]. It is that result that opened the pathway to applying
backstepping to the ARZ model and unstable traffic flows.

A series of further advances and generalizations [?, ?, ?, ?] laid the foundations for
backstepping design for general coupled hyperbolic PDEs. This chapter presents a
self-contained account of those results for the benefit, primarily, of a reader from the
field of traffic engineering. A control theorist, particular one specializing in boundary
control, is encouraged to study the details contained in the original sources.

25
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The general class of coupled hyperbolic systems is divided into two categories:
homodirectional systems of m transport PDEs and heterodirectional systems of n+m
transport PDEs.

The homodirectional coupled hyperbolic PDE systems comprise m PDEs which
all convect in the same direction, i.e., with the same signs of transport velocities. The
homodirectional coupled hyperbolic systems are inherently stable due to the finite
length of their spatial transport domain. Coupling among homodirectional PDEs
may result in the growth of a signal applied at the inlet boundary as it reaches the
outlet boundary in finite time. But such coupling cannot drive the state to infinity.

For a hyperbolic PDE system to be called heterodirectional, there must be at least
two PDEs that convect in the opposite directions. It is the coupling among such
counterconvecting PDEs that can cause instability in the overall system, just as in
the ARZ model, in which stop-and-go instability may arise.

This chapter focuses on the heterodirectional coupled hyperbolic PDE systems
where m PDEs convect in one direction and n PDEs convect in the opposite direction.
The convention is that the control input enters the boundary of the former set of m
PDEs.

The PDE backstepping method achieves Lyapunov stabilization by a change of
variables which incorporates a spatial Volterra operator, the conversion of the PDE
into a “target system” in which the destabilizing terms are eliminated or domi-
nated, and boundary feedback to make the boundary condition of the target systems
homogeneous and, hence, make the target system stable.

In this chapter, we introduce the basic ideas of the PDE backstepping approach
for stabilization of systems of coupled hyperbolic PDEs. We introduce designs for
general (n+m) X (n+m) heterodirectional systems and specialize them to the 2 X 2
case of which the ARZ system is an exemplar. We present backstepping designs
for three classes of problems: full-state feedback, observers, and observer-based
output-feedback control.

2.2 Coupled Hyperbolic PDEs

This section introduces the general linear hyperbolic systems and their properties.
Following [?], the general first-order hyperbolic linear PDE is defined for u(x,t) =
(ur,uz...un)” €R" v(x, 1) = (vi,v2..vm)T € R™ where x € [0, 1],1 € [0, +0),

Oru(x,t) + A*0u(x,t) = T ()u(x, 1) + = (x)v(x, 1), 2.1
Ov(x,t) = A 0,v(x, 1) =X () ulx, 1) + X~ (x)v(x,1), 2.2)

where the constant characteristic speeds are

A* =diag(A1, 2, ...,4,), (2.3)
A =diag(uy, u2, - -+ i), 2.4)
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satisfying
Uy << =y <0< A << Ay 2.5)

In the coupled hyperbolic PDE system (2.1)—(2.2), all the m PDEs convect in the
same direction with positive signs of transport velocities A™ and the n PDEs convect
in the opposite direction with negative signs of transport velocities A~. The m PDEs
and the heterodirectional n PDEs are coupled inside the domain. The in-domain
coupling matrices comprise spatially varying coefficients,

Z++(x) = {O-;j+(x)}lﬁi5n,15jgn> Z+7(x) = {O-;ji(x)}lsiﬁn,lsjgm: (26)

I (x) = {O'i_j'+(x)}lsi<n 1<j<m> T (x) = {O'i_j_(x)}lsi<n 1<j<n» 2.7

sn,lsj= sn,lsj=s

where i (x) =0, =1, ..., mis assumed without loss of generality. Such couplings
are removed for application of backstepping design, using a change of coordinates
[?].

The following boundary conditions are considered:

u(0,1) =Qov(0,1), (2.8)
v(1,1) =Ru(1,1) + U(2), (2.9)

where the boundary coefficients are matrices with elements given by

Qo ={qij}i<i<ni<j<m, (2.10)

sn,lxj]=

Ry ={rijh<ismi<jzn- (2.11)

snm,lsj=s

The control input vector U(t) = (U; (1), Us(t)...U,n(¢))T is considered to be applied
at boundary x = 1 without loss of generality.

The diagram of the coupled hyperbolic PDE system is shown in Fig. 2.1. The
coupled hyperbolic PDE system contains two parts: m actuated transport PDEs
convecting in the upstream direction and n unactuated transport PDEs convecting
in the downstream direction. The coupling within each of the two homedirectional
subsystems could cause undesirable transient behaviors but these homodirectional
subsystems, taken on their own, are inherently stable. The heterodirectional coupling
between the u and v PDE subsystems, which convect in mutually opposite directions,
may cause instability.

2.3 Backstepping Control for Coupled Hyperbolic PDEs

The main idea of backstepping design consists of three steps.

First, we identify the undesirable terms in a PDE model, for example, by com-
puting the open-loop eigenvalues as in Chapter 1.7. Second, we decide on a target
system in which the undesirable terms are canceled by a change of variables and
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Fig. 2.1 Control diagram of the general coupled hyperbolic PDEs.

design of boundary feedback. The change of variable shifts the system state by a
Volterra spatial transformation and brings the undesirable terms to the boundary.
Third, through the design of a boundary state feedback controller, we stabilize the
PDE system.

We also propose an observer with boundary sensing for state estimation, and
construct an output-feedback controller combining the state feedback controller and
the observer. In this section, we show how to design a backstepping output-feedback
control law for general n + m coupled hyperbolic PDE system, which ensures finite-
time convergence of all the states to zero [?].

Target system

We first identify the undesirable coupling terms in (2.1)—(2.2), which introduce
spatially in-domain and boundary couplings, and then propose a target system.
Applying the backstepping method, we seek to map the system in (2.1)—(2.2) with
boundary conditions (2.8)—(2.9) to the following system
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Ora(x,t) + AT 0ya(x, 1) =27 () a(x, 1) + =7 (x)B(x, 1)

. /0 C*(x.)a(é,1)dé + /O C(r. O)B(E. 1)de

(2.12)

0 B(x,1) = A" 0xB(x,1) =G (x)B, (2.13)
a(0,7) =Q0B(0,1), (2.14)

B(1,1) =0, (2.15)

where C* and C~ are L™ matrix functions in the triangular domain 7~ = {(x, &) :
0<é<x<1},and G € L°L*([0, 1]) is a lower triangular matrix defined as

0o ... 0

gm1(X) ... gmm-1(x) 0

The coefficients of C*, C~ and G will be defined later after the introduction of the
backstepping transformation.

The explicit solution to (2.12)—(2.15) can be derived by solving the S-system
recursively. Exploiting the autonomous nature of the §-subsystem, and the cascade
structure among the components of the S-vactor, which is reflected in the structure
of the matrix G (x) in (2.16), we first have the explicit solution of 3 as

Bi(x.1) ={g"(x+’”’ 0. Z;Ifi’. @.17)
Hi
Thus after t > IJLI’ one has
Bi(x,1) =0, (2.18)
and then B, (x, t) satisfies the following equation
O Pa(x,1) = p20xfBa(x,1) = 0. (2.19)
In the same fashion, one obtains that after r > Mll + ”LZ,
Ba(x,1) =0. (2.20)
Therefore, one can get that after = ;”z | Mij,

Bj(x,1) =0, (2.21)
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where j = 1,2,...,m. From the time ¢ = ;11 i on, as ; vanish, the a-system in

(2.12) becomes autonomous,
Ora(x,t) + A*ora(x,t) =2 (X)a(x, 1) + /x Cr(x,&)a(€,1)dé¢, (2.22)
0

with the boundary conditions
a(0,1) =0. (2.23)

Since the integral with the kernel C* constitutes only a spatially feedforward (and
not feedback) operation, namely, an operation in the direction of convection, it is
straightforward to solve (2.22) with (2.23) and to show that

a(x,t) =0 (2.24)

holds for t > tr, where

U |
tp = —+ —. 2.25
F ;ﬂ, T (2.25)

The following lemma states the finite-time convergence of the target system.

Lemma 2.1 Consider target system (2.12)—(2.15). The equilibrium a = B = 0 is
stable and reached in finite time t = tp, where

tp = Z 1.t (2.26)

Backstepping transformation

In order to map the coupled hyperbolic PDE system (2.1), (2.2) with boundary
conditions (2.8), (2.9) into the target system (2.12)—(2.15), we apply the following
backstepping transformation

a(x,t) =u(x,1), (2.27)

Blx.t) =v(x.1) - /0 K (r.)u(é,r)dé - /0 Lx.ov(Ende,  (228)

where the kernels K and L are defined in the triangular domain 7 . Differentiating
(2.28) with respect to space and time and substituting the results into the target
system yields the following kernel equations
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0 =A"0,K(x, &) — 0K (x,£)A" — K (x, &) = L(x, )T, (2.29)
0 =A"0,L(x.&) — ¢ L(x, )A™ — L(x, &)X — K(x, &)+, (2.30)
0=K(x,x)A* + A"K(x,x) + X7, (2.31)
0=A"L(x,x) — L(x,x)A”+X7", (2.32)
0 =K(x,0)A*Qp + G(x) — L(x,0)A", (2.33)

and yields the following equations for C~(x, £) and C*(x, &)
C (x,&) =X L(x,&) + /x C™(x,s)L(s,&)dé, (2.34)
3
C*(x,8) =TV K(x,8) + /X C™ (x,5)K(s,&)dé. (2.35)
£

Expanding the kernel equations and boundary conditions, we have the following
PDE systemfor 1 <i <mand1 < j <n,

Hi0xKij (x,€) = A0 Kij(x, €) = Zo-++K,k(x,§> + )0 Lis(x€), (2.36)
k=1 I=1

a..
Kii(x,x)=——2—. 237
l](-x x) lli+/lj ( )

For1l <i<mand1 < j < m, we have the PDE system

HiOxLij (%, €) = p0gLij (x,€) = Z Lip(x, §)+Z Kie(x,6), (2.38)

0'”
Lij(x,x) =— L (2.39)
i J

with the artificial boundary condition for L;;(i > j) added for the well-posedness
of the kernel equations

Ll](l f) -

(2.40)
Hi — /1/

The well-posedness of the kernel equations can be proved using the method of
characteristics and successive approximations, which is completed in [?]. There
exists a unique solution K and L in L*(7). One can obtain that there exists a
unique matrix-valued function R € L®[(0,1)] > (+m) guch that the inverse
transformation of (2.27) and (2.28) holds

u(x,t)| _ |ax,1) a(é,r)
v(x,t)] - [ﬂ(x,t) / R(x,€) [,8(5 t)] (2.41)
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We can then study the stability of the target system (2.12)—(2.15) due to its equiva-
lence to the original system (2.1)—(2.9).

Full-state feedback design

Evaluating transformation (2.28) at x = 1 yields the full-state feedback controller,

1
U(t) = —-Riu(l,1) +/0 K(1,8u(é) + L(1,&€)v(&)dé. (2.42)

According to Lemma 2.1 and the equivalence between the target system (2.12)—(2.15)
and the original system, we state the main stabilization result.

Theorem 2.1 Consider system (2.1), (2.1) with boundary conditions (2.8), (2.9), and

the full-state feedback law (2.42). For any initial condition (ug, vo) € L®[(0, 1)] rmx(mem)
the equilibrium u = v = 0 is stable and reached in finite time t = tp, where tf is

given in (2.26).

2.4 Observer and Output-Feedback Design for General
Hyperbolic PDEs

In this section, we present an observer that relies on the boundary sensing of the
state vector v at x = 0,

y(t) =v(0,1), (2.43)

which is anti-collocated with the control law (2.42) located at x = 1. Employing the
state estimates, from the observer, in the control law, we derive an output-feedback
controller.

Boundary sensing for state estimation

We design an observer to estimate u(x, 7) and v(x,¢) in the form of a copy of the
original system (2.1)—(2.9) with output estimation error injection terms, driven by
v(0,¢) —v(0,1). The observer is given as
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Oi(x,1) + A0, i (x, 1) =X (x)d(x, 1) + T (x)D(x, 1)
= P*(x)(9(0,1) = v(0,1)),
8 0(x,t) — A"0:P(x, 1) =X (x)a(x, 1) + 7 (x)P(x,1)
=P (x)(9(0,2) = v(0,1)),
4(0,1) =Qov(0, 1),
P(1,t) =R1ia(1,1) + U(2),
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(2.44)

(2.45)
(2.46)
(2.47)

where i(x,t) and ¥(x, ) are the estimates of the state variables u(x,?) and v(x,¢).
The term P* and P~ are output injection gains to be designed. The estimation error
system is obtained by subtracting the observer (2.44)—(2.47) from the original system

(2.1)—(2.9),

O:1i(x, 1) + AT 0y di(x, 1) =X (x)d(x, 1) + =V (x)¥(x, 1)
= P*(x)7(0,1),
09 (x,1) = A"0,P(x, 1) =X (x)d(x, 1) + X~ (x)¥(x,1)
=P~ (x)¥(0,1),
i(0,1) =0,
v(1,8) =Ryi(1,¢),

where the estimation error states are defined as

i(x,t) =u(x,t) —i(x,1),
V(x,t) =v(x,t) — V(x,1).

(2.48)

(2.49)
(2.50)
2.51)

(2.52)
(2.53)

We then derive a target system, and using the backstepping transformation, design
observer gains P* and P~ which yield finite-time stability of the error system (2.48)—

(2.51).
We map the error system into the following target system

0,@(x, 1) + ATdya(x, 1) =2 (x)a(x, 1) + /Ox D*(x,&)a(&)dé,

BuB(x.1) — N0y f(x.1) == (0)a(x. 1) + /O D™ (x, @) de,
(0, t) =0,

1
B(L1) =Ria(1.1) - /0 H(&)B (&) de,

(2.54)

(2.55)

(2.56)

(2.57)

where D* and D~ are L* matrix functions on the domain 7 and H € L*([0, 1]) is

an upper triangular matrix,
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0 hi2(x) -+ him(x)

H) =" e : (2.58)
: . hmfl,m(x)
0 -0 ... 0

which will be defined later with the introduction of a backstepping transformation
and kernel equations that govern the backstepping kernels.

The target system consists of the autonomous @-system (with a zero input at its
inlet at x = 0) cascaded into the S-system. The S-system is an internally cascaded
vector PDE system itself with slower components of the 5 vector state cascading
into the faster component states through boundary condition (2.57). The cascade
structure of the boundary condition is the consequence of the upper triangularity of
the matrix H(x).

Following the same steps as in solving (2.12)—(2.15), we obtain the following
lemma.

Lemma 2.2 Consider the target system (2.54)—(2.57). The equilibrium & = § = 0 is
stable and reached in finite time t = tp, where

=Y 4 (2.59)

To map the error system (2.48)—(2.51) to the target system (2.54)—(2.57), we apply
the following backstepping transformation

i(x, ) =a(x, 1) + /0 M(x,&)B(€)dE, (2.60)
P 1) =Bxt) + /O N(x. £)B(E)dE, 261)

where the kernels M and N are defined on 7. The kernel M is governed by the
following kernel PDE equation system with boundary conditions, for 1 <i < n and
1<j<m,

n m
/liaxM,'j(x,f) - ,ujﬁgMij(x,f) = Z O-;;Mkj(x’ &+ Z a;’p_ij(x,f), (2.62)
k=1 p=1
—

M; (. x) = (2.63)
) == :

The kernel PDE for N is governed, for 1 <i <mand 1 < j < m, by the PDE system
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n m

MjaxNij(X, f) — ﬂjagNij(X, f) = Z o-i_k+Mkj (x,f) + Z O'i_p_ij()C, f), (264)
k=1 p=1

B Tij L
Nij(x,x) = , 1#]. (2.65)
Hi — Hj

The following boundary condition is obtained by evaluating (2.60)—(2.61) atx = 1
forl<j<i<m,

Nij(1,x) =Z,0ikMkj(1,x)- (2.66)
k=1

We add the artificial boundary conditions for N;;, (1 < i < j < m) for the well-
posedness of the kernel equations,

N;j(x,0) =0. (2.67)
The kernels of the “disturbing terms” in the target system, namely, the kernels
D*, D™, and H, are given by
m x m
dfi(x,6) == > My (x,£)oF + L D Mix(x,5)di ¢, (2.68)
k=1 & k=1
m x m
A8 == 3 Nae O+ [ Nt e, 269
k=1 k=1

hij(x) =Nij (1,) = " pixcMi (1, x). (2.70)
k=1

Finally, and most importantly, the observer gains P* and P~ are defined as

pi;(x) =pmij(x,0), (2.71)
P (x) =pymij (x,0). 2.72)
The well-posedness of the system of kernel equations (2.62)—(2.67) of the observer

is equivalent to that of the controller kernels (2.36)—(2.40) and the proof follows the
same steps in [?]. We then reach our theorem for the observer design.

Theorem 2.2 Consider the system (2.48)—(2.51) with initial conditions iy, iy €
L?[0, L]. It holds that

[u(- 1) —i(-,1)|| =0, (2.73)
[lv(-,1) = D(-,1)|| =0. (2.74)

The equilibrium u — i = v — Vv = 0 is stable and reached in finite time t = tr, given
in (2.26).
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Output feedback design

Combining the full state feedback control law (2.42) and the observer estimates, we
propose the output-feedback control law

1 1
U(t) = —Rlﬁ(l,t)+‘/0 K(1,6)i(¢, t)d§+/0 L(1,&)V(&,1)dé, (2.75)

where state estimates i (x, ¢) and ¥ (x, ¢) are obtained from the observer (2.44)—(2.47).
The control gain kernels K and L are obtained from solving the kernel equations
(2.36)—(2.40). The output injection gains of the observer (2.71)—(2.72) are obtained
from solving the kernel equations (2.62)—(2.67). Then we reach the following main
theorem combining Theorem 2.1 and Theorem 2.2.

Theorem 2.3 Consider system (2.76)—(2.79) with initial conditions ug, vo € L*[0, L]
and the output-feedback control law (2.150), where the kernels K and L are obtained
from solving the kernel equations (2.98)—(2.105) and the output injection gains of the
observer (2.138)—(2.139) are obtained from solving the kernel equations (2.130)—
(2.137). The equilibrium u = ii = v = v = 0 is stable and reached in finite time
t = 2t given in (2.26).

2.5 Backstepping Control for second-order Hyperbolic PDEs

In this section, we present in some additiona detail the special case of the back-
stepping control design for the coupled second-order hyperbolic PDE system. We
incorporate the details of this special case from the chapter [?].

The second-order coupled hyperbolic PDE case, or, as it is also referred to as the
2 % 2 case is relevant for the material in our book because the basic ARZ traffic flow
model falls into the 2 X 2 category.

So, let us consider the following 2 x 2 hyperbolic PDE system with boundary
conditions,

Oru(x,t) + A0xu(x,t) =c1(x)v(x,t), (2.76)
Ov(x, 1) — uoyv(x,t) =ca(x)u(x,t), .77
u(0,1) =qov(0,1), (2.78)
v(1,t) =rju(l,1) + U(¢), (2.79)

where A, 41 > 0, go, 71 € R and initial conditions (0, 1), v(0,1) € L>([0, 1]). The
objective is to design a feedback law, implemented using the input signal U(¢), such
that the closed-loop system is exponentially stable.
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Target system

We first identify the undesirable coupling terms in (2.76)—(2.79). Such coupling
terms appear both throughout the spatial domain and in the boundary conditions.
We propose a target system free of such detrimental terms. Applying backstepping
method, we seek to map the system in (2.76)—(2.79) to the following chosen target
system

Ora(x,t) + A0 a(x,t) =0, (2.80)
0, B(x,1) — poxP(x,1) =0, (2.81)
a(0,1) =q0B(0,1), (2.82)
B(1,1) =0, (2.83)

where the control signal U(¢) is chosen in accordance with the bacstepping trans-
formation and such that the homogeneous Dirichlet boundary condition (2.83) is
enforced.

The initial conditions are defined as ag(x) = a(x,0) and Bo(x) = B(x,0) and
a(x), Bo(x) € L?([0, 1]). The explicit solution to (2.80)—(2.83) is given by

R T | a5
2
Thus after t > ﬁ, one has
a(x,1) =0, (2.86)
and after ¢ > ﬁ + /ll it holds that
B(x,t) =0. (2.87)
Therefore, it holds that forz > 7,
a(x,t) = B(x,1) =0, (2.88)
where
ty = £+% (2.89)
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Lyapunov Stability Analysis

To show the exponential stability of the target system in the L? sense, we construct
the following Lyapunov functions V(t) = V| (¢) + V1 (¢),

1
Vi) =% /0 sza/z(x,t)dx, (2.90)
1242(1
Valr) =2 / 20604 2 ya, 2.91)
2 Jo H

and differentiate the Lyapunov functions in time. We obtain the following inequali-
ties, integrating by parts,

Vi < —a?(1,1) +22°(0,1) — |||, (2.92)

Va < 4q3B°(1,1) — 2q58°(0, 1) — 24¢ 18117 (2.93)
Applying boundary conditions (2.82)—(2.83), it holds that
V=—-a*(1,1) - |lel* - 2431811

< —coV, (2.94)

where
co =min (A, u) . (2.95)

The exponential stability of the target system (2.80)—(2.81) is summarized in the
following theorem.

Theorem 2.4 Consider the target system (2.80)—(2.81) with initial conditions ag(x), Bo(x) €

L%([0, 1]). The equilibrium a(x,-) = B(x,-) = 0 is exponentially stable in the L*
sense and it is reached in finite time t =ty given in (2.89).
Full-State Feedback Design

To map the original system (2.76)—(2.79) into the target system (2.80)—(2.83), we
apply the following Volterra spatial transformation,

(1) =u(x.1) - /O K1 (e, E)u(é.1)dé - /0 Ki(r. E)v(€.0dé,  (2.96)
Blx.1) =v(x,1) - /0 Kot (r. &), 1) - /0 Kn(r.ov(E0dé,  (297)

where the kernels K;;(x, &), i, j = 1,2 evolve in the triangular domain 7~ = {(x, £) :
0<é&<x<1}).
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By introducing the transformation (2.96), (2.97) into the target system, we obtain
a set of kernel equations that govern the kernels variables in the transformation,

A0xK11(x, &) + A0£K11(x, &) = —c2(§) K2 (x, §), (2.98)
A0xK12(x, &) — p0gK12(x, &) = —c1(€)K11(x, ), (2.99)
HOxK21(x,&) — A0 Ko1(x, &) = c2(€)Kn(x, €), (2.100)
HOx K22 (x, &) + udg Koy (x, &) = c1(€)Kai (x, £), (2.101)

with boundary conditions

Ki1(x,0) = q’;l—/lKlz(x, 0), (2.102)
Kip(x,x) = ;14(_)2, (2.103)
K> (x,x) = _;ZT()Z’ (2.104)
K (x,0) = qZ—/lKgl(x, 0), (2.105)

The well-posedness of the kernel equations and the boundedness of the kernel
variables can be proved by following the same steps of proof in [?], using method of
characteristics and successive approximations.

To study the invertibility of the backstepping transformation in (2.96)—(2.97), we
consider the following transformation that maps the target system (2.80)—(2.83) back
into the original system,

un =aten) - [ Loteende- [ Lowopends 2106
0 0
X P
v =B - [ I gatende - [ Laop@nds @107
0 0
where the kernels L;;(x,£),i, j = 1,2 evolve in the triangular domain 7~ = {(x, £) :
0 < ¢ < x < 1}. By introducing the transformation (2.106), (2.107) into the original

system (2.76)—(2.79), we obtain a set of kernel equations that govern the kernels
variables in the inverse transformation,

A0xL11(x, &) + A0£L11(x, &) = c1(x) L2 (%, 6), (2.108)
A0xL12(x, &) — udgLiz(x, &) = c1(€) Loz (x, ), (2.109)
HOxLo1(x,&) — A0 Lo1(x,€) = —c2(€)L11(x, &), (2.110)
HOx Lo (x, &) + udg Laa(x, &) = —c2(&) L12(x, §), (2.111)

with boundary conditions
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Li1(x,0) = Lle(X, 0), (2.112)
qod
c1(x)
L =— 2.113
12(x, x) T+g ( )
c2(x)
L =-2= 2.114
21(x,x) e g ( )
A
Los(x,0) = —"Z Ly (x,0). 2.115)

The well-posedness of the kernel equations of the inverse backstepping transforma-
tion can be proven in the same fashion as proving the well posedness of the kernel
equations of the direct backstepping transformation. Therefore, the invertibility of the
backstepping transformation in (2.96)—(2.97) is guaranteed. We study the stability
of the plant by studying the stability of the target system due to their L>-equivalence.

Evaluating the transformation (2.97) at x = 1 and substituting it into the boundary
condition (2.83), we have

1 1
U(t)=—r1u(1,t)+/0 Kzl(l,f)u(f,t)d§+/0 Kn(1,&)v(£,0dé. (2.116)

This state feedback control law stabilizes the closed-loop system. According to The-
orem 2.4 and the equivalence between the target and original system, we summarize
the main state feedback stabilization result in the following theorem.

Theorem 2.5 Consider system (2.76)—(2.79) with initial conditions ug, vo € L*[0, L]
and the control law (2.116). The equilibrium u = v = 0 is exponentially stable in the
L? sense and it is reached in finite time t = ty given in (2.89).

2.6 Observer and Collocated Output-Feedback Design for
Second-order Hyperbolic PDEs

Boundary sensing for state estimation

We consider a ‘proximal’—or ‘collocated’—boundary measurement, defined as
Y(t) =u(l,1). 2.117)

We design an observer to estimate the states u(x, ¢) and v(x, t) by constructing the
observer system as a copy of the original system (2.76)—(2.79) with the injection of
output estimation error u(L,t) — @i(L, t). The observer is given as
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Oii(x, 1) + A0xii(x, t) =c1(x)V(x, 1) +r(x)(u(L,t) —i(L,1)), (2.118)
0V (x, 1) — 0V (x,t) =ca(x)it(x,t) + s(x)(u(L,t) —i(L,1)), (2.119)
7(0,1) =qo(0,1), (2.120)
P(1,80) ==Y @) +U(1), (2.121)

where i(x,t) and ¥(x, t) are the estimates of the state variables u(x,¢) and v(x,?).
The functions r(x) and s(x) are output injection gains to be designed. The estimation
error system is obtained by subtracting the observer (2.118)—(2.121) from the original
system (2.76)—(2.79),

Opit(x,1) + A0xi(x, 1) =c1(x)V(x,t) —r(x)i(L,1), (2.122)
0V (x,t) — udxv(x,t) =co(x)ii(x,t) —s(x)i(L,1t), (2.123)
i(0,1) =qov(0,1), (2.124)
v(1,1) =0, (2.125)

where the estimation error states are defined as

i(x,t) =u(x,t) —i(x,1), (2.126)
V(x,t) =v(x,t) — V(x,1). (2.127)

We need to find the output injection gains r(x) and s(x) that guarantee the error
system decays to zero. Using a backstepping transformation, we transform the error
system (2.122)—(2.125) into the target system (2.80)—(2.83).

The backstepping transformation is

& (x. 1) =ii(x.1) - /0 Rt (x, £)i(&,1)dé - /0 R OP(ENde,  (2.128)
Ble.1) =o(x.1) - /O Rt (x, £)ii (£, 1)dé — /O Rn(r.£)3(E.0dé, (2,129

where the kernels K;;(x, £),i, j = 1,2 evolve in the triangular domain 7~ = {(x, £) :
0 < ¢ < x < 1}. By introducing the transformation (2.128), (2.129) into the target
system, we obtain a set of kernel equations that govern the kernels variables in the
transformation,

A0, K11 (x, &) + 20 K11 (x, &) = —c2(£)K1a(x, &), (2.130)
A0 K12(x, &) — pdeKiz(x, &) = —c1(£)K11(x, ), (2.131)
O Ko1 (x,€) — A8 Ka1 (x,€) = c2(6)Kaa (x, €), (2.132)
p0x Koy (x, &) + pde Koy (x, &) = 1 (€)Kai (x,€), (2.133)

with boundary conditions
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K11(x,0) = goKo1(x,0), (2.134)

Kia(x,x) = ZIT(JZ (2.135)

o __aW®

K1 (x,x) = Frn (2.136)

K2 (x,0) = qulz(x, 0). (2.137)
0

The well-posedness of the kernel equations and the boundedness of the kernel vari-
ables can be proved in the same fashion as for the kernel PDEs for the backstepping
transformation in the full-state feedback design, namely, using method of charac-
teristics and successive approximations. The output injection gain r(x) and s(x)
are

r(x) ==K (x, 1), (2.138)
s(x) == 1Ko (x,1). (2.139)
To study the invertibility of the backstepping transformation in (2.128)—(2.129),

we consider the following transformation that maps the target system (2.80)—(2.83)
back into the estimation error system (2.122)—(2.125),

A(e,1) =a(x.1) - /0 L (e, )a (&, 1) dé - /O Lo(.e)fEnde,  (2.140)
P 1) =Blx.1) - /0 Lo (6, )@(é.1)dé - /0 Lnn(x. OB DdE,  (2.141)

where the kernels L; i(x,&),i,j = 1,2 evolve in the triangular domain 7~ = {(x, &) :
0 < ¢ < x < 1}. The set of kernel equations that govern the kernels variables in the
inverse transformation are given by

ABx i1 (x,€) + A0 L11 (x,€) = c1(x) Loy (x, &), (2.142)
A0xL1n(x, &) = udeLia(x, &) = c1(€) Lan(x, &), (2.143)
1 Loy (x, &) = A0 Loy (x,€) = —c2(§) L11 (x, &), (2.144)
pOx Lo (x,€) + pde Lon(x,€) = —c2(6) L1a(x, &), (2.145)

with boundary conditions
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Li1(x,0) = goL12(x,0), (2.146)

= c1(x)

L o 2.14
12(x, x) Frn (2.147)

= c2(x)

L =—— 2.14
21(x,x) T (2.148)

Ly (x,0) = qﬂﬁiﬂ(x, 0). (2.149)

The well-posedness of the kernel equations can be proved in the same fashion as in
the previously mention cases of the kernel PDE systems, i.e., using the approch from
[?]. Therefore, the invertibility of the backstepping transformation in (2.128)—(2.129)
is guaranteed.

We can study the stability of target system and, due to its equivalence to the
estimation error system in the original variables (i, ), infer convergence in those
variables to the unmeasured (u, v). Therefore, by studying the stability of the target
system we establish the exponential stability of estimation error system in the L?
sense and its finite-time convergence to zero.

Theorem 2.6 Consider system (2.122)—(2.125) with initial conditions i,y €
L?[0, L]. The equilibrium ii = v = O is exponentially stable in the L* sense.
Furthermore, ||u(-,t) — (-, t)|]| = O0and ||v(-,t) =V (-, t)|| — 0 as time approaches
the finite value t = t.

Output feedback design

Combining the full state feedback control law (2.116) and the observer estimates,
we propose the output-feedback control law

1 1
U() = —ra(1,1) + /0 Koi (1 £)i(&.1)dé + /0 Kn(L,&)0(E.0dé,  (2.150)

where state estimates #(x,?) and V(x, ) are obtained from the observer (2.118)—
(2.121). The control gain kernels K»; and Ky are obtained from solving the kernel
equations (2.98)—(2.105). The output injection gains of the observer (2.138)—(2.139)
are obtained from solving the kernel equations (2.130)—(2.137). Then we reach the
following main theorem combining Theorems 2.5 and 2.6.

Theorem 2.7 Consider system (2.76)—(2.79) with initial conditions ug, vo € L*[0, L]
and the output-feedback control law (2.150), where the kernels K> and K, are ob-
tained from solving the kernel equations (2.98)—(2.105) and the output injection
gains of the observer (2.138)—(2.139) are obtained from solving the kernel equa-
tions (2.130)—(2.137). The equilibrium u = v = ii = v = 0 is exponentially stable in
the L? sense and the equilibrium is reached in finite time t = 2t r given in (2.89).
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2.7 Notes and References

The landmark references on stabilization of coupled systems of first-order hyperbolic
PDEs by the backstepping method are [?], where the a system of two counter-
convecting PDEs is stabilized with a single boundary input, [?], where an extension
is presented which allows for a single input to stabilize a system in which n» PDEs
convect in the direction opposite to the direction of propagation of the input, and
[?, ?], where a general (n + m) X (n + m) structure is considered, with m boundary
inputs to m upstream-convecting PDEs and »n unactuated downstream-convecting
PDEs.

Hyperbolic PDE systems appear in many physical processes where the system
dynamics involve transport behaviors. Boundary feedback control is applied when
such processes can be controlled through boundary values of a spatial domain.
Besides traffic flow system, backstepping control of the hyperbolic PDE systems
is used in a wide range of applications including oil drilling [?, ?, ?]. Robustness
properties of backstepping designs applied to hyperbolic systems are investigated
in [?].

Backstepping control of related parabolic PDE systems arises in turbulent
flows [?], battery management [?], and 3D printing [?].



Part 11

Basic Backstepping Control of Freeway
Traffic






Chapter 3
Stabilization of ARZ Model

3.1 What Can Be Controlled and Is Worth Controlling with
Ramp Metering?

In this chapter, we develop our first and most basic controllers for the suppression
of stop-and-go oscillations in traffic flows. If a reader had the time to read only one
chapter in this book, this is the chapter to read.

Before presenting our key designs, which happen to occupy Section 3.5, we
answer some basic questions such as:

*  What are the worthwhile control objectives for a freeway segment?

e What kind of inputs are available for control?

e Should an input like ramp metering be used to control traffic downstream or
upstream of it; in free flow or in congested flow?

* As it is impossible to measure the fully spatially distributed density and velocity
profiles, what kind of quantities, at a point on the freeway, are meaningful to
adopt as measured outputs with which to build state estimators/observers?

In this chapter only, we consider both challenging and trivial control problems. In
order to set trivial problems aside we do show their simple solutions in this chapter
and then proceed through the rest of the book with challenging problems only.

It happens so that the problem of suppressing traffic oscillations downstream of
ramp metering (DORM) is simple and we discuss it first, using simple proportional
collocated feedback (only the P component of the elementary PID control).

Then, in Section 3.5, we take on the far more challenging problem of suppressing
stop-and-go oscillations upstream of the ramp metering input (UORM). To solve this
problem, a sophisticated feedback law is needed, which either employs feedback of
the full traffic state, along the entire freeway segment, or employs a state estimate
of the full traffic state. We design a feedback law for the UORM problem using the
PDE backstepping design, introduced for general/abstract coupled hyperbolic PDE
systems in Chapter 2.

To go beyond the limitation of full-state feedback, we design state observers,
both using collocated measurements with the ramp and anti-collocated/distal mea-

47
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surements relative to the actuated ramp. Our state observer design is also based on
PDE backstepping, particularly for the case of a collocated observer design. We
combine the observers and controllers into output feedback laws. For example, we
present UORM control designs that necessitate traffic flow measurement only near
the location of the actuated ramp, for the suppression of the stop-and-go oscillations
upstream of the ramp.

The exponential stability in the L? sense, as well as finite-time convergence to
the equilibrium, are proved for our controllers, observers, and output-feedback laws,
using PDE backstepping transformations into easy-to-analyze target systems.

We also illustrate the designs with simulations.

The ARZ model parameters are assumed to be known in this chapter. An adaptive
control design, under parametric uncertainty in the model, is presented in Chapter 5.

3.2 Stop-and-Go Instabilities

It bears repeating that stop-and-go traffic is a common and detrimental phenomenon
in congested freeways, causing increased consumption of fuel and unsafe driving
conditions. The oscillations appear with no apparent road change and can be simply
initiated by a delay in the response of some of the drivers—often a single driver
overreacting by braking to hard in response to the driver in front of him slowing
down. Traffic instabilities, including those referred to as “jamitons" [?], are well
represented by the ARZ PDE model. This capability of the ARZ model results from
the model being a second-order (rather than a mere first-order) nonlinear hyperbolic
PDE whose state is not just the traffic density but also the traffic velocity.

Recalling the stability analysis of the ARZ model in Chapter 1, we find that the
traffic instabilities appear under certain densities in the congested regime of the ARZ
model. The oscillations of the density travel with the vehicles in the downstream
direction, wheareas the oscillations of the velocity travel in the upstream direction
of traffic. The stop-and-go traffic is captured by the ARZ PDE model. We focus
on the congested linearized model and study how to design boundary controllers to
suppress the stop-and-go oscillations.

We consider the stop-and-go traffic on a freeway segment. The ARZ model on
x € [0,L], ¢t € [0,00), linearized around the steady-states (¢*,v*) with boundary
conditions, is given by

* * * * *
2w G ypr v gt (1 1\ yp*.
2+ qx_v—*v)‘__7(v_*_ﬁ [ G-I
L ypr =V yp*
B, — (yp* = v*)¥y = ppes - - g, (3.2)
4(0,1) =0, (3.3)

v(L,t) =pi*q(L, 1). (3.4)
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where the flow rate and velocity variations G (x, t) and ¥(x, t) are defined

qN(.X, t) :q(_x, t) - q*’ (35)
P(x,1) =v(x, 1) —v*. (3.6)

Since we consider the congested regime, the flow rate variations are transported
in the downstream direction with steady-state velocity v* and the velocity variations
are transported in the upstream direction with characteristic speed yp* — v*. For the
congested regime, the steady-state flow rate is lower than the maximum flow rate,
and the density and velocity satisfy the following inequalities, recalling (1.23)

* Pm Vo<

> o
(1 +y)/r v+1

Vm 3.7

The control objective is to suppress the stop-and-go oscillations modeled by the ARZ
model using stabilizing feedback implemented with boundary actuation.

3.3 Boundary Control Model

Before we apply boundary control to the linearized ARZ model in (g, V), we represent
the system in the Riemann variables and then map it to a decoupled first-order 2 x 2
hyperbolic system whose static variables are denoted by (w, V). We propose two
different control strategies for the hyperbolic (w, v)-system through ramp metering
boundary control.

We first introduce the Riemann variables (w, v)

1 1
=G-q¢*|—-—|7, 3.8
w=q4—-q (V* yp*)v (3.8)
*
17:;;*17, (3.9)

They are governed by the PDEs

Ow(x,t) +v¥o,w(x,t) =— %w(x, 1), (3.10)

07 (x,t) — (yp* —v*)0,v(x,t) =— %w(x, 1), 3.11)
w(0,1) = — ”’*V—:v*v(o, 0, (3.12)

Vv(L,t) =w(L,t). (3.13)

In order to decouple (3.10) and (3.13), we introduce an exponentially scaled state
as follows:
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w(x,t) =exp ( x*) w(x,1). (3.14)

TV

This scaling transforms the (w, 7) Riemann system into the first-order 2x2 hyperbolic
system

0w (x, 1) +v*o,w(x,t) =0, (3.15)
0:v: (x,1) — (yp* = v*)dv(x, 1) =c(x)Ww(x,1), (3.16)
(0, 1) = — kov(0, 1), (3.17)
v(L,t) =kw(L,1), (3.18)
where
c(x) =— lexp (—L*), (3.19)
T TV
ko :”’V—:V, (3.20)
K =exp (_—i) . (3.21)
TV

The spatially varying coefficient ¢ (x) is a strictly increasing function and is bounded
by

Lcew <L (3.22)
T T

The following relations for boundary values are obtained from (3.8)—(3.9),

G(0,1) =w(0,1) + kov(0, 1), (3.23)
G(L,t) =xw(L, 1) + kov(L, 1), (3.24)

The boundary input applied to the system can be traffic flow at either the inlet or at
the outlet of a freeway section.

We summarize the transformation from the linearized ARZ model represented by
the (g, V)-system to the (W, V)-system as

W (x, 1) =exp (Tx?) (G(x.1) = p17(x.1)) . (3.25)
Vv(x,t) =pav(&,1). (3.26)

The inverse of this transformation is given by
g(x,t) =exp (—L*) w(x,t) + kov(x,1), (3.27)
TV
1
V(x, 1) =—V(&, 1), (3.28)
P2

where the constant positive coefficients are defined as follows:
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UORM Control DORM Control
| N | N |
| | Traffic upstream of >, | | Traffic downstream of*, |
| | ramp metering .’ | | ramp metering .’ I
e e e e e e e 7/ I e e e 2 4
v v
| Domain 2/ Domain D |
qr

Ramp metering

Fig. 3.1 A freeway segment controlled by ramp-metering.

I
(= - —]), 3.29
P1=q (v* yp*) (3.29)
*
pr=—L_. (3.30)
yp

Therefore, we can study the stability of the (g, V)-system through the (w, ¥)-system
due to their equivalence. The control laws we obtain later for the (W, v)-system
guarantee the equivalent stability properties of the (g, ¥)-system.

We suppose that ramp metering is installed at a freeway on-ramp with the purpose
of reducing the oscillations in congested traffic. We propose two different control
designs. Which of the two control designs would be employed depends on whether
the user (the organization managing the freeway) is interested in suppressing the
stop-and-go oscillations downstream or upstream of the metered ramp.

If we consider controlling the traffic downstream of the ramp metering (DORM),
namely in the domain D in Fig. 3.1, the ramp metering is located at the inlet of the
domain P and Uj,(¢) is the control law to be designed. The DORM controller U, ()
is applied with (0, 7).

In the case where we want to control the traffic upstream of the ramp metering
(UORM), namely in the domain U, the controller Uy (¢) is located at the outlet of
domain U. The UORM controller Uy (t) is applied with G(L, t).

DORM control

We define a ramp metering boundary control input Ui, (¢) at the inlet of D, while
keeping the downstream boundary unactuated,

g-(1) = G(0,1) =Uin(2), (3.31)
G(L,1) =p™%(L,1). (3.32)
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The DORM control input Uj,(t) is applied by means of physical variation of the
traffic flow at the inlet of domain 9. We need to implement a density metering at
mainline outlet so that a constant density is enforced.

Substituting (3.31) into (3.23), we obtain the controlled boundary. The DORM
control model is given by the (W, v)-system in (3.15), (3.16) with controlled boundary
at the inlet in (3.35),

0w (x,1) +v*¥0w(x, 1) =0, (3.33)
Ov(x,1) = (yp* = v*)d v (x, 1) =c(x)w(x, 1), (3.34)
(0, 1) = — ko#(0, 1) + Uin (1), (3.35)

v(L,t) =kw(L,1). (3.36)

UORM control

We consider a constant traffic flow entering the domain ¢ and the control input
Uoyt (1) is implemented with ramp metering at the outlet of the domain. For the inlet,
we need to implement flow metering at the mainline so that constant flow is enforced,
namely,

§(0,1) = 0. (3.37)

The total traffic flow variation at the outlet of domain U includes the traffic flow
variation from the mainline and from the ramp,

gL, 1) = G(L™,1) + Uou (). (3.38)

The mainline flow variation g(L™,¢) in the domain is given by (3.24). The flow
variation §(L*,t) immediately downstream of the domain U is governed by the
boundary condition (3.4). Substituting (3.4) and (3.24) into (3.38), we obtain the
UORM control model with controlled boundary at the outlet in (3.42),

0w (x, 1) +v*¥o,w(x,t) =0, (3.39)

07 (x,t) — (yp* —v*)0,v(x,1) =c(x)W(x, 1), (3.40)
(0, 1) = — kov (0, 1), (3.41)

V(L,t) =kw(L, 1) + Uy (2). (3.42)

Spectrum analysis of control models with zero input

In order to explore the traffic dynamics in the open loop-system, we consider the
zero input for the DORM or UORM control configurations,
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Fig. 3.2 Diagram of the control model with zero input.

qr(t) =0, (3.43)
Ui (t) =0, (3.44)
Usui (1) =O. (3.45)

According to boundary conditions in (3.35), (3.36) or (3.41), (3.42), we have the
following zero input system that holds for both control models

0w (x, 1) +v*¥0,w(x,t) =0, (3.46)

0, v(x,1) — (yp* = v*)0,v(x,1) =c(x)w(x,1), (3.47)
(0, 1) = — kov (0, 1), (3.48)

Vv(L,t) =xkw(L,1t), (3.49)

where x € [0, L] and ¢ > 0. The diagram is shown in Fig. 3.2. The above zero-input
system is equivalent to the open-loop (g, V)-system in (1.45)—(1.48). Thus there are
two sets of eigenvalues in the left half plane,

* Lk
=XV (3.50)
L
1 *
Ap=-—- ani. (3.51)

For n € Z, the eigenvalue A; is imaginary. As for the eigenvalue A,, the longer the
relaxation time 7, the smaller the negative real part in the eigenvalue 4. As 7 — oo
and n — oo,

A1 — Im(+00), (3.52)
A — Im(=co). (3.53)

According to the above spectral analysis, two sets of eigenvalues are lined along the
imaginary axis. The system is marginally stable and there are persistent oscillations in
the domain of the zero-input system shown in (3.46)—(3.49). Therefore, it is necessary
to pursue a feedback control design to exponentially (or finite-time) stabilize the PDE
system.
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Fig. 3.3 Diagram of DORM control model.

3.4 DORM Control Design

DORM is the easier of the two control problems we consider (DORM and UORM)
and we present it first. The harder control problem, UORM, is presented in Section
3.5. The DORM control model is given by

0w (x, 1) +v*¥o,w(x,t) =0, (3.54)

07 (x,t) — (yp* —v*)0,v(x,1) =c(x)w(x, 1), (3.55)
w(0,1) = — kov(0, 1) + Uin (1), (3.56)

(L, 1) =kw(L, 1), (3.57)

where x € D £ [0, L] and ¢ > 0. The diagram of the DORM control model is shown
in Fig. 3.3.
If we choose the DORM controller as simple static collocated output feedback,

Uin(2) =kov(0, 1), (3.58)

we get w(0,7) = 0, which renders the w transport PDE homogeneous, i.e., au-
tonomous. The explicit solution to the resulting autonomous w-system (3.54) with
the DORM control law (3.58) substituted into (3.56) is

_ [ w(x=v*1,0), t< %,
w(x, 1) = {w‘z (0.7 - vx_*) , (> (3.59)
and for ¢t > X,
%
(x,1) = 0. (3.60)

Solving (3.55), (3.57) for ¥(x, 1), we have

Vv(x,t) =

{ﬁ(x + (yp* —v*)1,0) + fOt c(x+ (yp* =v*)(t —5)w(0,s)ds, t< pr*i—xv* ,

- L-x 1 L - xX—s L—x
KW (L,t - yp*_v*) + o fx c(s)w (O, t+ yp*_v*) ds, 12 5.

(3.61)



3.4 DORM Control Design 55

Thus for ¢ > ¢, it holds that

v(x,1) =0. (3.62)
where
L L
tf=— . 3.63
f v* + ,)/p* _ V* ( )
Substituting k¢ into (3.20) and v into (3.26), we get
Uin(2) =p19(0, 7). (3.64)

The DORM boundary control input Ui, (¢), thus, employs a control law that requires
only the measurement of the collocated quantity ¥(0, t).

To show the exponential stability of the system in the L? sense, we construct the
following Lyapunov functions

1 L
Vi(f) ==— / e *w?(x, t)dx, (3.65)
2v* 0
1 Lo
Va(t =—/ e*v2(x, t)dx, (3.66)
> (1) o =) Jy (x,1)

and differentiate the Lyapunov functions in time. We obtain the following inequalities
using the Cauchy-Schwarz inequality and Young’s inequality,

Vi <= e HA L) + )P, (3.67)
. 1 L
Va <elv?(L) — 52(0) - |[7])* + —/ e (x)e(x)w(x)dx.
yp*=v*Jo
According to the boundedness of ¢(x) in (3.22), we have
1
le(x)] < Cp = = (3.68)
T

Then it holds that

Vo <ol (L ! TEa d,Cge*" 12 3.69
2 e kTw( )+m||w|| - _W Iwll= (3.69)

where d; is an arbitrary positive constant which we choose as

272 (yp* —v¥)

d] <
2L

(3.70)

Consider the following Lyapunov function

V =d,Vi + V>, (3.71)
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where
2L 2 et
dy = _— . 72
» =max |e K’Zdl(yp*—v*) (3.72)
It holds that
V < —dyV, (3.73)
where
| a 1 d,Cle**
do = — - , 1= . 3.74
o-m (eL 2di(yp*=v*) 20yp* =v¥) G79

The exponential stability of the system (3.54)—(3.57) with the DORM boundary
controller (3.58) is thus established. From the explicit solution of the system, it holds
fort > ty,

w(x,t) =v(x,t) =0, (3.75)
We summarize the above result in the following theorem.

Theorem 3.1 Consider system (3.54)—(3.57) with initial conditions wg, vo € L*[0, L]
and the control law (3.58). The equilibrium w = v = 0 is exponentially stable in the
L? sense and is reached in finite time t = t r given in (3.63).

3.5 UORM Control Designs

The DORM control design (3.58) was a simple collocated proportional feedback
since the coupling —k¢ in Fig. 3.3 is collocated with the control input. The UORM
problem is much more difficult as the feedback coupling of the two PDEs extends
all the way to the distal boundary relative to the input. Because of this domain-wide
coupling, a much more complex feedback is needed and we design it using the PDE
backstepping method.

The UORM control model is

0w (x,1) +v*0,w(x,1) =0 (3.76)

07 (x,1) — (yp* —v*) 0¥ (x, 1) =c(x)w(x,1), 3.77)
#(0,1) = — ko# (0, 1), (3.78)

V(L,t) =kw(L, 1) + Ugy (1), (3.79)

where x € U £ [0, L] and ¢ > 0, and its diagram is shown in Fig. 3.4.
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Fig. 3.4 Diagram of the UORM control model.

UORM full-state feedback control design

Using the following backstepping transformation,
a(x,t) =w(x, 1), (3.80)

Blx.t) =0(x.1) - /0 M(x - )5(£.1)dé - /O K. OWEnde, (381

we transform the UORM control model (3.76)—(3.79) into the target system where,
in particular, w(0, ) = @ (0, t) and v(0,t) = 8(0, 1),

Ora(x,1) +v*dya(x,t) =0, (3.82)

atﬂ(x’ t) - ()’p* - V*)axﬂ(x’ t) :0’ (383)
a(0,1) = —koB(0,1), (3.84)

B(L,t) =0. (3.85)

To find the backstepping transformation kernels M and K in (3.81) so that (3.77)
is transformed into (3.85), we take the time derivative and the spatial derivative of
(3.81).

After lengthy calculations as shown in Chapter 2, we obtain that the following
kernel PDE and associated boundary condition need to be satisfied,

(yp* = v)0xK (x,€) =v* 0K (x,€) =c(6)K (x = £,0), (3.86)
K(x,x) =- c(_xz’ (3.87)
Yp

where K (x, &) evolves in the triangular domain Z = {(x,¢) : 0 < ¢ < x < L}, and
where M (x) is defined as

M(x) = - K(x,0). (3.88)
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The well-posedness of the kernel equations (3.86)—(3.88) and the boundedness of
kernel variables are obtained following the same steps of the proof in the Appendix
of [?]. Therefore, invertibility of the backstepping transformation in (3.80), (3.81) is
established and we can study the target system for stability of the plant.

The UORM full-state feedback controller is chosen as

L L
Uo(1) = — k(L. 1) + /0 M(L - £)9(&,1)dé + /O K(L.&)W(&, 1dé, (3.89)

so that B(L, t) = 0 is satisfied. One can easily find the explicit solution to the target
system (3.82)—(3.85) and obtain that

a(x,t) = B(x,t) =0, (3.90)
afterty =ty +1g = VL—* + ﬁ. Thus a and g go to zero in finite time ¢ = t¢. It
is straightforward to prove with a Lyapunov functional similar to (3.65), (3.66), and
(3.71) that the a, B system is L? exponentially stable. Due to the invertibility of the
transformation, the (W, 7)-system is also L? exponentially stable.

Theorem 3.2 Consider system (3.76)—(3.79) with initial conditions wg, vo € L*[0, L]
and the control law (3.89) where the kernels K (x, ) and M (x) are obtained by solv-
ing (3.86)—(3.88). The equilibrium w = v = 0 is exponentially stable in the L* sense
and is reached in finite time t =ty given in (3.63).

Transforming w and v in (3.89) to § and ¥ using the inverse transformation in
(3.27)—(3.28), we get the control law in (g, V) as

L
Uow() = = G(L.1) + pr#(Lat) + p1 /0 M(L — )5(¢.1)dé
2 ¢
-« K(L,f)eXP(—*)ﬁ(f,t)df
0 TV

L
+k0‘/0 K(L,¢)exp (f?) g(&,1)dé. (3.91)
Due to the invertibility of the transformation (3.25)-(3.28) between (w,v) and
(G, 7), the (g, V)-system is exponentially stable and converges to zero in the finite
time. Therefore, the (g, v) system is exponentially stable and converges to (¢g*, v*)
in the finite time 7.

To implement Uyy(f), we need the measurements of ¥ and § along the entire
domain U, which might be realized by traffic cameras and fleet GPS data. Instead,
we propose next a boundary observer design, to alleviate the difficulties and costs to
install sensors along the entire freeway. We introduce two boundary observers: one
is located at the same boundary with the full-state feedback controller and the other
one is anti-collocated with the controller.
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UORM anti-collocated boundary observer design

We employ the following anti-collocated boundary measurement of velocity fluctu-
ation:

Y.(t) =v(0,1). (3.92)

According to (3.26), we obtain v(0,¢) = p,7(0,t), by the measurement of v(0, 7).
Then we design an observer by constructing the following system,

O (x, 1) + v* D (x, 1) =0, (3.93)
0;0(x,1) — (yp* —v*)0,0(x,1) =c(x)W(x,1), (3.94)
#(0, 1) = — koYa(t), (3.95)

P(L,t) =xw(L,t) + Ugy (1), (3.96)

where w and ¥ are the estimates of state variables w and V. This is a trivial observer,
with output injection appearing only in the boundary condition (3.95). The error
system is obtained by subtracting the above estimates from (3.76)—(3.79),

0w (x,t) +v*¥0,w(x,t) =0, (3.97)
0V (x,1) — (yp* —v*)0, v (x,1) =c(x)W(x,1), (3.98)
(0, 1) =0, (3.99)
B(L, 1) =kw (L, 1), (3.100)
where
W = — W, (3.101)
V=v-—7. (3.102)

The error system is the same as (3.54)—(3.57) with (3.64). According to Theorem
1, the error system is exponentially stable in the L> sense and converges to zero in
finite time 7.

Theorem 3.3 Consider system (3.97)—(3.100) with initial conditions Wq, Vo €
L?[0, L]. The equilibrium w = v = 0 is exponentially stable in the L* sense, which
implies that ||w(-,t) = w(-,1)|| = O0and ||V (-,t) = V(-,1)|| = 0. The convergence to
0 is achieved in finite time t = ty.

UORM collocated boundary observer design

The collocated observer is more complex than the trivial anti-collocated observer
(3.93)—(3.96). We employ a collocated boundary measurement
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Y.(t) =w(L,1). (3.103)

Since
WL 1) = (L0 = pr#(L 1), (3.104)
the output (3.103) is obtained by the measurement of G(L,t) and V(L, ). Then we

design a collocated boundary observer to estimate w(x, ¢) and v (x, t) by constructing
the system

OW(x, 1) +v* 0, Ww(x,t) =r(x)(W(L,t) —Ww(L,1)), (3.105)

0:0(x, 1) — (yp* = v*)0,0(x, 1) =c(X)W(x,1) + s(x)(W(L,1) —Ww(L,1)), (3.106)
w(0,1) = — kov(0,1), (3.107)

P(L,t) =xY(t) + Ugy (1), (3.108)

where W and ¥ are the estimates of the state variables w and v. The terms r(x)
and s(x) are output injection gains to be designed. The error system is obtained by
subtracting the estimates from (3.76)—(3.79),

O W(x, 1) +v*0,W(x,t) = —r(x)w(L,1), (3.109)
0V (x,1) — (yp* —v*) 0,V (x, 1) =c(x)W(x,1) — s(x)w(L, 1), (3.110)
w(0,t) =— kov(0,1), (3.111)
¥(L, 1) =0, (3.112)
where
W=w-Ww, (3.113)
v=7-9. (3.114)

We need to find the output injection gains r(x) and s(x) which guarantee the error
system’s state decays to zero. Using a backstepping transformation, we transform
the error system (3.109)—(3.112) into the following system

A ds (x,1) +v¥0ed(x, 1) =0, (3.115)

v (x,1) — (yp* —v*)0,v(x, 1) =0, (3.116)
A0, 1) = — kov(0,1), (3.117)

¥(L,t) =0. (3.118)

The backstepping transformation is postulated as
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HL0=W@J%:£Lk@+x—@W@JM§ (3.119)
vum=WL0—/LMwu+b¢twﬂamgn@, (3.120)

where the kernel L is given by
1W(x)=-—y;*c(y;*). (3.121)

For boundary condition (3.117) to hold, the kernels K and M must satisfy the relation
K(L-¢&) =M((yp* - v*)é). (3.122)

The kernel K is then obtained as

y 1 * o p*
K@):——TCPQ—:L{L—M), (3.123)
Yp Yp
and satisfies
y 1
K(X)| < ——, (3.124)
Yp*T

due to the boundedness of ¢(x) in (3.68). The output injection gains r(x) and s(x)
are

*

dﬂ=ﬁk@)=—v¢«ﬂ£§iRL—wy (3.125)

14 Yp

s(x) == v*MOW*x + (yp* —v*)L)

px ( vx yp* —v* )
o x -2V g,

:yp* *

(3.126)
yp* yp*

The backstepping transformation is invertible. Therefore, we study the stability of
the error system through the target system (3.115)—(3.118). It is straightforward to
prove the exponential stability of the error system in the L? sense and its finite-time
convergence.

Theorem 3.4 Consider system (3.109)—(3.112) with initial conditions Wy, Vo €
L?[0, L]. The equilibrium w = v = 0 is exponentially stable in the L? sense,
which means that ||w(-,t) = w(-,t)|| = 0 and ||[v(-, 1) — P(-,1)|| — 0. In addition
the convergence of the observer error state to equilibrium is achieved in finite time
t=1y.

We have completed the designs of an anti-collocated boundary observer and a
collocated boundary observer. Both of them achieve exponential stability of estima-
tion errors in the L? sense and finite-time convergence to 0. A comparison of the two
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designs reveals that the collocated boundary observer needs two spatially-varying
output injection gains but could be easier to realize in practice since the sensor is
located at the same boundary with the UORM control input Ugy (7).

UORM output-feedback control design

Combining the state feedback controller and the boundary observers, we have the
output-feedback controller

L L
Uom(t)z—KvT/(L,t)+‘/O M(L—f)f)(f,t)d§+/0 K(L,&)w(&,1)dé, (3.127)

where w and ¥ can be obtained either from the anti-collocated boundary observer
in (3.93)—(3.96) with measurement Y, (¢) = (0, ) or from the collocated boundary
observer in (3.109)—(3.112) with measurement Y.(7) = w(L,t) and with observer
gains given in (3.125), (3.126). The following theorem summarizes the results from
Theorem 3.1 to Theorem 3.4.

Theorem 3.5 Consider system (3.76)—(3.79) with initial conditions W, ¥ € L?[0, L]
and with the output-feedback control law (3.127), where the kernels K(x, ), M(x)
are obtained by solving (3.86)—(3.88). The equilibrium w = v = w =V = 0 is
exponentially stable in the L* sense.

By employing the inverse change of variables (3.27),(3.28), the result of this
theorem holds also for the original physical variations state (g, 7).

3.6 Numerical Simulation

The length of the freeway section is chosen to be L = 1 km. The free speed is
vm = 40 m/s and the maximum density is pp, = 150 vehicles /km. The steady-states
(p*,v*) are chosen as (120 vehicles /km, 10 m/s) which is in the congested regime.
We take y = 1 and relaxation time 7 = 60 s. We assume constant incoming flow
and constant outgoing density for boundary conditions and use sinusoidal initial
conditions.

Fig. 2.5 shows that in the open-loop system the density and velocity are lightly
damped and keep oscillating, with a slow decay, taking tens of minutes to fully settle.
In Fig. 2.6, the closed-loop system with DORM control is stabilized and converges
to the steady-states in the finite time of about 2.5 min.

The closed-loop system with UORM full-state feedback control in Fig. 2.7 is
stabilized and converges to the reference and the finite convergence time is ¢y =
L/v* + L/(yp* —v*) = 150 s = 2.5 min. The evolution of ramp metering control
input is plotted with red color at outlet x = 1000 m. We see that the control input
oscillates around every half minute, which is reasonable for on-ramp traffic lights.
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Fig. 3.6 Closed-loop response with DORM control.

Fig. 3.7 Closed-loop response with UORM full-state feedback.

63

Fig. 2.8 shows that the closed-loop system with UORM output-feedback control
(collocated observer) is stabilized and converges to the steady-states in about 5 min
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since it takes the collocated observer 2.5 min to estimate state variables and another
2.5 min for state feedback control to converge to the steady-states.

3.7 Notes and References

This chapter addresses the boundary feedback control problem of ARZ traffic model
with relaxation term. To stabilize the oscillations of congested traffic regime, two
control designs are introduced for the second-order coupled hyperbolic system. The
key idea in the DORM control design is to cancel the forward coupling in the system.
In the more challenging case, UORM control design uses the backstepping method
to cancel the coupling throughout the domain. In this fashion, the UORM design
achieves exponential stability and finite-time convergence to the steady-state.

The results of this chapter, in their concise form, were introduced in [?].

In Chapter 5, we propose an adaptive boundary control design for the linearized
ARZ model in the absence of the knowledge of certain model parameters. In the

next immediate chapter, Chapter 4, we use traffic field data to validate our observer
design.



Chapter 4
Observer Validation on Freeway Data

Traffic state observers perform the estimation of the state, such as the distribution
of velocity or density along the freeway, from partially observed traffic data in real
time. Due to financial and technical limitations, it is usually difficult to measure such
distributed traffic states everywhere, and at all times, on mainline freeways. There-
fore, at places where direct measurement and detection is missing, it is important
to estimate the traffic states. This is important both for control purposes and, in the
absence of real-time control of the freeway, for the sake of model calibration or
policy development.

This chapter validates and generalizes the boundary observer introduced in Chap-
ter 4. In that chapter the observer was introduced for the purpose of stabilization of
stop-and-go oscillations using output-feedback control. In this chapter we build on
this observer for the sake of state estimation, in the absence of a control task.

The objective of the boundary observer in this chapter is the accurate estimation
of freeway traffic states, based on the ARZ PDE model, in the congested regime
where, in the absence of a stabilizing control that suppresses oscillations, the stop-
and-go behavior makes the state of the traffic flow unsteady. To accurately capture
such an unsteady motion of traffic, which requires the fully nonlinear ARZ model
to capture the traffic state motions away from the underlying equilibria, we need
an ARZ-based observer which is likewise nonlinear. In this chapter we provide a
nonlinear generalization of the observer that we presented in Chapter 3.

This chapter presents results based on experimental traffic data. Vehicle trajec-
tory data are used to first calibrate the ARZ model and to then validate the boundary
observer design, constructed based on the macroscopic ARZ model, on actual mi-
croscopic traffic data.

65
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4.1 Introduction to Traffic State Estimation

The traffic state needs to be estimated by typically using partially observed traffic
data and some prior knowledge of traffic. This topic has been extensively studied,
attracting particular attention in recent decades.

The approaches to traffic estimation fall into the following three categories: model-
driven, data-driven, and streaming data-driven. Among them, the model-driven ap-
proach is the most popular one and has been widely used to solve various traffic
estimation problems.

Compared with the data-driven approach, the model-based approach provides
an accurate estimation with less input data. The model-based estimation can be
integrated with traffic control operations directly. The disadvantage of this approach
is that it requires careful selection and calibration of the model. As a first step in
the model-driven approach, traffic flow models are often used to describe traffic
dynamics and are calibrated with historical data. Then state estimates are obtained
based on the calibrated model and real-time data inputs. Therefore, it is crucial for
traffic estimation to have an advanced physical model which is capable of capturing
the freeway traffic dynamics accurately. This motivates us to employ a state-of-the-art
second-order traffic PDE model, namely, the ARZ model, for traffic state estimation.

Freeway traffic dynamics in spatial and temporal domains are usually described
using macroscopic models with aggregated variables of traffic density, velocity and
flow. These aggregated variables average out small-scale noise of freeway traffic
and can be directly measured by stationary/point-based sensors like loop detectors.
Among the macroscopic models, the LWR model is one of the most commonly
applied models. This model is a first-order scalar hyperbolic PDE of density, and
can predict the propagation and dissipation of traffic shockwaves and represent
fundamental phenomena of free and congested regime of traffic. Many studies have
used such a model for traffic states estimation due to its simplicity and efficiency
in model calibration and numerical simulation. However, the LWR model fails to
describe stop-and-go traffic, which is the oscillatory behavior that accompanies
congested traffic. The reason for LWR’s failure to capture stop-and-go is because it
models the relationship between the density and velocity in a static manner and is
thus unable to reproduce the non-equilibrium density-velocity relation occurring in
the stop-and-go traffic. In order to address this limitation, second-order models are
proposed to employ a nonlinear hyperbolic PDE for traffic velocity, in addition to the
density conservation equation. The deviations from the equilibrium traffic relation
are allowed in the second-order model since dynamics of the velocity are captured by
their own PDE. Therefore, in order to accurately estimate the non-equilibrium traffic
states for congested traffic, this chapter employs the state-of-the-art second-order
ARZ PDE model.

An observer employing only measurements on one boundary of a freeway segment
is designed for the ARZ model using the backstepping method and is validated with
traffic field data. For the sake of brevity, we refer to such an observer as a “boundary
observer,” or a “backstepping observer.”
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Compared with the data assimilation approach, the observer proposed in this
chapter requires less measurement information, easier model calibration and works
directly with the original second-order PDE model instead of a discretized one.

In Chapter 3, an observer design was proposed for the linearized ARZ model in an
effort to construct an output-feedback controller. In this chapter, we generalize that
previous observer design in order to address the freeway traffic estimation problem
from a more practical perspective. Specifically, the generalized observer design is
developed for the full nonlinear version of the ARZ model, with certain assumptions
regarding the boundary conditions removed. The observer itself is nonlinear and
enables accurate estimation of the traffic state even under large fluctuations of the
density and velocity states.

We do not claim that the initial estimates of the density and velocity profiles are
allowed to be taken very far from the actual initial profiles but, if the initial estimates
are, in fact, not too far from the actual profiles, the nonlinear observer can track large
fluctuations in the nonlinear ARZ model, using only measurements from a boundary
of the freeway segment.

The observer design presented in this chapter accepts a general functional form of
the equilibrium density-velocity relation rather than only the basic choice of Green-
shield’s model. This allows the PDE model to have better data fitting in calibration.
Vehicle trajectory data [?] are used to construct and to test the performance of the
observer design.

4.2 Boundary Observer Design

Boundary sensing is employed in our observer design. We pursue the state estimation
of the nonlinear ARZ model using the PDE backstepping method. The output injec-
tion gains are designed for the linearized ARZ model and then are added to a copy
of the nonlinear plant. Recall the ARZ PDE model linearized around steady-states

(g*,v*),

} y * * _px
0:G(x,1) +v*0,G(x,1) — %

(1
O (x,1) = — q? (— -

V*
“4.1)
8,56, 1) — (rp* — v (1) =L, 1) - 22 g 1)
TV Tq
4.2)
G(0,1) =0, 4.3)
Vv(L,t) :%q(L,t), 4.4)

where the flow rate and velocity variations are defined as

- yp* .
) V(X, t) - $Q(X’t)’
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q(x’ t) =Q(x’ t) - q*’ (45)
v(x,t) =v(x, 1) —v*, (4.6)

andx € [0, L], t € [0, ).
The boundary values of state variations from the steady-states are defined as

Yy.in (1) =G(0,1), 4.7
Yq,out(t) ZQ(L, t)’ (48)
Y, (t) =V(L,t), 4.9)

where the values of §(0,¢), g(L,t) and V(L,t) are obtained by subtracting the
setpoint values (¢*, v*) from the sensing of incoming traffic flow ¢(0, 7), outgoing
flow ¢(L,t), and outgoing velocity v(L,t). In practice, sensing of the aggregated
values of the traffic flow and velocity

yq(1) =q(0,1), (4.10)
You(?) =q(L, 1), 4.11)
yv (1) =v(L,1), (4.12)

is usually obtained by high-speed cameras or induction loop detectors. The induction
loops are coils of wire embedded in the surface of the road to detect changes of
inductance caused by the passage of vehicles. The high-speed cameras record the
vehicle trajectories for a freeway segment.

Output injection for the linearized ARZ model

As introduced in Chapter 3, the linearized ARZ PDE model is first converted into the
Riemann variables in order to diagonalize the equations. Second, a spatial scaling
transformation is applied to eliminate any diagonal reaction terms. The transforma-
tion from the (g, )-system to the (W, V)-system is

2
W(x,t)zexp(%ll) (A/lo_;zﬁ(x,t)+q(x,t) : (4.13)
_ _qt
v(x,1) =7 _/lzv(x, 1), 4.14)

and the inverse transformation is given by

1

GOt =exp (- | wx, 1) = 225 (x, 1), (4.15)
T/l] /11

L-h

q*

V(x, 1) v(x,t). (4.16)
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This results in the system

Ow(x,t) + A10xw(x,t) =0, 4.17)
0V (x, 1) + A0,V (x, 1) =c(x)w(x,1), (4.18)
w(0,1) =:%17(0, 1) +Yq (1), (4.19)
1
_ _qF
v(L,t) -4 Y, (1), (4.20)

where 11 = v*, 1, = yp* — v* and the spatially-varying parameter c(x) is defined
as

1
c(x) = ——exp (—Ti/ll) . 4.21)

Parameter c(x) is a strictly increasing function and bounded by

1 1 L
—— <c(x) < ——exp (——) . (4.22)
T T T

Then we design a boundary observer for the linearized ARZ model to estimate
w(x,t) and v (x, 1) by constructing the following system

Ow(x,t) + 10 W(x, 1) =r(x)(W(L,t) —W(L,1)), (4.23)
0V (x, 1) + 120,V (x, 1) =c(x)W(x,1)
+s(x)(W(L,t) —w(L,1)), (4.24)
Ww(0, 1) =fl—29(0, 1)+ Yy in(t), (4.25)
1
. _ 4
P(Lo0) =V (0), (4.26)

where w(x, t) and ¥(x, t) are the estimates of the state variables w(x, ¢) and v(x, t).
The value w(L, t) is obtained from (4.8) and (4.9): by substituting the measurements
Y, (1) = ¥(L,t) and Yy oy (1) = G(L, ), we obtain

L *1
(L, 1) = exp (T—/ll) (4/1) - 32 Yo () +Ygou (D) |- 4.27)

We denote estimation errors as

w(x,t) =w(x,t) — w(x,1), (4.28)
V(x,1) =v(x,t) — V(x,1). (4.29)

The error system is obtained by subtracting the estimates (4.23)—(4.26) from (4.17)—
(4.20),
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Ow(x,t) + 210, Ww(x,t) =r(x)w(L,t), (4.30)
OV (x, 1) + 20,V (x, 1) =c(x)W(x, 1) + s(x)W(L,1), 4.31)
w(0,1) :2\7(0, 1), (4.32)

A1
v(L,1) =0. (4.33)

The terms r(x) and s(x) are output injection gains that are designed using back-
stepping method in the previous chapter and are explicitly given by

r(x) =—

A A
cl-
A1 — Ao A=

_ Ay _ A> :
s(x) =1 /lzc (x PR (L x)) . (4.35)

AZ(L-—x)), (4.34)

According to Theorem 3.3, the convergence of the state estimates to the state values
is reached in the finite time ¢ = ¢y given by

L L
tf = — + —. 4.36
= Tl (4-36)

4.3 Nonlinear observer

To design a nonlinear version of the observer, we take the output injection terms that
we designed for the linearized ARZ model and then insert them into a copy of the
original nonlinear ARZ model.

First we recall the transformation (4.13), (4.14) and its inverse (4.15), (4.16).
The same transformation holds between the estimates (W, ) of the transformed
states (W, v) and the state estimates (g, V) of (g, V)-system. Due to the equivalence
between (w, v, w, v) and (4, 7, 4, V)-system, we arrive at the following theorem for
the linearized ARZ model according to the stability property of the estimation error
system in Theorem 3.3. The estimation errors of the linearized system (4.1)-(4.4)
are denotedby § =G — ¢,V =V — V.

Theorem 4.1 Consider the linearized ARZ model (4.1)—(4.4) with initial conditions
Go, Vo € L*([0, L)), along with the observer (4.23)—(4.26) initialized using the initial
estimated states §o, Vo € L*>([0, L]). The equilibrium § = ¥ = 0 of the observer error
system, represented in the original physical density and velocity variation states, is
exponentially stable in the L* sense. It also holds that

g, 0 =40l —0 (4.37)
[5¢, 1) = (. 0)|| = 0 (4.38)

as time approaches the finite time t = t.
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We denote the error injections designed for the linearized ARZ model (4.23)—
(4.26) as

E.,(x,t) =r(x)(W(L,t) —W(L,1)), (4.39)
E,(x,t) =s(x)(W(L,t) —Ww(L,1)). (4.40)

The output injection gains r(x), s(x) are designed in (4.34) and (4.35). According to
(4.27), w(L,t) is obtained from the real-time measurement of the traffic boundary
data in (4.7)—(4.9). Therefore, the values of output injections E,, (¢) and E,, (¢) are
known.

The nonlinear implementation of the observer for state estimation of density and
velocity (0(x, 1), P(x,t)) is obtained by combining the copy of the nonlinear ARZ
model (p, v) given by (1.4), (1.5), and the above linear injection errors in the original
physical density and velocity state variables,

N L
arp"'ax(PV) = (CXP (__) Ew _Ev)’ (441)
% Ty
Vip)-v A1—-4
8,0+ (5 + PV (p)ap =L LI =P M=o (4.42)
T q

where the linear injections on the right hand side are obtained from (4.15), (4.16),
(4.39), (4.40). The boundary conditions are

N _ yq(t)
p(0,1) = 50.0° (4.43)
P(L,t) =y, (2). (4.44)

The boundary measurement of the incoming traffic flow y,(¢) and the outgoing
velocity y, (¢) is used in the above boundary conditions of the proposed observer.
The boundary measurement of the outgoing traffic flow yqu(?) and the outgoing
velocity y,, (¢) appears in the output error injection terms (4.39), (4.40), and thus in
the observer equations (4.41), (4.42). The output injection terms drive the observer
to converge to the original nonlinear ARZ model.

When the initial state of the system is close to the equilibrium, the linearized part
dominates in the nonlinear estimation error system. Therefore the L? exponential sta-
bility and the finite-time convergence are achieved for the linearized ARZ model. In
[2], the local exponential stability in H? sense is obtained for a quasilinear hyperbolic
PDE system with a backstepping full-state feedback controller. The duality of the
proposed observer design in (4.41)—(4.44) to the stabilization problem in [?] would
yield a local H? stability result for the estimation problem, following the Lyapunov
proof of Theorem 4.1 in [?]. Since we mainly focus on the practical implementation
of the observer, we do not pursue a theoretical proof by local H? analysis of the error
system.

Compared with the linearized observer design, the nonlinear observer yields a
better estimation result due to the fact that it induces less error brought in by the
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Fig. 4.1 Density p(x, t) and velocity v (x, ¢) of nonlinear ARZ model.

model linearization. In the following sections, the estimation result is first validated
in numerical simulation with an ad-hoc choice of model parameters and initial
conditions, and then validated with traffic field data.

4.4 Numerical Simulation

For simulation of the nonlinear ARZ PDE model on a freeway segment of 500 m,
we assume that the initial conditions are spatial sinusoids around the steady-states
(p*, v*), with the steady state values in the congested regime. The initial conditions
are specifically chosen as

3
0(x,0) =0.1 sin (%) 0% + p*, (4.45)
v(x, 0) :—0.lsin(3%)v*+v*. (4.46)

Model parameters of a one-lane traffic in the congested regime is considered and
chosen the same as the previous chapter. In the next section, we validate the observer
design with the traffic field data. Instead of prescribing boundary values in this
chapter, we use field data to estimate in-domain traffic states.

We use the finite volume method numerical approach in Section. 1.8, which
divides the freeway segment into cells and then approximates the cell values con-
sidering the balance of flow through the boundaries of the adjacent cells. In order
to obtain the numerical flow, we write the ARZ model in the conservative variables,
then apply the two-stage Lax-Wendroff scheme to discretize the ARZ model in the
spatio-temporal domain. The scheme is second-order accurate in space and first-
order in time. The spatial grid resolution is chosen to be smaller than the average
vehicle size so that the numerical errors are smaller than the model errors. Therefore
the numerical simulation is valid for this continuum model.
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Fig. 4.2 States estimates p(x, #) and ¥ (x, ¢) of nonlinear boundary observer.
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Fig. 4.3 Estimation errors g(x,7) and V(x, t).

For the numerical stability of the Lax-Wendroff scheme, the spatial grid size
Ax = 4 m and time step Az = 0.15 s is chosen so that CFL condition is satisfied:

max (4.47)

The numerical simulation result of the nonlinear ARZ, the nonlinear boundary
observer estimation and the estimation errors are plotted in Fig. 4.1- Fig. 4.3. Blue
lines represent the initial conditions while the red lines represent the evolution of
outlet state values in the temporal domain. The simulation is performed for a 500 m
length of freeway segment and the evolution of traffic states density and velocity is
plotted for 4 min.

In Fig. 4.1, traffic density and velocity oscillations are lightly damped. It takes
the vehicles that are initially in the domain only 50 s to leave it, however, the
oscillations sustain for more than 4 min, which means that the incoming vehicles
enter the acceleration-deceleration cycles under the influence of stop-and-go waves.
The traffic states are in the congested regime. The stop-and-go phenomenon is
demonstrated in the simulation.
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State estimation of traffic density and velocity by the nonlinear implementation
of the observer is shown in Fig. 4.2. The measurement is taken for the outgoing
velocity and outgoing flow. The incoming flow is assumed to be at the setpoint value
of the traffic flow and thus measurement is not needed at the inlet. In the next section,
validation with freeway data, this assumption of the incoming flow is removed. The
measurement of the incoming flow is used as the boundary condition of the observer
to reflect its influence on the traffic state estimation of the considered segment. We do
not assume any prior knowledge of the initial conditions and set the initial conditions
to be at the setpoint density and velocity. We can see that state estimates converge to
the true values after 75 s.

In Fig. 4.3, the evolution of estimation errors are shown. After 75 s, the state
estimation errors for density and velocity converge to a value that is below 1% of
the setpoint value. There are still relatively small estimation errors remaining in the
domain. They remain for two reasons. Our result only guarantees the convergence
of estimates in the spatial L? norm. In addition, there could be nonlinearities of
the error system not driven to zero by the linear output injections of the nonlinear
boundary observer design.

4.5 Model calibration with NGSIM data

In this section, we validate our boundary observer design with Next Generation
Simulation (NGSIM) traffic data [?], which provides vehicle trajectories with sub-
stantial details and accuracy. The NGSIM trajectory data set was collected on April
13, 2005 by a Federal Highway Administration project. The study area is a segment
of Intestate 80 located at Emeryville, California. The dataset gathers trajectories of
vehicles over a total of 45 minutes during rush hour: 4:00pm - 4:15pm, 5:00pm -
5:15pm, 5:15pm - 5:30pm.

Firstly, we calibrate the nonlinear ARZ model with a part of the NGSIM data to
obtain calibrated model parameters including the steady-state values, the equilibrium
velocity-density function V (p) and the relaxation time 7. Then the rest of the datasets
is used to test the observer design for the calibrated ARZ model. The results of
estimation of traffic states are compared with the NGSIM data. The boundary data
are extracted directly from the NGSIM data and traffic states are estimated for
the considered domain. The reconstructed traffic data and boundary observer state
estimates are compared.

Data Reconstruction

We aim to calibrate the ARZ model, which is a macroscopic model describing aggre-
gated values, whereas, the NGSIM data set consists of microscopic measurements.
The data were recorded with high-speed cameras for every 0.1 seconds. We need
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to process NGSIM trajectory data into macroscopic scale before we can use it to
calibrate the ARZ model.

The data were recorded on a 537-meter long freeway segment with six lanes
for a time period of 15-minutes. Due to insufficient data collection at boundaries
of the segment, onset and offset of recording, the viable domain we choose to use
in calibration and validation is 400-meter during a time period around 10-minutes.
When calibrating the parameters of the ARZ model and the fundamental diagram,
we consider the freeway segment as a macroscopic general one-lane problem. That
being said, all six-lane state values need and are to be taken into account.

We use Edie’s formula [?] to calculate the aggregated traffic states p(x, 1), v(x, 1)
and g(x, t) from the trajectory data of vehicles x(#) with a resolution 0.1 s. At each
time instance, positions of the multiple vehicles are collected. Consider a time-space
domain [0, 7] x [0, L]. We divide it into N x M grid cells,

[iAt, (i + 1)At] X [jAx, (j+ 1)Ax],

wherei € 1,2,..,N and j € 1,2, .., M. Within each cell, we consider p; ;, q; j, Vi j
to be constant. Edie’s formula maps a set of vehicles’ trajectories to speed, flow, and
density over the space-time grid. For each cell, suppose there are N;; vehicle traces
passing through the cell [iAt, (i + 1)At] X [jAx, (j+ 1)Ax],
N. .
DI Tt
k=1
ij= , 4.48
P >J A)CAt ( )
_ el
AxAr ’
_4qi.j
Pi.j

Xk

qi,j 4.49)

V,; j (450)
After obtaining the cell values p; ;, q; j,V;,j, they can be compared later with the
observer estimates p; j,q; j,V; ; with the same girding. The number of cells is
chosen such that in each cell there are enough trajectory data. Otherwise, there could
be cells that no trajectory has crossed. On the other hand, noises appear if a very fine
discretization of grids is chosen. The following simulation is performed in a 41 x 41
grid.

We reconstruct the aggregated traffic states from all the three datasets. In Fig. 4.4
and Fig. 4.5, we show the surface plot of the density and velocity states for the dataset
of 4:00 pm-4:15 pm and the dataset of 5:00 pm-5:15 pm. The initial conditions are
highlighted with red and the boundary conditions at outlet are highlighted with blue.
The congestion forms as time goes by and propagates in the upstream direction. The
most congested traffic appears at the inlet where the traffic density is relatively high
and velocity is low.

We are mostly interested in the congested traffic, which is the traffic condition in
which the estimation of the traffic states is more relevant than it is in free traffic. The
linearized ARZ model around the uniform reference is analyzed and employed for
the observer design. By taking the average of the traffic aggregated values, we obtain
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Fig. 4.4 Density and velocity reconstructed from data of 4:00 pm-4:15 pm.
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Fig. 4.5 Density and velocity reconstructed from data of 5:00 pm-5:15 pm.

Table 4.1 Averaged aggregate traffic data

Data Set Density Velocity  [Flow
(veh/km)  [(km/h) (veh/h)
4:00 pm-4:15 pm 267 28.27 7548
5:00 pm-5:15 pm 353 20.23 7141
5:15 pm-5:30 pm 375 19.35 7256

the reference values p*, v* and ¢* of each dataset. The averaged values of density,
velocity and flow in each time period are calculated and shown in the Table 4.1.
We observe that among the three datasets, the traffic is the most congested during
5:15 pm-5:30 pm with the largest averaged density and smallest velocity value.
Whether the traffic states are in the congested or free regime will be determined after
we introduce a calibrated fundamental diagram.
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Fig. 4.6 Density and flow from data of 4:00 pm-4:15 pm, 5:00 pm-5:15 pm and 5:15 pm-5:30 pm.

Calibration of Model Parameters

For the ARZ model,

0p + 0x(pv) =0,
Vip)—v
T b

4.51)

Ov+ (v+pV'(p)oy = (4.52)
the model parameters to be calibrated from the dataset are the parameters of the equi-
librium density-velocity relation V(p) and the relaxation time 7. The fundamental
diagram describing the equilibrium relation between density and flow,

0(p) =pV(p), (4.53)

is usually obtained by long-term measurement via loop-detectors. The loop-detector
data set provides macroscopic density and flow rate data. Its recording resolution is
30s. In the previous section, we use Greenshield’s model for V(p) as a simple choice
for the boundary observer design. The Greenshield’s fundamental diagram Q(p) is

given by
o\
0(p) = pvy (1 - (p—) ) (4.54)

m

But Greenshield’s model cannot accurately represent the data for the equilibrium
density-flow relation. The critical density p. satisfies Q’(p)|,. = O and segregates
the free and congested regimes. The critical density p. of the Greenshield’s model
(y = 1) occurs at p. = % pm- However, the critical density obtained from empirical
traffic data usually shows up at p. = % Pm- Hence, we need to consider a more realistic
functional form for Q (p). Many apporaches have been proposed for the calibration of
the fundamental diagram [?, 2, ?, ?]. Here we employ a three-parameter fundamental
diagram proposed in [?].

In [?], the following three-parameter (4, p, @) fundamental diagram is calibrated
with the NGSIM detector data set of the same freeway segement,

800
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Fig. 4.7 Density and velocity reconstructed from the data of 5:15pm-5:30pm.
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Fig. 4.8 Estimates of density and velocity from the data of 5:15pm-5:30pm.

2
0(p) =ala+(b-a)L- - 1+/12(£—p) , (4.55)
p Pm

m

where a and b are denoted by

=J1+(Ap)2, (4.56)
b =+/1+ (A(1 = p))2. 4.57)

The parameters (4, p, @) do not have physical meaning but represent the shape of
the functional form where A represents the roundness, p tunes the critical density,
a determines the maximum flow rate. The hyperbolicity O (p) < 0,V’(p) < 0 is
guaranteed. The three parameters (4, p, @) are determined using least-squares fitting
with historical loop detector data.

Due to the lack of data near the maximum density, the value of p,, is prescribed
according to the following equation
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Fig. 4.9 Density and velocity estimation errors and validation errors for the field data of 5:15 pm-

5:30 pm.

number of lanes

Pm = typical vehicle length X safety distance factor

(4.58)

The freeway segment in the NGSIM dataset consists of 6 lanes and we consider the
typical vehicle length to be 5 meters and the safety distance factor is 50% of vehicle

length. Therefore, for all lanes in our simulation we have

Pm = 800 veh/km.

(4.59)

The calibrated fundamental diagram is plotted in Fig. 4.6. The traffic density and
flow rates of the three datasets are plotted on the calibrated fundamental diagram.
We see that during the time interval 4:00pm-4:15pm the traffic in transition, where
the data points are partially in the free regime and partially in the congested regime.
The traffic data of the 5:00pm-5:15pm and 5:15pm-5:30pm intervals are scattered

in the congested regime of the fundamental diagram.

With the calibrated fundamental diagram V(p), we choose the relaxation time
7 from a range between 10s and 100s and calibrate it with the dataset of 5:00pm-
5:15pm. The optimal relaxation time is 7 = 30s where the total error between the
calibrated model and data is the lowest. In the next step, we use the calibrated
fundamental diagram V(p) and the relaxation time 7 to construct the boundary

observer.

10
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4.6 Data validation of Observer with Calibrated Parameters

We use the data of the interval 5:15 pm-5:30 pm to test the boundary observer design.
The reference set of values (p*, v*, ¢g*) is obtained from Table 4.1. Along with the
calibrated parameters of V(p) and the calibrated 7, the nonlinear implementation of
the observer is constructed with a copy of the nonlinear ARZ model with the output
injection gains that drive the estimation errors to zero. The numerical solution of
the nonlinear PDE is approximated with the Lax-Wendroff method. The boundary
data are implemented with the ghost cells. The ARZ model collects the boundary
values based both on the flow in the computational domain and the boundary data
of the ghost cells. Using the boundary measurements of the inlet and outlet of
the freeway segment, the state estimation (p(x,t), ¥(x, 1)) is generated without the
knowledge of the initial condition. In Fig. 4.7, (p(x, t), v(x, 1)) is obtained from the
reconstruction of the data set of 5:15pm-5:30pm. Fig. 4.8 shows the evolution of the
state estimates (0(x, ), ¥(x,t)). The initial condition, highlighted with color blue,
is assumed to be the uniform reference (p*, v*, ¢*) which represents the averaged
values of the dataset. The boundary conditions at outlet are highlighted with red
color which gives the output injections in the observer. We notice that, when density
values are higher than 600 veh/km at inlet around 7 min, the estimation result is
not satisfactory as large spikes appear in the estimation. This could be related to
the ARZ model’s inaccuracy in predicting traffic states near maximum density since
non-unique maximum densities exist for the ARZ model, as pointed out by [?] .

For the error analysis of the observer estimation, the estimation errors are evalu-
ated in the L2-norm, defined as

U (e - pen ) ]
S0 = |7 /O (%) dxl , (4.60)
L R 2 1/2
S, (1) = l/ (M) dx , (4.61)
L 0 V*

where p* and v* are the averaged state values of the traffic data. We choose the
averaged space L?-norm of the estimation errors. The local stability in the L2-sense
for the estimation errors is guaranteed in Theorem 2. In addition, the spatial averaged
errors can remove the influence of noise and outliers of the traffic data.

The temporal evolution of the space-averaged estimation errors and the validation
errors of density and velocity in the L2-sense is shown in Fig. 4.9. In the model
validation result, the initial condition is given by the traffic field data. As can be seen
in the figure, the errors between the model-predicted state values and the NGSIM
data, plotted with the dashed lines, are zeros at t+ = 0. The dashed lines show
the evolution of the validation errors between the model-predicted values and the
NGSIM data. The estimation result reveals that the errors of the density and velocity
estimates start at # = 0 between 30% and 40%, which are also shown with the blue
lines highlighting the discrepancy between the initial condition of the data in Fig. 4.7



4.7 Notes and References 81

and the initial condition of the estimation states in Fig. 4.8. The finite convergence
time of the estimation values to the model-predicted values is around 7y = 3 min,
where the dashed lines and the solid lines coincide after the convergence time.

We find that the proposed PDE backstepping observer accurately estimates the
traffic flow states that are predicted by the ARZ PDE model. The estimation errors
remaining after the convergence time are due to the model-predicted errors that come
from the discrepancy between the NGSIM data and the calibrated ARZ model. The
data noise, the reconstruction errors, and the numerical approximation errors could
contribute to the remaining spatial averaged errors between the model-predicted
values and the NGSIM traffic data.

4.7 Notes and References

In this chapter, which expands upon our initial work in [?], we developed a PDE back-
stepping observer for the second-order nonlinear ARZ model to estimate the traffic
states of density and velocity. We then validated the design with the NGSIM traffic
data. The analysis of the linearized ARZ model leads us to focus on the congested
regime where the stop-and-go traffic appears. Using spatial transformations and the
PDE backstepping method, we construct a boundary observer with a copy of the non-
linear plant and output injection employing measurement errors. The exponential
stability of the estimation error dynamics in the L norm and finite-time convergence
to zero are guaranteed. Numerical simulations are performed for a freeway segment.
The nonlinear implementation of the observer is tested with a calibrated ARZ model
obtained from the NGSIM data. This test demonstrates that the PDE backstepping
observer estimates the experimental (i.e., microscopically-generated) traffic states
rapidly and accurately, using a macroscopic ARZ model.



82

4 Observer Validation on Freeway Data



Chapter 5
Adaptive Control of ARZ Traffic Model

5.1 Parametric Unicertainties in the ARZ Model

The ARZ model can capture the stop-and-go motions quite faithfully and, in that fash-
ion, serve effectively for control design for suppressing those oscillations. However,
the ARZ model is successful in capturing accurately the stop-and-go oscillations only
when it is properly calibrated—when its parameters and nonlinearities are chosen to
match a significant volume of past traffic data.

But how can a single selection of parameters and nonlinearities serve as proper
calibration of the ARZ model in all the possible traffic conditions? How can
behaviorally-motivated parameters be valid both in daylight conditions and at night
or under fog? Visibility is not the only factor that influences the driver behavior—
weather conditions, such as rain, snow, or icy road conditions influence the drivers’
preferences for speed and inter-vehicle distance. Furthermore, if drivers of different
types and ages (and not just different numbers of drivers) are on the freeway during
the commute-to-work hours, versus during the work hours, versus during the evening
hours, how can a single set of parameters be valid in all those situations? How can
parameters selected to match the traffic dynamics of a normally operated freeway be
also valid for a freeway where a part of a lane might be occupied by road work or
due to an accident? Once all these possibilities are considered, the notion of having
a well-calibrated ARZ model seems like an illusion.

Model parameters being inherently uncertain is not a peculiarity of traffic flow
models. Uncertainty is present in virtually all control-oriented models. The need
to deal with parametric uncertainties online has given rise to the field of adaptive
control, which began in earnest as a research field in the late 1950s. Adaptive
control incorporates online estimation of unknown parameters. The parameters being
adjusted in a real-time operation may be the parameters of the model based on which
the control is being designed (indirect adaptive control) or of the postulated controller
structure (direct adaptive control).

In the context of control design of traffic flows, namely, the context in which
the ARZ model is employed for the control design, real-time estimation of various
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parameters of either the ARZ model or of a postulated controller structure can be
pursued. This parameter estimation can adjust for changes in the driver behavior
or road conditions. Such parameter estimation also obviates the need for a priori
calibration of the ARZ model, although well-selected baseline values of parameters
will improve the convergence time in real-time estimation.

5.2 Adaptive Control for PDEs Enabled by Backstepping

Since the ARZ model is a PDE system, adaptive control of traffic flows calls for the
development of adaptive controllers for PDEs. For ODE systems, adaptive control
has a history of over sixty years, dating back, as we indicated, to the late 1950s,
and having gone through the peak of its development for linear plants in the 1970s—
1980s, in the form of model-reference and pole-placement adaptive controllers, and
for nonlinear plants in the 1990s, thanks to the adaptive backstepping methods.

The development of adaptive controllers for PDEs is much more recent. Its
first notable successes took place in the late 2000s, with the advances in PDE
backstepping and the emergence of feedback laws that have explicit dependence on
the model parameters.

Those first breakthroughs in adaptive control for PDEs did not occur for classes of
hyperbolic PDE systems, such as the ARZ model, but for parabolic PDEs. The 2010
book [?] gives a comprehensive account of methods of adaptive control for parabolic
PDEs. Those methods can be categorized into Lyapunov-based and estimation-based,
with the estimation-based category further divided into methods employing passive
identifiers and methods employing swapping-based identifiers.

It took a decade for the advances is PDE backstepping to be transferred from
parabolic PDEs to coupled hyperbolic PDEs. It, likewise, took nearly a decade for
adaptive control to be advanced from the class of parabolic PDEs [?] to the class
of coupled hyperbolic PDEs, for which a comprehensive development of adaptive
control methodologies is introduced in the 2019 book [?].

While the developments presented in this chapter, for adaptive control of the ARZ
model, did occur independently from the developments leading to the comprehensive
designs for coupled hyperbolic PDEs in [?], the desings in [?] are applicable, in
principle, to the ARZ system in its basic form and in many extended configurations
for which even non-adaptive designs are yet to be developed.

5.3 Adaptive Output Feedback: Simultaneous Identification,
Observer, adn Control Design

Let us now turn our attention to the contents of this chapter and to the design of
adaptive controllers for the ARZ model. Adaptive control represents a simultaneous
application of parameter estimation (system identification) and control, using the
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parameter estimates generated online. So, for the ARZ model we need to design both
a system identification (parameter estimation) algorithm and a control algorithm.

We have already designed control algorithms for the ARZ model in Chapter 3.
However, for an adaptive control use, we will need to design a quite different con-
troller structure than in Chapter 3, which should be for a representation of the system
from which parameter estimates and adaptive state estimates can be generated.

In addition to the need to estimate the unknown parameters in the ARZ model,
the adaptive controller needs estimates of the unmeasured density and velocity states
along the freeway segment. Measurement at a point, for example, collocated with
the ramp, is feasible. Measurement along the entire freeway carries a prohibitive
infrastructural cost. So, we will need both a parameter estimator and a state estimator,
namely, an observer.

When plant parameters are unknown, it is not only the controller than needs to
be made adaptive. The observer also needs to be made parameter-adaptive. In other
words, we will need to design an adaptive observer for the ARZ model.

To summarize, the adaptive design process upon which we are about to embark, in
the rest of this chapter, will need to produce three algorithms: a parameter estimator
(identifier), an adaptive observer, and an adaptive controller.

The adaptive control module is designed independently from the identifier and
observer modules. The identifier and the observer are designed in a somewhat joint
fashion—as an adaptive observer. To be precise, the parameter estimator is designed
independently, whereas the state estimator—the adaptive observer—is designed in a
manner that depends on the design of the parameter estimator.

The approach to the adaptive observer design that we employ, from among the
approaches introduced (for parabolic PDEs) in [?], is the swapping-based identifier
design. This is the most suitable among the design options for our intended adaptive
output-feedback application.

How is the said swapping-based identifier, or adaptive observer, to be designed?
This is the central question in this chapter. The ARZ model, in its given form, is not
suitable for parameter estimation with the measurement of only boundary velocity.
The reason for the ARZ model in its native representation being unsuitable for
parameter estimation is that, in the ARZ model, the unknown parameters appear as
multiplied with unmeasured density and velocity along the freeway. When a quantity
is a product of two unknowns, it is impossible to estimate the independent unknowns,
even if one measures the product.

For this reason, an approach has to be taken that converts the model into a
form in which the unknown parameters, which need to be estimated, are multiplied
by a measured quantity, such as the boundary velocity. Such a model conversion is
complex. The model format that is sought, for the purpose of parameter estimation, is
a PDE counterpart of the observer canonical form for ODEs. The observer canonical
form has the distinction of having the unknown parameters multiplied only by the
measured output, and not by all the unmeasured state variables. It is that type of a
canonical form into which we seek to convert the ARZ model.

We convert the ARZ model into a PDE equivalent of the observer canonical
form in Section 5.5. A conversion of a model into the observer canonical form is
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not trivial even for linear ODEs—it requires a particular similarity transformation,
which for ODE:s is a matrix. For the ARZ model, the model conversion is performed
by a backstepping transformation. While we have previously used backstepping
transformations in this book for the purpose of design—of controllers or observers—
the backstepping transformation has a very different purpose here: the purpose is
to produce a parameterization of the ARZ dynamics that lends itself to system
identification. It appears entirely coincidental that our primary design tool also
serves a role of model transformation.

Converting the ARZ model, whose parameters are impossible to estimate using
only boundary measurements, into the observer canonical form where the param-
eters can be estimated using just the boundary measurements, comes with a price.
The parameter representation changes and the unknown parameters become “over-
parametrized” in the observer canonical form. This overparametrization is quite
drastic—even a few unknown scalar parameters lead to a functional parametriza-
tion (an unknown function, which needs to be estimated). This is the price paid for
solvability of the problem of adaptive control of the ARZ model without having to
instrument the entire freeway with density and velocity sensors. It is a rather modest
numerical price to avoid a high infrastructural price.

Once the ARZ system is converted into the equivalent of the observer canonical
form, an adaptive observer—a combination of a parameter estimator and a state
estimator—can be designed. The parameter estimator is designed in Section 5.6.
The state estimator is designed in Section 5.7.

The state estimator design in Section 5.7 takes a special approach. The design
employs particular PDE filters. These filters allow to build an adaptive estimate of
the unmeasured state by combining the estimates from the identifier in Section 5.6
with the filters in Section 5.7. Since this approach is inspired by Kreisselmeier’s
use of filters in adaptive observers for linear ODEs, and by the subsequent use of
such filters in output-feedback adaptive backstepping for nonlinear ODEs [?], we
refer to these PDE filters as Kreisselmeier filters, or K-filters. The approach based
on the K-filters generates adaptive estimates of the unmeasured states by using filter
dynamics of a higher order than the ARZ PDE. This price in dynamic order, which
is paid to achieve simultaneous estimation of the unknown parameters and state, is
common to all adaptive observers, to varying degrees.

The adaptive controller is designed using a certainty-equivalence version of PDE
backstepping. A backstepping controller, for the system in the PDE equivalent of the
observer canonical form, is designed and then supplied with the adaptive estimates
of the unknown parameters and of the unmeasured states. This adaptive controller
design is performed in Section 5.8.



5.5 The ARZ PDE Model with Parameter Uncertainty 87

5.4 Validation of Adaptive Design: Stability Proof and
Simulations

The Lyapunov stability and state regulation analysis, performed in Section 5.9, is the
most “nonlinear’” section of this book. Since the deployment of parameter estimates,
substituted nonlinearly into the controller gains and the adaptive estimates of the
states, results in a nonlinear closed-loop system even for the linearized version of
the ARZ model, the resulting stability and convergence analyses involve nonlinear
estimates of decays of various norms and signals. In spite of this nonlinearity, the
stability properties obtained for linearized ARZ system are global.

The simulation results in Section 5.10 show three time intervals in the stabiliza-
tion transient. Parameter estimation transients dominate the early period—neither
good estimation of the states nor good control can take place with bad parameter
estimates. State estimation dominates the second period—the state estimated need to
be reasonably accurate to be useful in the controller. And, finally, the state is driven
to the equilibrium, by the control law, in the third period.

Itis also illustrated with the simulations in Section 5.10 that, as typical in adaptive
control, the parameter estimates do not converge to the true unknown values but to
“good enough” values for driving the state to the equilibrium.

The unusually long overture to this chapter is for two reasons. First, this is truly
a central chapter of the book—it solves perhaps the hardest problem in stop-and-
go suppression: a simultaneous stabilization and model identification. Second, the
content of this chapter is methodologically the most involved and demands a road
map for the reader.

5.5 The ARZ PDE Model with Parameter Uncertainty

The previous basic non-adaptive feedback control designs in Chapter 3 are based on
the knowledge of the parameters of the ARZ model. Recall the linearized ARZ PDE
model after spatial transformation, which is given by a first-order 2 x 2 hyperbolic
system

0w (x,1) +v*0,w(x,t) =0, 5.1
0iv,(x,1) = (yp* =v¥) 0¥ (x, 1) =c(x)W(x,1), (5.2)
w(0,1) =— kov(0, 1), (5.3)

v(L,t) =kw(L,t) +U(2), 5.4)

where
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1 X
c(x) =— ;exp (—m), (5.5)
* _ ok
ko =u’ (5.6)
v
—-L
K =exp (—*) . 6.7
TV

In practice, the relaxation time 7, the property of a “typical" or “average" driver
is hard to measure and is affected by many factors. In addition, coefficient y in
the pressure-density relation reflects the drivers’ aggressiveness and relates to the
road situation. Due to the change of the road at the inlet or the outlet with an on-
ramp, values of y are different for the interior of the domain and the boundaries.
We consider y to be unknown at the boundaries but a known coefficient within the
domain U. According to (5.6), kg is considered as an unknown constant parameter
at the boundary. The adaptive control law that is proposed in this chapter can also
be used as an alternative to the non-adaptive output-feedback control design when
parameters are known but expected to possibly change.

Consider the ARZ system with a control input U(¢) at the freeway outlet in (5.4)
and with the measurement Y (¢) at the inlet,

Y (1) =v(0,1). (5.8)

The relation of this measured output with the boundary value of the state v is given
by

v(0,1) =p2Y (1), (5.9)
where
*
pr =, (5.10)
Yp

is unknown since 7y is unknown.

In summary, the coefficients kg, p, and « = exp ( =0

=% ) are unknown constant
boundary parameters and ¢(x) = —1 exp (—=%5) is an unknown spatially-varying
parameter, since 7 is unknown. The steady-states p*, ¢g*, and v* are known. The
control objective is to design an adaptive output feedback law applied with U(#) and
using only the measurement Y (¢).

Scaling the states

First we scale the state variable w(x, ) with the unknown constant x and v (x, t) with
unknown constant p, for the convenience of parameter estimation,
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K _
w(x, 1) = —w(x,1),
P2
- 1 _
V(x,t) = —v(x,1).
P2
The system becomes

drw(x, t) +v*ow(x,t) =0,
0,7 (x, 1) = (yp* = v¥)ix(x, 1) =¢(x)w(x, 1),
w(0,1) = — kkov(0,1),

V(L,1) =w(L,t) + iU(t),
P2

where the unknown parameters are defined as

C_(x) :@,
K
ro=— Kk(),
1
ry=—,
P2
with measurement
v(0,t) =Y(1).
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.11

(5.12)

(5.13)
(5.14)
(5.15)

(5.16)

(5.17)
(5.18)

(5.19)

(5.20)

The scaling of w and v reduces the number of couplings between the unknown

coefficients and the unmeasured state variables.

Observer canonical form

In order to decouple the (w, v)-system in the domain, we use the following back-

stepping transformation:

w(x.1) = (x.1) - /0 M (x - Ho(&. 1)dE,

Blx.t) =0(x.1) - /O R(¥x+ (yp* — V))&, 1)de.

We transform the (w, v)-system into an observer canonical form,

(5.21)

(5.22)
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a;(x,1) == via,(x, 1) + 01 (x)Y (), (5.23)
Bi(x,1) =(yp™* = v*)Bx(x,1) + 02(X)Y (1), (5.24)
a(0,1) =roB(0,1), (5.25)
B(L,t) =a(L,t) +riU(1), (5.26)

where 6 (x) = —v*roM(x) and 6, (x) = —v*roK (v*x). The measurement is

a(0,1) =roY (1), (5.27)
B(0,1) =Y (). (5.28)

To obtain the target system, we take the time and spatial derivatives on both sides of
(5.21), (5.22). The kernels are

B 1 * Lk
M(x) = - *C'(L - ux), (5.29)
YP 2%
_ 1 X
R(x)=— —c|—]. (5.30)
) Yp* ()’P*)

and new spatial parameters are

* * ok
01(x) =z (L - Mx) , (5.31)
y Yp
* *
05(x) =’°V*c—( d *x). (5.32)
yp* \yp

For Vx € [0, L], the following holds,

|01(x)| <O, (5.33)
|62(x)| < O, (5.34)
for
* _ %
e ”;PT:. (5.35)

5.6 Parametric Model and Parameter Estimation

We find the relation between the control input and the measured output of the
observer canonical form by solving the system (5.23)—(5.26) directly,

(1) = {a(x—v*z,0)+/0l91(x—v*(z—s))Y(s)ds, ; = (5.36)

<
@ (0,1 = X))+ [T O1()Y (1 - 252) ds, >
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From (5.27), substituting a(0, 1) = roY (¢) into (5.36), we find, for > %

)

a(x, 1) =ro¥ (r - vx—*) + v]—* /x 0, (s)Y (t - xv* ) ds. (5.37)
0

Thus we obtain a(L, t) in terms of the history of Y (z) from ¢ — VL—* tot,

L —
a(L,t) =roY (t - 5*) + i*/ 0, (s)Y (t - L—*s) ds. (5.38)
v v* Jo v

Given B(L,t) = a(L,t) + riU(t), we solve for B(x, 1),

Bx.1) {,B(x + (yp* =v*)1,0) + /Ot O2(x + (yp* =v*)(t — 5))Y (s)ds, t< ”)L*;j‘v*,
xX,t) = L
L— 1 — L—
B (L,t - W,*_xv*) + e fx 02 (s)Y (t - W,S*—_xv*) ds, 12
(5.39)

We now find, for ¢ > W,L*;_xv*,

L—x 1 L s—X
,H) =B|L,t - 0 Y|t——|ds,
Bx.1) ﬂ( yp*_v*)+yp*_v*/x 2(5) ( yp*_v*) 5

and thus, for r > yp%v*, we have

B(0,1) =a (L,t - %) +r1U(t - L)
Ypr —v

yp* —v*

P /LH()Yt S (5.40)
_— S -_—— . .
=Sy T

By substituting (5.28) and (5.37) into (5.40), we obtain the input/output parametric
model,

Y (1) Ult L +roY (¢ L L
=r B 7 N —
1 ,yp*_v* 0 V* ,yp*_v*
e yp*
+/ 01 V*(S—[)'FﬁL Y(s)ds
-l L yp* —v

VX Ty px vk

—/ . 0 ((yp* —v*) (1 —5)) Y(s)ds + (1), (5.41)

yp*-v*

where £(¢) is defined as the error of the parametric model. The value of &(t) is
arbitrary fort € [0, VL—*+ W+w] and depends on the initial values of a(x, 0), B(x, 0).
The value of £(r) is zero for 1 € [L + ﬁ,oo). We use this input/output
parametric model to estimate the unknown spatially-varying parameters 61 (x), 62 (x)

and unknown constant boundary parameter ry and 7.
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The following update laws are based on the gradient algorithm with normalization
and projection,

3,0, (x) = (11(x,1),0,(x,1)) , (5.42)
0:0>(x) = (12(x, 1), 02(x, 1)) , (5.43)
Oifg =Ly (r L #)E(o, ), (5.44)
o (1) Ve o yp*—v*
o =2 U (z - #)ﬁ(o, 0, (5.45)
o (1) yp* —v*

where vy (x), y2(x), 3 and y4 are positive adaptation gains and

Ny (r- L= - L)
o (H)v*

RY (1= 7757)
o (D) (yp* =v¥)

T1(x, 1) = B(0,1), (5.46)

T(x,t) = 5(0,1), (5.47)

The projection operator is given by

Ay _ T 16il<® or fiT <0,
(1:,60:) = {0, 0:/=@ and d;7; > 0. (5.48)
The normalization o (¢) is given by

L L L

oo
L yp* —v
t
+/ Y?(s)ds. (5.49)
t_L L

vE  yp*x—vx

The adaptive estimation error 3(0, 7) of parameter estimates 6 (x), 6, (x), 7o and 7|
are obtained from the input/output parametric model as follows,

E(O’ t) :ﬁ(o’ t) - B\(O’ t)

Y(t) -~ U (¢ L FoY (¢t L L
= —r -_— — 7 S —
1 ,yp*_v* 0 V* ,yp*_v*

I_yp*L—v* A 'yp*
+/ 0, (V*(s—t)+ﬁL) Y(s)ds
—E - YpT -V
v yp*-v
l A
- / O ((yp* =v*) (1 = 5)) Y(s)ds + (1). (5.50)
1-—k—
ypo-v

Inserting Y (¢) in (5.41) into (5.50), we obtain
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~ L L L
B(O,I) =f1U([— ﬁ) +f()Y ([— — T)

YypT —v v YypT -V
t_§5%i;; ~ y})*
- / 0, (v*(s -1+ ﬁL) Y(s)ds
L yp* —v

+ /_ . 0> ((yp* =v*)(t — 5)) Y(s)ds,

*

yp*-v
where the parameter estimation errors are

G;(x,1) =0; (x) — 0; (x,1), i=1,2
Fi(t) =r; = 7;(1), j=0,1.

93

(5.51)

(5.52)
(5.53)

Lemma 5.1 The update laws (5.42)—(5.45) guarantee that for all x € [0, L],t < 0,

101 (x)],162(x)] < ©,
||51||9 ||52||9?03?1 € -£009
N N . B(o,-
[10:0111, 110:621|, 0: 70, Os 71, % € LHrNLe.

a(v)

where the norms L, L are with respect to time.

(5.54)
(5.55)

(5.56)

Proof The property (5.54) follows from the projection (5.48). The projection has

the following effect on (5.42) and (5.43):

8,01 (x)* < 17 (x),
8,01 (x)* < 13 (x).
Taking the following Lyapunov functional,
1, - L g, (x)? L6, (x)? 1 1
vV =-181? +/ ﬂdﬂf 2(x) dx + —F7o + —F1,
2 0 271(x) 0 272(x) 2y3 7 24

and differentiating it with respect to time, we have

(5.57)
(5.58)

(5.59)
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o [ Far o [FO086i(x) [P 0x)86(x) 11
V= A BB dx -/0 ) dx /0 72 dx y3r06,r0 7/4r1(9,r1
1, (B0) - B(0))B(0)
=70+ o)
1 » B*(0) - (0)
<P O
1 [P 18%(0)
5—5(1—m)ﬁ 0) -5 pp
- 132(0)‘
- 20

(5.60)
Thus V is bounded and non-increasing, and, therefore, has a limit as # — oo. The
properties (5.54) follow immediately from (5.59) and (5.60). Integrating (5.60) from
zero to infinity gives

B(0,1)
Vo (t)

The rest of the properties follow from (5.57)—(5.58) and the update laws (5.42)—
(5.45). O

€L (5.61)

5.7 Filter-based Observer Design

Our construction of an adaptive observer employs a PDE version of the Kreisselmeier
filters, popularized in output-feedback adaptive backstepping [?]. First, we introduce
an output filter with the output Y entering at the inlet, x = 0,

6t¢l(x’ t) :_V*ax¢1 (-x7 t)’ (562)
$1(0,1) =Y (1), (5.63)
¢1(-x7 0) :¢10(-x)9 (564)

and an output filter with the output Y entering at the outlet, x = L,

O p2(x,1) =(yp* —v*)oxd2(x,1), (5.65)
¢ (L, 1) =Y (1), (5.66)
$2(x,0) =¢20(x), (5.67)

where x € [0, L], and ¢, ¢y are arbitrary initial conditions. Then we introduce an
input filter, with the input U entering at the outlet, x = L,
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O (x,1) =(yp* = v*)du(x,1), (5.68)
W(L,t) =B(L,1), (5.69)
¥ (x,0) =g (x), (5.70)

where A(L,1) = #{U(t) + &@(L,t) and &(L, 1) will be defined shortly. This allows us
next to introduce the adaptive state estimates based on the input and output filters

~

¢1,¢2, ¥,
1 *
a0 =fo (50 + oz [ 0@ (- e, 571

L
pen =i+ —— [ @ rx-ende. 657

The signal &(L,t) is obtained from (5.38) with updated parameters 6, (x, ) and
Fi(2),

L 1 [t L-
a(L,t) =Y [t - =] + —/ 01(s)Y |1 = Z=2) as. (5.73)
v* v* Jo v*
The explicit solutions to the PDE filters i, ¢1, ¢, for ¢ > max (V%, ypf_v*) are
given by
A R L—x R L—x
lﬁ(.x,[) :rlU(t_W——V*)-'-Q(L,t_W——V*), (574)
¢1(x,1) =Y (t - i*) , (5.75)
y
L —
do(x,1) =Y |1 - =2 |, (5.76)
yp* —v*

The adaptive estimates @(x, r) and B(x, r) are governed by the PDEs

. 1
Ol = —v*0x@ + 01 (X)Y (1) + Oy Fody (x, 1) + po A 0:01(§)¢1(x — €, 1)dé,
(5.77)

R 5 1 Lo
0 =(rp* =¥+ b 0+ —— [ aa(O0n(Lex—£0de,

(5.78)

with boundary conditions
@(0,1) =fppp1(0,1) = FoY (1), (5.79)
B(L,t) =f(L,t) = ;U®t) + &(L,1). (5.80)

Let us now consider the adaptive observer errors
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a(x,t) =a(x,t) —ax,t), (5.81)
Bx,1) = B(x,t) — B(x,1). (5.82)

They are governed by the PDEs

& =—v*a, +01(x)Y (1) - 0,01 (x,1)

1 [~ .
~ % /0 0:01(E)d1(x — £,1)dE, (5.83)
Br =(yp* = v*)Bx + G2 (x)Y (1)
L
S — / B02(E)ba(L +x - £.1)dE, (5.84)
yp* —v* Jy
with boundary conditions
@(0,1) =foY (1), (5.85)
B(L,t) =F1U(t) + @(L,1). (5.86)

5.8 Adaptive output-feedback control Design

To obtain the adaptive control law for the input U(¢) appearing in (5.80), we apply
the backstepping transformation to the adaptive state estimate 3 in (5.78). The
transformed state is given by

00 =B - —— [ et - ope1de
Yp v Jo
2 (1 -F)BI), (5.87)

where K, is obtained by solving online the following Volterra equation,
. A 1 * A
Ko ==+ —— [ Ka-oh@d 689
YpT —VvV© Jo

The kernels K> (x) and 6, (x) are functions of time, i.e., K> (x, 7) and 6, (x, t), though
we suppress the dependence throughout for compactness. The inverse transformation
is then given by

~ 1 x
) =n(x) - ——— / b(x — E)7(E)dé
Yypr —v 0
Yp: —v

With a lengthy but straightforward calculation, we obtain that
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e =(yp* = v )i = Ka(x)B(0) + 17 % F[8,6:] (x)
1 L
P - / B0 OB(L+x—EndE|.  (5.90)
ypT -V x
n(L) =0, (5.91)

and the adaptive control law is derived from (5.91), and will be given shortly in
(5.117).

We summarize the transformation and inverse transformation between the original
system (w, v, gﬁ, @1, $2) and the final target system (&,B, f, 1, ¢1, ¢2) as:

¢ =01, (5.92)
2 =2, (5.93)
& =T [¢1]. (5.94)
n=(I - F)J+Tp[¢1]. (5.95)
B=(I -@)[v/k] - (i + Tp[2]). (5.96)
@ =(I - G)[-«kw] - Talenl. (5.97)

and we can obtain the original states from the inverse transformation as:

1 =d1, (5.98)
$2 =¢2, (5.99)
b =n- vi*éz*n—'rﬁ[cﬁz], (5.100)
W= - %(I—g)—l[m@], (5.101)
P =ko(I = G)' B+ +Tplall. (5.102)

Due to the invertibility of the above transformation, we can obtain the stability of the
original system (W, 7,4/, ¢1, #2) by studying the system in the equivalent variables
(@, B,a,n, o1, d2). The target system (@, 3, &, 17, 91, ¢2) is governed by the following
PDEs,
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&[ = — V*d’x + é] (X)Y(t) - 6tf0¢1 ()C, t)

1 [x .
- /0 8,01 (€)61 (x — £.1)de. (5.103)
@(0,1) =FpY (1), (5.104)
Br =(yp* = v*)Bx + 02(x)Y (1)
1 L
S — / B402(&)ba(L +x — £.1)dE. (5.105)
yp* = v* Jy
E(L’ t) :&(L’ t) + FIU(t)’ (5106)
&y =— vy + 91 ()Y (1) + 3;F9p1(x, 1)
1 [ .
+ v—*/o 3,01 (6)¢1 (x — &, 1)dE, (5.107)
@(0,1) =foY (1), (5.108)
ne =(yp* = v )Ny — K2 (x)B(0) + 1 = F[0,6:](x)
L
+ —*1 = [/ 8:0:(&)pa(L +x — £, 1)dé |, (5.109)
yp* —v X
n(L,t) =0, (5.110)
O (x,1) =(yp™ —v¥)dxda(x,1), (5.111)
$2(L,1) =Y (1), (5.112)
O d1(x, 1) == v*0xp1(x,1), (5.113)
$1(0,1) =Y (1). (5.114)

The output Y (¢) = 1(0)+5(0). According to the backstepping transformation (5.87),
we can obtain from (5.110) that

A L A A
B(L.1) = / Ra(L - O)B(E. 1)dE. (5.115)
0
Substituting A(L, 1) = #,U(t) + &(L,t), we have
1 [t . 1.
Ut) =— / Ky(L - &)B(&,1)dé — —a(L,1). (5.116)
r 0 Il

Using the adaptive estimates B(x,7) in (5.72) and &(L,1) in (5.73), the adaptive
controller is then obtained in an explicit integral form, consisting of delayed values
of the input and the output,
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R (%0~ £) U@ de - 27 ([ _ £) o [ mu-or@ue

V*
yp*-v*
Po [1VF 1t ¢
o1 mat — )Y (£)dé + / m3(t - &) / ma ()Y () dudé
Ty - et
v ¥ yp*-v yp*-v v
1 t
i L m3(t - )Y (&) de. (5.117)
rl - *L *
yp©-v

where m; are defined as

my (1) =01 (L —v*(1)), (5.118)
m» (1) =K ((yp* —v*) (z - Vé)) , (5.119)
m3(1) =K, ((yp* =v*)1), (5.120)
my(€) =0, (L —v*¢), (5.121)
L A A~
ms()= [ Ra(ual(rp" =)o+ L= (5.122)
(yp*=v*)t

The parameter estimates 0, (x,1), 0, (x,1), 7o and 7] are generated from the update
laws. We can obtain K, (x, ) by solving online the Volterra equation in (5.88). The
Lyapunov stability proof is shown in the next section, which is derived from modifica-
tions of the proof in [?]. The key idea in proving stability of (&, B, &, 5, ¢1, ¢2)-system
is to take advantage of the cascade structure of the system. Due to the invertibility
between (g, ¥)-system and (w, V)-system, we arrive at our main theorem for adaptive
control design.

Theorem 5.1 Consider the plant (5.1)—(5.3) with the adaptive control law (5.117)

and update laws (5.42)—(5.45). For any initial conditions 8, (-, 0), 65 (-, 0), ro(0), r1 (0) €

C'[0, L], wg, 7o, @10, 920, Lﬁo that verify boundary conditions, the solution (W, v, ¢, ¢2, (ﬁ, 1,05, fo, 1)
is bounded for t > 0 and for Vx € [0, L] it verifies that, as t — oo,

w0l =0, [[v(x, 0] =0, (5.123)
GG, )l = 0, |[#(x,0)]| — 0. (5.124)

The proof of Theorem 5.1 is completed by the following sections on Lyapunov
stability analysis.
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5.9 Lyapunov Stability Analysis
L, boundedness

The boundedness of  is given by Lemma 2.7. Using (5.88) and Gronwall’s inequal-
ity, we establish a bound on 122,

A _ 6
|K>(x)] < @e7*~ 2 K. (5.125)

To prove the L, boundedness of system in (5.103)—(5.114), we construct the following
Lyapunov functions:

1 L
Vi=5 / e &% (x)dx, (5.126)
0
1 L x 32
%) =3 A e* B (x)dx, (5.127)
e,
V3 =3 e &” (x)dx, (5.128)
0
1 L X2
Vi =3 | e*n(x)dx, (5.129)
1 L X 22
Vs =3 A e ¢y (x)dx, (5.130)
1 r X 42
Ve =3 | e ¢5(x)dx. (5.131)

Then we get

. p* 2 1 (v ¢ 2 ) I~ o). 0
V<o Vs (L)——(E—L—V—*—Cz 11 + (7 + 5= 1117 7(0)

2¢L 2
1 A 112 ~2 2 *~2 1 5112\ A 2
+{ sy il +atr0)||¢1|| + (VR + 5181112 BO)
* 1 * N
< 5 )—5(:—L—j—i—cz)||6z||2+(v*f§+||91||2)ﬁ(0>2+11||¢1||2+12,

(5.132)

and



5.9 Lyapunov Stability Analysis 101

2(yp* —v*)

L
A e ~ 5
16,6211 6211 + 2en 11621177(0)?

4

. B 1 eles ~
Vy el (yp* - v (L) - 3 (yp* Ve eLC4) 1BII*

e
+ —_—
dez(yp* —v¥)

eL ~
e (yp* —VIRUD + (2 16211” - W—)ﬁ(O)Z
C4
1 ele ~
L ~2 3 L 2
<t (yp* — @ (L) - 5 (yp*—v*— o € c4) 11l

L
e ~ R
e 16211%5(0)% + I3 @21 + 1a + I,
4

and
. V* A2 1 V* Cs 2 2 2
V3S—267f¥ (L)_E(e_L_v__% llall”+ 2 e ||5r91|| + 75| 11l
+(V Vo+—||91|| ),5(0)2 (V r0+—||91||2) 7(0)*
V<o, 1(v* c5 2
< -5 (L)_E(e_L_v_*_% ll&||
+(V r0+—||01||2)n(0)2+16||¢1||2+z7, (5.133)
and
; 1 elcq e (1+K3) A
Vy<— = *x _x_ < “7 L. _ 2—2592 2
2= 3 (0t - g - b= o) Il + g Pl
2(1+K2) . ,yp*_v* LK2 LK2
+ ———22110,02| 1P|l I* - + (0)+ B(0)?
C9 2 26‘8

L g2
<=3 [ - g - et i - (””2‘ i LU
+ sl + IolInl|* + Lo, (5.134)
and
Vs <= 2ol 4 et rp* — v i0) + e (rp* ~ vIFO)
<- ”’*2—_V*||¢2||2 +e(yp* = vi(0)? + 1, (5.135)

and
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. % R -
Vo < — 2e7||¢1||2 +v*7(0)* +v*B(0)
v .
< = Sl + v (0) + (5.136)

where the nonnegative functions of time /;(¢), denoted as

1 A 1 -~ ~
_ a2 2 _ ) 2 2
ly =0,7y + e 06117, L= (V*ro + 2—C2||91|| )ﬁ(O) ; (5.137)
el10,6,)1 ~ yp* —v*\ 4
= W20, = (el16y)2 - 22— ) §(0)?, 5.138
ey S (e 16,1 - 22— )ﬁ() (5.138)
1 N
Is =e"(yp* = VORU@?, s = 110,011 + 75, (5.139)
2v*cs
1 < eL(1+K3)10: 021
I; = VP2 + —16,11*| B(0)%, Ig= 2 , 5.140
, (v 7+ 3 10| B2, = — (5.140)
2(1+K3%) . elK? _
lo =——2210,6]1*. 1o = ——25%(0), (5.141)
C9 26‘8
I =e"(yp* =v)B(0)%,  Lia =v*B(0)7, (5.142)
are integrable thanks to Lemma 5.1, and ¢; are positive constants chosen as
v*2 V* (yp*)Z
C1 :267’ C2:467’ c3 = oL (5.143)
()/p* _ V*) V*Z v*
C4 :T’ 5 = 0L’ C6 = 4oL’ (5.144)
(yp*)? (yp* =v*) (yp* =v*)
c7 = eL ) cg = 4€L ) Cog = 8 . (5145)
Taking the overall Lyapunov function
V=g1V1+V2+V3+g2V4+V5+V6, (5146)
with positive constants g; and g, defined as
* ok
g1 =22tV (5.147)
A%
2(yp* = v*) 275 (yp* =v*) (w2 iz
g = — 2 (v 11611
(yp* = v*)? +4e*LK3 v
2 2L 5 2 L
+e—||92||2+ vy 2 0% + elyp* —elv* +v*|, (5.148)
,yp* _ v* V*
we get

V< —goV+IV+I, (5.149)
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where g is a positive constant defined as

v* * ok
80 =min(—,7p—),

7 < (5.150)

and / is the linear combination of /; and therefore is also integrable, nonnegative
function of time. Since the following inequalities are satisfied

- 1
267||a/||2SV1 < §||af||2, (5.151)
1 <00 el 2
SUBIP < V2 < SIAI (5.152)
. 1.
Srllell’ < vs < Slialf, (5.153)
1 2 et 2
Ellnll SV4s7|I77II , (5.154)
1 1
27||¢1||2 <Vs < §||¢1||2, (5.155)
1 2 el 2
=l2ll” < Vs < —|¢2l| (5.156)
2 2

the Lyapunov function V is bounded and integrable (Lemma D.3. in [?]), and the
following holds:

&l 11811 1@l nll g1l g2l € L2 N L. (5.157)
Then with the inverse transformation (5.100)—(5.102) from the final target system
(@8, a,
7, @1, ¢2) to the (W, 7,1, g1, ¢2)-system, we have
W17l € LaN Leo. (5.158)

Finally, from the inverse transformation (4.15)—(4.16) from the (w, v)-system to the
(g, v)-system, we get

411, 1I7]] € LN Leo. (5.159)

Convergence

The above Lyapunov proof shows that V is bounded from above and V is positive
and integrable. According to Lemma D.2. in [?], we have

[lw(x,0)|]| =0, [[P(x,2)|| = O. (5.160)

The inverse transformation (3.27)—(3.28) from (w, ¥)-system to (g, 7)-system gives
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0 800 2
Position on freeway x (m) 1090 "0 2 time (min) Position on freeway x (m) 190 0 ? time (min)

Fig. 5.1 Open-loop system response without adaptive UORM output feedback.

Position on freeway x (m) 1000 o 2

theta

) . Position x (m) %0000 .
time (min) time (min)

Fig. 5.3 Estimates of spatially-varying parameters.

lG(x, )| = 0, [[F(x,t)]] = 0. (5.161)

(]

5.10 Numerical Simulation

The length of the freeway section is chosen to be L = 1 km. The free speed is
vm = 40 m/s and the maximum density is py, = 150 vehicles /km. The steady-states
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Fig. 5.4 Estimates of constant parameters.

(p*, v*) are chosen as (120 vehicles /km, 10 m/s) which is in the congested regime.
We take y = 1 and relaxation time 7 = 60 s. We assume a constant incoming flow
and constant outgoing density for boundary conditions and use sinusoidal initial
conditions.

In the adaptive simulation, we simulate the traffic on a freeway road of L = 1 km.
We choose 7 = 100 s and other model parameters are chosen to be the same with the
non-adaptive simulation. The open-loop system is more oscillatory than that of the
non-adaptive case due to the longer relaxation time. It takes a longer time to stabilize
the traffic with the adaptive output-feedback control law. In Fig. 5.1, we see that
the open-loop system is lightly damped. The the adaptive output feedback result is
shown in Fig. 5.2. The estimations of the spatially varying parameters of the system
are given in Fig. 5.3 and the estimation of constant parameters is shown in Fig. 5.4.
The blue lines in Fig. 5.4 represent the true values of the constant parameters. The
parameter estimates do not necessarily converge to the true values, due to the local
property of gradient methods.

5.11 Notes and References

In [?], an early and abbreviated publication on which the present chapter is based, in
the absence of the knowledge of some of the traffic parameters, we solved the adaptive
boundary control problem for the linearized ARZ model using the PDE backstepping
method, gradient-based update laws, and a Kresselmeier filter-based approach to
adaptive observer design. The main step is to transform the hetero-directional coupled
hyperbolic system to the observer canonical form that is suitable for adaptive design.
Parameters are estimated based on an input-output model representation of the ARZ
PDE, while the filter-based observer design estimates the state values.

The adaptive output-feedback control design approach in this chapter is inspired
by two previous results. First, by the design in Chapter 13 of the book [?]. While
that chapter deals with parabolic PDEs, the main ideas originate there—the trans-
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formation into a (parabolic) PDE equivalent of the observer canonical form, the
employment of the Kreisselmeier filters, and the output-feedback adative design
for the observer canonical form. The second source of inspiration is the design for
a single first-order hyperbolic PDE in the paper [?], which in turn is inspired by
Chapter 13 of [?] and where, again, the observer canonical form and the K-filters are
employed.

In addition to the books [?] (for parabolic PDEs) and [?] (for coupled hyperbolic
PDEj5), the reader should be made aware of another comprehensive book on adaptive
control in infinite dimension—the 2020 book on adaptive control for systems with
unknown delays [?]. This book bears some relation with [?] in the sense that delays
are, in fact, transport PDEs, namely, first-order hyperbolic PDEs.

This is the only adaptive PDE control chapter in this book. There are several
other non-adaptive designs in this book, which are more complex than the designs in
Chapter 3, and which can be made adaptive. Specifically, using the general adaptive
control methodologies for hyperbolic PDEs in [?], the problems in our Chapters 8,
9, and 10 can be solved adaptively, for unknown values of various traffic and driver
parameters.

In Chapter 7 we explore another adaptive, albeit not real-time adaptive control
approach for suppressing stop-and-go in the ARZ model: reinforcement learning.



Chapter 6
Event-Triggered Control of ARZ Model

This chapter develops event-triggered boundary control strategies for VSL to stabilize
the stop-and-go traffic on a freeway segment. We have already designed full-state
feedback ramp metering controller for the linearized ARZ model in Chapter 3.
However, the continuous-time control input signal cannot be directly implemented
on a digital platform as required by a on-ramp traffic light or the electronic display
of a VSL. With the proposed method in this chapter, the controlled velocity signal
is only updated when an event triggering condition is satisfied. Compared with the
continuous input signal, the signal of the event-based VSL controller is piecewise
constant and thus it allows the adaptation time for drivers to follow the advisory
speed.

The traffic dynamics of density and velocity are described with the linearized
ARZ macroscopic traffic PDE model. The event-triggered boundary controllers rely
on the emulation of the full-state backstepping boundary feedback, introduced in
Section 3.5. Two different Lyapunov-based event-triggered strategies are developed
to determine the time instances at which the control value must be sampled/updated.
One event-triggered strategy makes use of a dynamic triggering condition under
which it is possible to state the existence of a uniform minimal dwell-time (indepen-
dent of initial conditions). The exponential stability under event-triggered control is
achieved and validated with numerical simulations.

For networked control systems modeled by ODEs, discretization and sampling
strategies have been extensively developed to implement continuous time controllers
on digital platform, including sampled-data control that periodically or aperiodically
modulates the frequency of signal changes [?, ?], and event-triggered control that
updates control values only when needed [?, ?, ?, ?]. For the PDE system, the sampled
data and event-triggered control strategies focus on studying how fast sampling the
continuous in time controller could preserve stability and convergence of the closed-
loop system [?, 2, 2, 2, ?]. In [?], event-triggered boundary control is proposed for the
second-order coupled hyperbolic PDE system, relying on the backstepping method. A
full-state feedback controller is sampled according to a dynamic triggering condition.
As the the event-triggered mechanism reduces the computational and communication
cost, it has been incorporated with the model predictive control of freeway traffic

107
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governed by a linearized second-order macroscopic traffic model which is discrete
in time [?]. In this chapter, we adopt the event triggered boundary control strategies

for a VSL full-state feedback controller in order to reduce the stop-and-go traffic
congestion descirbed with the linearized ARZ model.

6.1 VSL Full-state Feedback Control Design

We consider the ARZ model on x € [0, L], t € [0, ),

Orp + 0x(pv) =0, (6.1)
\%4 -V
v+ p(p)) + i (v + p(p) =LY 62)
q*
0,t) = , 6.3
p(0.1) == o) (6.3)
v(L,t) =U(t) +v*, (6.4)
linearized around the steady-states (g*, v*) is given by
* * ok * (1 1 *
goevige - LG o (L L5 W 6
v* T \v*  yp* TV*
N . -V *
B = (yp* —v)ie =22 : yp* q (6.6)
TV 7q
G(0,1) =0, (6.7)
1
V(L,t) =—q(L,1), (6.8)
0

with zero flow rate variations from the inlet and the VSL boundary control input
from the outlet,

g(x,t) =0, (6.9)
V(x,t) =U(1). (6.10)
Writing the linearized ARZ model in the Riemann coordinate and through a spatial

transformation as introduced in the Chapter 3, we obtain a first-order 2 x 2 hyperbolic
system in (w, v) with an in-domain spatially-varying coupling,

0w +v* 0w =0, (6.11)

0,7 — (yp* —v*)0v =¢(x)W, (6.12)
Ww(0,1) = — kov(0, 1), (6.13)

v(L,t) =U(t), (6.14)

where the spatially-varying coefficient and boundary coeflicients are defined as
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1 X
c(x) =— ;exp (—m), (6.15)
* Lk
ko =221 (6.16)
1%

We aim to stabilize the closed-loop system (6.11)-(6.14) on events while sampling
the continuous-time controller U(¢) in (6.14) at certain sequence of time instants
(tx)ken. The control value is held constant between two successive time instants and
it is updated when some triggering condition is verified. To that end, we need to
suitably modify the controlled boundary condition (6.14) such that

v(t,L) = Uy(1), (6.17)

where
Uys(t) =U(t) +d(1), (6.18)

forallz € [#x, tx+1), k > 0 and d(r) will be seen as a deviation that will be rigorously
defined later on. We apply the following Volterra backstepping transformation:

a(t,x) =w(t,x),

* x (6.19)
pu) =300 - [ Ko ode - [ Kot o7t 0
where the Kernels K;(x,&),i = 1,2 evolve in the triangular domain 7 = {(x,¢) :
0 < ¢ < x < L} and are solution of the well-posed linear hyperbolic PDE kernel
equations discussed in Chapter 2. Therefore, with the transformation (6.19), one
maps the system (6.11)-(6.13) with boundary input (6.17), into the following target
system:

a; (t,x) +v¥a,(t,x) =0, (6.20)

Bi(t,x) = (yp* = v*)Bx(t,x) =0, (6.21)
a(t,0) =— koB(t,0), (6.22)

B(t, L) =d(1), (6.23)

where @, : R* X [0,L] — R. The inverse transformation of (6.19) is given as
follows:
w(t,x) =a(t,x), (6.24)

P(1,2) =B(1.x) + /0 Li(r)alt,E)dé + /0 LyrO)BtEdE, (625

where L;(x,€&) , i, j = 1,2 are solution of linear hyperbolic PDE kernel equations
given in Chapter 2. The continuous-time control U () is
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L L
() = /0 Li(L.&)a(t, £)dé + /O Ly(L.EB,E)dE,  (6.26)

and its emulated modification is given as:

L L
Ua(t) = /0 Li(L.)alty. £)dE + /0 La(L.&)B(1r. £)dE, 627)

for all ¢ € [tg, tx+1), Where d(t) is given by

L L

a0 = [ L) (@06 = o 0) de = [ La(L.6) (B 6) = pir.) de.
(6.28)

It represents an actuation deviation between the continuous and the event-triggered

controllers. Therefore, one can realize the backstepping transformation with Uy

given by (6.27). Since U,(¢) is given in the form of the transformed states, we can

represent the @, 8 with inverse Volterra operator on (g, V). Then we propose two
event-triggered boundary control strategies in the next section.

6.2 Event-triggered Strategies for boundary control

We introduce two event-triggered boundary control strategies which are based on
the backstepping feedback controller (6.27) and update the controller with a suitable
triggering condition.

The boundary feedback law is defined

L L
Vi) = [ Lt fateodes [ L opmodE  (629)
0 0
for all ¢ € [tg,fx+1), Where the events (fx)xen can be determined with either the
static or dynamic event-triggering mechanisms.
Static triggering condition

We consider a triggering condition which relies on the evolution of the square of
the actuation deviation (6.28) and the evolution of the following Lyapunov function
candidate of the target system (6.20)-(6.23),

L
V(a, B) :=/0 (A% (@) exp(~£5) + 2 B2 () exp 5 ) ), (630)

with positive constant coefficients A, B and pu.
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Definition 6.1 (Static triggering condition)

Leto € (0,1),7 >0,u>0,B > 0.Lett — V(a(t,-), B(t,-)) be given by (6.30).
The event-triggered boundary control is defined in a static event-trigger mechanism.
The times of the events ¢, > 0 with ¢y = 0 form a finite or countable set of times
which is determined by the following rules for some k£ > 0:

I) if {t >t +T | Bexp (yp’:fv*) r%dz(t) > ouV(t)} = 0 then the set of the times

of the events is {¢, ..., tx }.

I)if {t > tx + T | Bexp (yp’ffv*) r%dz(t) > ouV(t)} # 0, then the next event time

is given by:
tesr = inf{r > 1 + T|Bexp (W#) r2d2(t) > oV (1)}, 6.31)

In the definition of the next triggering time (6.31), T > 0 is satisfied, which can be
viewed as a time threshold (or waiting time) to implement a time regularization. It
enforces a positive minimal inter-event time of at least 7 units of time. Only after
the waiting time, the triggering condition is checked.

Without such time regularization, there may not be guarantees for avoiding the
so-called Zeno phenomenon, that is, infinite triggering times in a finite-time interval.
It represents infeasible practical implementations into digital platforms because it
would be required to sample/update the controller infinitely fast. On the other hand,
if the existence of a minimal dwell-time can be proved, the next event time can
be simply defined as (6.31) without introducing 7 > 0, as introduced later in the
dynamic triggering condition.

It is also important to remark that 7 has to be suitably chosen. To that end, one
option is to look at periodic implementations for the system (6.11)-(6.14) where the
control is updated periodically in a sample-and-hold fashion while meeting stability
guarantees. Therefore, we adopt the idea of using looped functionals [?] to take into
account the time regularization and its impact into the stability analysis with Linear
Matrix Inequality conditions.

Dynamic triggering condition

The second event-triggering condition is based on the evolution of the square of
the actuation deviation (6.28) and the evolution of a dynamic variable which can be
viewed as a filtered value of the static triggering condition.

Definition 6.2 (Dynamic triggering condition)

Let o € (0,1),0 > 0,7 >0, u >0,k >0, m’ eRy, B>0 Lett —
V(a(t,-),B(t,-)) be given by (6.30). The event-triggered boundary control with
dynamic triggering condition is defined in the following. The times of the events
tr > 0 with tp = 0 form a finite or countable set of times which is determined by the
following rules for some k& > 0:
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I) if {t > t;|0Bexp (%) r%d2 (t) = —m(t)} = 0 then the set of the times of

the events is {¢q, ..., #x }.

1) if {r > tk|GBexp((y ul

W) r%dz(t) > —m(t)} # 0, then the next event time is

given by:

tesr =inf{t > 1|0B exp (L) r2d2(1) > —m(1)} (6.32)

(yp*=v*)

where m satisfies the ordinary differential equation,

(1) = — nm(t) + (B exp (WE)) r2d2 (1) — oV (1) - k12(t, L)) (6.33)

for a given n > u(1 — o) and m(0) = m°.

Definition 6.2 does not impose any time regularization, compared with the static
triggering condition. The reason is that, under (6.32), it is possible to show the
existence of a minimal dwell-time between two event time instants. With this strategy,
we aim at reducing execution times, i.e. triggering less frequent than with a static
triggering mechanism.

In the following sections we present our main results: the absence of the zeno
phenomenon and the exponential stability of the closed-loop system with the two
event triggered controllers.

6.3 Absence of the Zeno Phenomenon

We use the following estimate to study the growth-in-time of the actuation deviation,
in order to derive the existence of a waiting time 7T for the time regularization in the
static triggering condition and to establish the existence of a minimal dwell-time for
the dynamic triggering condition.

Lemma 6.1 For d(t) given by (6.28), it holds for all t € (tx, tr+1),

(d(1))? < eV (t) + £10%(t, L) + £2d°(1), (6.34)
with
1 L 241 !
_4 - H 0 2% 27

&0 —2 min {v—* exp (_V_*) , W} X max {(V*) Ly, ('yp* - V*) L2} ,

(6.35)
1

&1 =r—24(v*)2 (Li(L,L))?, (6.36)

1
& =2(yp* - v*)* (L2(L, L))* . (6.37)
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where
B L
L - /0 (Ly(L,£))dé, 638)
L
I,- A (La(L, £))2dé. 639)

Static triggering condition

For the event-triggered boundary control (6.29),(6.31) we have imposed a time
regularization so that ) — #x > T, for all k > 0. As we discussed before, due to
this fact, the Zeno phenomenon is immediately excluded.

Dynamic triggering condition

The main result states that under the event triggered control (6.29),(6.32), there exists
a minimal dwell-time and therefore the Zeno phenomenon is avoided.

Theorem 6.1 Under the the event-triggered boundary control (6.29),(6.32) in Defi-
nition 6.2, with positive scalars, o € (0,1), 6, n, u, B, k1, and &9, €, and &; (from
Lemma 6.1) satisfying the following conditions,

6B exp (yp’ifv*) g <(1-0)ou,
(6.40)
0B exp (yp"i—L

—p*

)81 < (1 -0k,

there exists a minimal dwell-time T* > 0 between two triggering times, i.e. there exists
a constant T > 0 (independent of the initial conditions) such that tg. — ty > 77,
for all k > 0. Moreover, the minimal dwell-time is given by:

1 1
T*z/ S — (6.41)
0

aop+aps+ as?

where
a0=(1+52+%+n)@, (6.42)
ay=l+e+ 20 4y, (6.43)
ar =%. (6.44)

Since there exists a minimal dwell-time which is uniform and does not depend on
the initial conditions, no Zeno solution will appear.
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6.4 Stability Results

We perform a Lyapunov-based analysis by taking into account the two event-triggered
strategies proposed in the previous section. We refer the interested reader to [?] for
detailed proof. We will only state the main stability results.

Static triggering condition

We state first the stability of the closed-loop system under the event-triggered bound-
ary control (6.29),(6.31).

Theorem 6.2 Let o € (0,1), u >0, T >0, y9,71 >0, B := )70(;"3 exp (’:—f) +1),
&0, &1 and &3 given in Lemma 6.1. If the following conditions hold,

Bexp (ks ) - 71 <0, (6.45)
—ou+ Tsor%)"/l <0, (6.46)
~yo+Teiriy <0, (6.47)

(T) < 0, (6.48)

where:
I(T) = Bexp ((yp’i—fv*)) P =t + Triy (L + (1 — o) + &2)

then, the closed-loop system (6.11)-(6.13),(6.17) with event-triggered control (6.29),(6.31)
is exponentially stable.

Dynamic triggering condition

We state then the stability of the closed-loop system with event-triggered boundary
control (6.29),(6.32).

Theorem 6.3 Let o € (0,1), u > 0, 7 > pu(l — o), A = y‘oexp(’;—f), B =

’)/_0(7'5 exp (’;—lj) + 1) and x; > O (from Definition 6.1). If k| < yyp and 0 > 0 is
such that conditions (6.40) hold, then the closed-loop system (6.11)-(6.13), (6.17)
with event-triggered control (6.29),(6.32) is exponentially stable.
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elocity v(t,) in ki
°

Fig. 6.1 Density p(¢, x) and velocity v (z, x) of the closed-loop system (6.1)-(6.4) under the
event-triggered boundary control (6.29),(6.32) with dynamic triggering condition.

6.5 Numerical simulations

We consider the original nonlinear ARZ model with initial conditions

p(x,0) =2 sin(3Zx) + p*, (6.49)

v(x,0) = — % sin(3Zx) +v* (6.50)

where the steady-states in congested regime are chosen as (p*, v*) = (120 veh/km,
36 km/h). We take y = 1. The length of the freeway segment is chosen to be L = 1
km. The free speed is vy = 144 km/h and the maximum density is p,, = 160
vehicles/km. The relaxation time is 7 = 1.5min. We perform the simulation on a
time horizon of 18 min.

We stabilize the system on events under the event-triggered boundary control
(6.29),(6.31) with static triggering condition and time regularization. To set the
parameters of the triggering condition, we first perform a line search on u and on
T while finding y¢ and y;. This gives T = 0.13 min , u = 0.1, y9 = 0.0204 and
1 = 0.0487 along with o = 0.9 such that conditions of Theorem 6.2 hold.

Then, we stabilize on events with (6.29),(6.32) (with dynamic triggering con-
dition). The parameters are chosen as x; = 0.0102, § = 0.5, n = 0.33 such that
Theorems 6.1 and 6.3 apply. Figure 6.1 shows the numerical solutions of the den-
sity and velocity (p(¢,x), v(¢, x), respectively) of the closed-loop system (6.1)-(6.4)
under the event-triggered boundary control (6.29),(6.32) with dynamic triggering
condition.

Moreover, we compute the minimal dwell-time between two triggering times
according to (6.41), i.e. 7 = 0.87 min which is larger than 7. In fact, 7* can also
be used as a suitable waiting time (much less conservative) for time regularization
in periodic schemes where the control is sampled/updated in s sample-and-hold
fashion.

Finally, Figure 6.2 shows time-evolution of the control functions. The red curve
corresponds to the continuous-time control (6.26). The black curve corresponds to the
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Fig. 6.2 Time-evolution of the velocity control input: the continuous-time control U (6.26) (de-
picted in red line), the event-triggered boundary control Uy (6.29),(6.31) (static triggering condition
with time regularization T = 0.13) (depicted in black line) and the event-triggered boundary control
Uyg (6.29),(6.32) (dynamic triggering condition) (depicted in blue line).

event-triggered control (6.29) with static triggering condition in (6.31). Finally, The
blue curve corresponds to the event-triggered control (6.29) with dynamic triggering
condition in (6.32). With a dynamic triggering condition, we are able to stabilize on
events while reducing more execution times than with the static triggering strategy
and also meeting the theoretical guarantees. With this approach we can update the
control value only when needed which translates into the way that the VSL sign,
located at the outlet of a freeway segment, changes the advisory speed only when
needed.

6.6 Notes and References

In [?] an early and abbreviated publication on which the present chapter is based,
we proposed two event-triggered boundary control strategies for varying speed limit
sign to reduce oscillations of the stop-and-go traffic congestion problem. Exponen-
tial stability and Zeno free behavior are achieved. The results can be adopted to
implement in practice the ramp metering control strategy for the traffic congestion
problem. We expect to address observer-based event-triggered boundary with val-
idations on freeway data. In addition, self-triggered and periodic-event-triggered
boundary control are of great interest. The latter suggests to monitor periodically the
triggering condition while the actuation remains to be on events.



Chapter 7

Comparison of Backstepping with
Reinforcement Learning

7.1 From (Model-Based) Adaptive Control to (Less
Model-Based) Reinforcement Learning

Adaptive backstepping

In Chapter 5 we introduced a parameter-adaptive backstepping controller for the
ARZ model. This controller allows for some uncertainty in the fundamental diagram
O(p) and in the relaxation constant 7. However, the maximum speed v, and the
driver aggressiveness y are assumed known. The reason for requiring v,,, and 7y to be
known is that our adaptive design is of an output-feedback or observer-based kind,
with a measurement of only the velocity at the inlet of the freeway segment, when
the ramp metering is applied at the outlet of the freeway segment.

The complexity of the design in Chapter 5 may overwhelm a reader. Indeed,
the multitude of techniques needed in order to design a model-based controller, a
model-based observer, and a model-based parameter estimator for a PDE system
requires a quite advanced degree of expertise in several subareas of PDE control and
estimation. A few practitioners of traffic control may acquire such expertise. Many
will either lack the motivation or the time to master all that it takes to understand the
adaptive design in Chapter 5 and the guarantees of stability and convergence that the
design provides.

It is, for this reason, tempting to explore the alternatives to the model-based adap-
tive control design. Reinforcement learning (RL) is a natural step in this exploration.
To be specific, a traffic engineer interested in suppressing stop-and-go oscillations
in congested traffic, and faced with the degree of expertise that the adaptive output-
feedback control design in Chapter 5 demands of him, will likely ask the question
whether control laws that achieve the stop-and-go suppression can be arrived at by
training, namely, by an RL approach.

117
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Relative merits of RL and adaptive backstepping

Of course, there is no free lunch in controlling unstable high-dimensional and highly
uncertain systems. A saving in analytical effort is accompanied by a price paid in
the form of extensive off-line training (on the ARZ model, not on the experiment)
and in the loss of the ability to perform training (stably and safely) in real time. Our
goal in this chapter is to illuminate this tradoff, through a comparison between RL
and adaptive PDE backstepping control.

We will discuss the details of RL control structure and its training in great length
but let us briefly mention, at this early stage in the chapter, that RL employs a
proximal policy optimization, a neural network as a parametric approximator of a
function of the plant state, weight updating using a policy gradient algorithm, and
off-line training on a numerical simulator of the ARZ PDE to maximize the reward
function, which we chose as the L2 spatial norm of states to achieve stabilization.

Since they are stabilization-inspired, we evaluate the RL state-feedback boundary
controllers against the rigorously stabilizing backstepping controllers, first in a sys-
tem with perfect knowledge of the traffic flow dynamics, i.e., on the same model for
which the backstepping controller is designed, and then on a simulation model that
differs in several ways from the model used for backstepping design. Our simulations
show that RL controllers nearly recover the performance of the backstepping con-
troller designed with perfect knowledge. Additionally, the RL controllers outperform
the backstepping controller in some cases with partial modeling knowledge.

The price paid with the RL approach is that they are trained by conducting about
one thousand episodes of iterative training on the ARZ PDE simulation model. This
training cannot be performed in a collision-free fashion in real traffic. The conver-
gence of the training process is not guaranteed. And, finally, stabilizing behavior for
the ARZ PDE is achieved in simulations but is not theoretically guaranteed.

The areas in which RL potentially exhibits some advantages are (1) the signif-
icantly reduced reliance on modeling knowledge than the PDE backstepping (non-
adaptive or adaptive design) and (2) the potential of the RL approach to be trained to
the presence of nonlinearities in the ARZ PDE because the neural network structure
in the RL feedback is agnostic regarding the linearity or nonlinearity of the PDE
plant.

Let us examine these two advantages of RL in some detail, and from multiple
angles, aiming at objectivity.

First, while PDE backstepping employs the ARZ PDE in an analytical design, RL
is computationally trained on the same PDE. On the account of this, RL could be
regarded to also be model based, or at least not model-free but “less model based”
than backstepping. Additionally, the RL controller is a feedback law employing the
states of the ARZ PDE (density and velocity), namely, it certainly presupposes the
ARZ model structure. However, RL makes no assumption regarding the form of
the right-hand side of the ARZ PDE. In that sense, it is indeed “less model based”
than even the adaptive version of the PDE backstepping design, let alone than the
non-adaptive backstepping.
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Second, the RL approach is agnostic regarding the nonlinearity of the ARZ model.
Its form, based on neural networks, is nonlinear regardless of whether ARZ is linear
(or linearized) or not. This is a potential advantage over the backstepping design,
which is based on the linearized ARZ PDE. However, one should not overlook the fact
that the backstepping designs (non-adaptive and adaptive) guarantee stability, at least
locally, of the closed-loop ARZ PDE. RL, in contrast, comes with no guarantees—
only with a hope that a trainable neural network structure may work well for a
nonlinear system.

Learning characteristics of RL and adaptive backstepping

This is an important place to discuss whether both RL and the adaptive backstepping
controllers are “learning-based.” Learning is a part of the name of the Reinforcement
Learning controller and nobody will dispute the learning nature of RL. How about
adaptive backstepping? The adaptive backstepping controller employs estimation
of the parameters of the ARZ model—it is continuously learning the parts of the
ARZ model that are not a priori known. So, the adaptive backstepping controller is
certainly also a learning controller. While facing less uncertainty than RL, and tasked
with learning fewer aspects of the ARZ model, the adaptive backstepping controller
is performing its learning online, and with a stability guarantee. So, if one wishes
to be terminologically precise and fair, one would refer to RL as “offline heuristic
learning” and to adaptive backstepping as “online learning with stability guarantee.”
Since both RL and backstepping are “learning-based” controllers, it is important to
note that the RL controller has far more to learn—many more parameters to be trained
in its neural network parametrization than the adaptive backstepping controller. In
fact, if we had allowed ourselves in Chapter 5 to use full-state measurement, our
adaptive controller would involve the estimation of only a few parameters. But
even with our output-feedback design, much less learning is needed with adaptive
backstepping than with RL. It is no surprise then that the learning with adaptive
backstepping can be done online, whereas with RL it must be performed offline.
For a specialist in adaptive control it is worth noting another difference in learning
between RL and adaptive backstepping. With adaptive backstepping it is the plant
parameters that are being estimated and, using these estimates, the parameters of the
controller (the gain kernel functions) are computed online through a solution of a
simple integral equation. An adaptive controller that employs the estimation of the
plant parameters is called an indirect adaptive controller, so adaptive backstepping
is an indirect adaptive controller. In contrast, an adaptive feedback law whose gains
or parameters are directly tuned is called a direct adaptive controller. RL is a direct
adaptive controller. The tradeoff between direct and indirect adaptive controllers is
that direct controllers require no gain computation online but usually involve an
overparametrization—often by one or several orders of magnitude relative to the
physically uncertain parameters. This tradeoff is in play between RL and adaptive
backstepping. With a small saving in online computation (of the integral equation in
adaptive backstepping), the RL control pays a high price in offline computation and
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in the absence of the ability of online learning, adjustment, and re-learning as ARZ
parameter values drift or change abruptly.

Reliance on full-state measurement

As we indicated earlier, the RL feedback employs the full measurement of the
state of the ARZ PDE—the density and the velocity along the entire freeway. In
Section 2.4, as well as in Chapter 4, we discussed in detail that measuring the
distributed state bears a prohibitive cost on the infrastructure. The observer-based
backstepping control designs in 3.5 and 5 require the measurement only at one
location on the freeway segment (either at the entry or at the exit, i.e., at the location
of ramp metering). Hence, PDE backstepping supplies a much more usable feedback
law than RL. If RL were to match the capability of PDE backstepping, it would need
to be equipped also with a state estimator, i.e., an observer. Given that observers, to
work accurately, need to incorporate a copy of the system model, it is not clear how
an RL-based observer as free of information regarding the form of the right-hand
side of the ARZ PDE could be designed.

Even though backstepping is available in both its full-state feedback and output-
feedback versions (as well as adaptive and non-adaptive versions), the comparisons
between RL and backstepping which we conduct in this chapter is for the non-
adaptive full-state feedback version. The reason for this is to give a chance to RL
to be compared against the “most model-based” among the backstepping designs
which, due to its availability of the full state and the parameter knowledge, is the
best performing among the backstepping designs.

Is RL learning the backstepping feedback law?

As shall be seen, after sufficient training, RL nearly recovers the performance of the
backstepping design, measured by the L? norm (in space and time, i.e., over the given
spatial interval on the freeway and over a chosen time interval) of the error between
the density and velocity states and their respective equilibrium values. The reader
will naturally wonder whether, by recovering the performance of the backstepping
controller, the RL approach has “learned” the backstepping controller. There is no
reason to expect that the achievement of the same spatiotemporal norm means that
two feedback laws are identical. For a given initial condition, “infinitely many” gain
combinations can result in the same spatiotemporal norm of the stabilized closed-
loop system. If the RL controller were trained on a reward function that matches the
Lyapunov function employed in the backstepping design, there would be a chance for
RL to learn the backstepping feedback. But the training of RL is done based on the
simple spatial L? norm of the density and velocity errors, whereas the backstepping
Lyapunov function involves a Volterra transformation of those states. Hence, there is
no basis to expect that RL would learn backstepping. In conclusion, it is appropriate



7.2 RL Control Approach 121

to say that “RL attains the performance of the model-based backstepping design”
but not that “RL learns the model-based backstepping feedback law.”

Comparison of RL with Proportional-Integral controllers

In our comparison of RL against controllers that provide stability guarantees, in
addition to backstepping we also consider the simple collocated Proportional (P)
and Proportional-Integral (PI) controllers. For limited values of ARZ parameters,
they also provide stability guarantees. They can be regarded both as model-based and
model-free. They are model-free because, traditionally, P and PI feedback laws are
not model-based designs but heuristic choices. But P and PI can also be regarded as
model based for ARZ because, under restricted parameter values, they can guarantee
stability. Backstepping, in turn, requires no restriction on the values of the parameters
of the ARZ model; it is applicable to arbitrarily unstable stop-and-go motions.

It should be clear that, in the three-way comparison—among backstepping, P/PI,
and RL controllers—the comparison of primary relevance is between the back-
stepping and RL controllers, which both, in principle, are not restricted in their
applicability to traffic regimes that are at most mildly unstable. The comparison of
RL with P/P1 s of secondary relevance, mostly providing ‘another point of reference’
for the assessment of the RL controller.

Since both the backstepping and the P/PI controllers are equipped with Lyapunov
proofs (the former in unrestricted traffic regimes and the latter under restriction),
we occasionally refer to both backstepping and P/PI as Lyapunov-based controllers.
Their respective Lyapunov functions are very different—the Lyapunov function for
P/PIis a spatially weighted L? norm of the state error, whereas the Lyapunov function
for the backstepping controller is the spatial L? norm of the state error transformed
with the Volterra transformation whose kernel is specially designed to allow any
degree of coupling between the density and velocity PDEs and, hence, any degree
of open-loop instability.

7.2 RL Control Approach

Learning-based methods have attracted attention by both the PDE modeling com-
munity and the transportation community. Algorithms for solving high-dimensional
parabolic PDE systems were derived using deep learning in [?] by reformulating
the PDEs as stochastic differential equations and approximating the gradient of un-
known solutions with deep neural networks (DNN). More recent work in [?] proposed
RL-learned numerical solutions for scalar conservation laws which autonomously
generate accurate numerical schemes for various situations. For the PDE control
problem, boundary control of time-varying 2D convection-diffusion PDEs with an
application for heating, ventilating, air conditioning (HVAC) control design was
developed in [?, ?].
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In the domain of traffic management, researchers have been applying RL to various
traffic problems. Different levels of traffic modeling are employed, depending on the
problem. For example, the authors in [?] examined traffic light signal timing at
one intersection using deep Q-learning with a traffic simulator, Paramics, which
is based on microscopic traffic models. Studies on the traffic signal scheduling
problem were further extended to multi-agent control for five centrally-connected
traffic intersections [?], which was described with a traffic queuing model. The
article [?] used a multi-agent RL algorithm to control the traffic light around a
traffic junction. The authors proposed a framework where each agent was able to
switch between independent and integrated modes in which the agent solved the
multi-agent RL problem using modular Q-learning. The authors of [?] formulated
a deep RL framework for mixed-autonomy traffic in some experimental scenarios
using the traffic microsimulator SUMO. Under the same framework, [?] developed
RL controllers for connected autonomous vehicles to de-congest traffic bottlenecks.

Surprising few RL designs for macroscopic traffic models exist in the literature,
at present, in spite of the fact that the PDE model is particularly well-suited for
modeling congested traffic flow patterns. The reason is that RL control of PDEs
involves high-dimensional state spaces which makes the approximation of value
functions challenging. The authors in [?] considered the cell transmission model
which is obtained from discretization of the LWR first-order PDE model. An RL-
based controller was designed using different policy gradient methods, such as
REINFORCE, Trust Policy Optimization (TRPO), and the Truncated Natural Policy
Gradient (TNPG) algorithm. Incoming traffic flow is actuated by the RL controller
such that the traffic flow is optimized for some target outflow.

Our effort on RL control presented in this chapter differs from [?] on the traffic
problem to be solved, the model being used, and the methodology being employed,
which guides our study and analysis from a very different perspective. We focus on
the stabilization problem, and examine a second-order PDE model to describe stop-
and-go traffic oscillations. The resulting RL controllers are tested, and we examine
under what circumstances RL could be a better choice relative to a Lyapunov-based
PDE controller.

7.3 Boundary Control Problem Reformulation
ARZ PDE traffic model

We consider the ARZ PDE model to describe the traffic dynamics on a freeway
segment. The state variables are traffic density p(x,f) and traffic speed v(x,1),
defined on the domains x € [0, L], ¢t € [0, T]. The detailed discussion of ARZ PDE
Traffic model is found in Section 1.2 in Chapter 1.

Our control objective is to regulate the state around an equilibrium reference state
(p*,v*), where
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V¥ =V(p*), (7.1)

satisfies the equilibrium density and velocity relation. We choose the density p*
such that the reference system (p*, v*) is in the congested regime for dense traffic,
which can be characterized by the two characteristics of the linearized PDE model,
as discussed in Chapter 1.23.

A =v* >0, (7.2)
Ay =v* + p*V'(p*) < 0. (7.3)

As shown in Fig. 7.1, the control inputs Uy, and U, are transported from the actuated
boundaries to in-domain states with the two characteristic speeds respectively.
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Fig. 7.1 Stabilization of stop-and-go traffic on freeway with ramp metering located at boundaries
of the segment.

Boundary control design

Our control objective is the regulation, by ramp-metering on the boundary, of the
L? norm of the density and velocity error states relative to their respective uniform
steady state values. The oscillations can occur due to delayed driver response without
ramp-metering control. In order to reduce oscillations in congested traffic, we actuate
traffic flow from the upstream inlet and downstream outlet of the freeway segment,
using on-ramp metering as shown in Fig. 7.1. Alternatively, one can actuate velocity
by installing VSLs.

Boundary control algorithms are designed to stabilize the traffic around the ref-
erence steady state. For the ARZ PDE model, the control design guarantees that the
state variables (p(x, 1), v(x, 1)) are regulated to the reference system (p*, v*) in the
spatial L? norm, i.e.

llp(x,1) = p*|| = 0, (7.4)
v(x, 1) =v*|| =0, (7.5)
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Table 7.1 Lyapunov-based Boundary Control Design

Design method U; Uout
Setpoint q* q*
Backstepping q* |Uout, BKST
Proportional Uin,L q*
Proportional Integral Ui, pi| Uout, 1

1/2
where || - || is the spatial L? norm, i.e., || f(x,7)|| = (/OL F2(x, t)dx) .
For the segment of freeway traffic, boundary actuation is implemented with ramp

metering controlling the traffic flow rate entering from the on-ramp to the mainline.
Both inlet and outlet flow rates can be controlled through ramp metering

p(o’ I)V(O, t) =an(t), (76)
p(L,t)v(L,1) =Uou (1), (7.7)

We denote the boundary control inputs of different strategies with Uin +(2), Uout,+ (?),
where x represents the name of the control design.

As summarized in Table 7.1, the Lyapunov-based boundary control algorithms
consist of setpoint boundary inputs, backstepping PDE control in Section 3.5 of
Chapter 3, Proportional in Section 3.4 of Chapter 3 and Proportional Integral
control [?]. Despite different actuation locations and assumptions, three different
state-feedback controllers achieve Lyapunov stabilization of the PDE system by col-
lectively shifting the linearized PDE eigenvalues onto the open left half plane. The
control gains used for the backstepping method are computed numerically in Chap-
ter 3. The static proportional gain in inlet control is derived by solving the linearized
PDE system analytically in Section 3.4 of Chapter 3. The static proportional and
integral gains in PI control are obtained through trial and error. We then summa-
rize the Lyapunov-based control algorithms in the boundary control framework, as
illustrated in Fig. 7.1.

Setpoint control

We simply limit the outgoing flow rate to be the setpoint state value as the boundary
control. The setpoint control is open-loop control which does not use feedback of
the system. This simple method is considered as a baseline case to compare against
more sophisticated control designs. The constant incoming and outgoing flow rate
at the boundaries are implemented as,

Uin, 0(t) =q*, (7.8)
Uout,O([) =£I*~ (7.9

where ¢g* = p*v* is the reference steady state flow rate.
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PDE backstepping control

The backstepping controller produces a full-state-feedback control law located at the
outlet boundary. The control design in Section 3.5 of Chapter 3 is developed for the
linearized ARZ PDE model, and then is applied to the original nonlinear ARZ model.
For initial conditions near the reference, the system is locally exponentially stable
under outlet actuation. The key idea of the backstepping method is to transform the
original linearized ARZ model to a target system where the undesirable instabilities
in the PDEs are transformed to the outlet boundary. The controller is designed such
that the instability is cancelled out and an exponentially stable target system with
zero boundary input is obtained for the closed-loop system.

The boundary condition at the inlet, and the full-state-feedback outlet backstep-
ping controller are given by

Umn, xst(?) =7, (7.10)
L L

Uou picst (1) =q* + p* /O v (E) V(. 1) = v¥)dE + /0 ca(©)(qE.1) — ) de.

(7.11)

where the control gains are given by

cy(£) =M(L-¢)+ j—ZK(L, &) exp (—i) : (7.12)
1 TV
A1 —

Cq(g) = 1

bK(L,g) exp(Ti—*) (7.13)

for & € [0, L]. The control gain kernels K(L, &), M(L — &) are obtained by solving
hyperbolic equations that govern the kernel variables K (x, £) in a triangular spatial
domain 7 = {(x,¢) : 0 < ¢ < x < 1}. The numerical solution of the kernel
equations is easily obtained, given the model parameters and steady states. The
equilibrium (p*, v*) of the linearized system is exponentially stable in the L> sense
and the equilibrium is reached in a finite time.

P control

The proportional controller is an output-feedback control law that actuates traffic
flow rate at the inlet boundary, as discussed in Section 3.4 of Chapter 3. The control
input only requires online measurements of velocity at the inlet boundary, collocated
with the actuation location. The key intuition of the control design is to cancel the
forward coupling in the system and then the closed-loop system can be directly
solved. Local exponential stability and finite-time convergence is guaranteed. The
boundary condition at the outlet is a constant flow rate and the inlet boundary is
actuated by the collocated output-feedback controller,
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Uin,.(1) =¢* + gp(v(0,1) = v*), (7.14)
Uout,L(t) =q*» (7]5)

where gp = p* +v*/V’(p*) is a constant control gain.

PI control

In the proportional-integral controller, feedback control is applied to both the inlet
and outlet boundary values. The PI boundary feedback controllers are proposed
in [?] for the linearized ARZ model, which guarantees local exponential stability
of the closed-loop system. The exit velocity at the outlet is controlled such that
v(L,t) = Uou,pr (). Ramp metering controls the incoming flow rates, given by

Uin,p1(t) =q* + kp(p(L,1) = p*) + Kk} /0 (p(L,1) = p*)ds, (7.16)
Uou,p1 (1) =v* + kp(v(0,2) —v*) + kJ / (v(0,t) —v*)ds, (7.17)
0

where k}’,,klv, k;, k; are tuning gains. For this anti-collocated output-feedback
structure, a set of linear matrix inequalities are given for allowable control gains
that guarantee Lyapunov stability. Within these conditions, the specific values are
obtained through trial and error, as detailed in [?]. The Theorem in [?] states that
the equilibrium p(x,1) = p*, v(x,t) = v* of the linearized system is exponentially
stable in the L? sense.

[t!] Feedback boundary stabilization initial conditions: sy = p(x,0), v(x,0);

Input: parameters V(p), 7, steady state s* = (p*, v*)

t = 1 N—1 Compute Lyapunov-based boundary controllers Ui, our = u (57, V(0), T, s*),
where the functional of boundary control u# depends on the choice of control design
in Table.1

Update the state variables s;.; with actuated boundary control inputs Ui, o, and
St

Boundary Control Scheme

All of the aforementioned Lyapunov-based controllers are designed from the lin-
earized ARZ model, and therefore the stabilization guarantees are local. In addition,
model uncertainty has not been taken into consideration, such as random events that
frequently appear in traffic. This motivates us to explore a RL approach.

7.4 Control of ARZ Model by Reinforcement Learning

In this section, we introduce a reinforcement learning approach for boundary control
of the nonlinear ARZ traffic flow model. The explicit knowledge of the PDE model
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is not required. RL assumes that the traffic dynamics are governed by a Markov
Decision Process (MDP). In particular, we will use a policy gradient method since
they are applicable to continuously valued control actions.
[t!] Initialize parameters for actor 8y and critic ¢g
k =1 E Initialize the states s¢ from random distribution
t =1 N Compute reward r; = ||s; — s*]|2;
Draw an action a; from stochastic policy, i.e., a; ~ N (u(s;), 72 (s;));
a, goes to boundary conditions of PDE system;
Update state s, using a; and s; ;
Collect set of trajectories O driven by policy mg,
Compute total discounted reward R;.
Compute advantage estimates, A, from critic Vg, .
Update the actor, 6. by (7.37).
Update the critic, ¢4 by regression. RL Control Procedure

Boundary control of PDE as a MDP

In the MDP setting, we seek the policy that maximizes the total reward received
from the environment, i.e. the plant. At each time step ¢ the environment conditions
are described by a state vector, s; € S, where S is the state space while the control
policy picks an action a, € A, with A being the action space. The control policy is a
full state feedback control law that selects an action a, based on an observation of the
state s;. The action is applied to the environment, whose state evolves to s;41 € S,
according to the state-transition probability P (s;+1|s;, a;), and the agent receives a
scalar reward r;,; = r(s;, a;). The policy is represented by 7 which maps the state to
the action and can be either deterministic or stochastic. The total discounted reward
from time ¢ onward can be expressed as:

R = > ¥ r (ks i) (7.18)
k=0

where y € [0, 1] is the discount factor. Note, we have abused notation by allowing
t to represent both continuous and discrete-valued times. Nevertheless, the meaning
will be clear from context.

The implementation of the RL controller is summarized in Algorithm 7.3. We
represent the state at time ¢ with s, = (p(-,1),v(-,7)). When the nonlinear ARZ
model is boundary actuated, then it naturally forms a sequential decision making
problem, which is modeled as a MDP.

We consider a discretized approximation of the nonlinear ARZ PDE model using
the Lax-Wendroff scheme with conservative state variables, as discussed in Section
1.8 in Chapter 1. The discretized ARZ PDE model is a difference equation which
numerically approximates the infinite-dimensional PDE model with second-order
accuracy in space and time. The solution p(x, ¢) and v(x, t) to the ARZ PDE model
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is approximated by piecewise constant functions on discretized temporal and spatial
domains. The solution domain is [0, L] X [0, T]. The discretization resolution At =
T/(N —1)and Ax = L/(M — 1) are chosen such that the Courant-Friedrichs-Lewy
(CFL) condition is met, i.e. At < c¢Ax, where M, N are the number of nodes for
the spatial and temporal domains respectively and c is defined as the maximum
characteristic speed of the nonlinear hyperbolic ARZ PDE model ﬁ—f > max |4 2.
We can compactly write the discretized nonlinear ARZ PDE system as the following
difference equation

See1 = f(8¢,u), (7.19)

where s; describes the density and velocity state at time ¢, and u, represents the
boundary control inputs, depending on the choice of control design in Table 1.
The function f represents the discretized deterministic dynamics for the temporal
evolution of the PDE system. The PDE dynamics at the current time instant are fully
described given the current state s, and control inputs u;.

Given the discretized ARZ PDE in (7.19), we may write the deterministic dy-
namics as

P(si+1l8:, ar) = 6(Se41 — f (51, u7)), (7.20)

where 6(+) is the Dirac delta function. In the MDP, P (s;41|s;, a;). represents the
probability that action a in state s at time ¢ will lead to the state at time 7 + 1.
Therefore, if there is stochasticity in the dynamics, such as some random model
parameters, as introduced later in the chapter, the deterministic temporal evolution
of the PDE system can be generalized to stochastic dynamics by the MDP state
transition probability.

Sia1~P (S41l8s, ar). (7.21)

The discretized states, s;, and boundary control input, a, are written as:

st =[p(0,1), p(Ax,1),- -+, p(L, 1),
v(0,1),v(Ax, 1), -+ ,v(L, )], (7.22)

a; =[q(0,1),q(L,0)]". (7.23)
where p(-,7) and v(-, ) are the traffic density and velocity that are discretized in the
spatial and temporal domains.

The reward r(s, a) is defined by the L, norm of the states, namely,
X p(l - Ax, t) - p*
p*

(7.24)

B HZiv(i “Ax, 1) —v*
2

V*

re(s,ap) =— H
2

The reward is equivalent to the control objective that achieves regulation of the traffic
states to a spatially uniform density and velocity.
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Value function and Q-function

In the next few paragraphs, we briefly review some essential reinforcement learning
concepts to aid the subsequent discussion. A thorough exposition can be found in
(21121

The state value function, V” (s;) is the expected total discounted reward starting
from state s,. In the controls community, this is sometimes called the cost-to-go,
or reward-to-go. Importantly, note that the value function depends on the control
policy. If the agent uses a given policy 7 to select actions starting from the state s;,
then the corresponding value function is given by:

V() = E[Rt | Sl] (7.25)

Then, the optimal policy 7* is the policy that corresponds to the maximum value
V*(s;) of the value function

" = argmax V™ (s;) (7.26)
w

The solution of (7.26) is pursued by Dynamic Programming (DP) methods. DP,
however, requires knowledge of the model / environment.

The next definition, known as the “Q-function”, is fundamental since it enables
the concept of model-free reinforcement learning. Consider the state-action value
function, Q™ (s;, a,), which is a function of the state-action pair that returns a real
value. In other words, it corresponds to the expected total discounted reward when
the action a, is taken in state s,, and then the policy n is followed henceforth.
Mathematically,

Q7 (ss,a;) = E[Rt | s¢s at] (7.27)
The optimal Q-function is given by
Q" (s¢,a,) = argmax Q™ (s, ar) (7.28)
T

and represents the expected total discounted reward received by an agent that starts
in s;, picks (possibly non-optimal) action a;, and then behaves optimally afterwards.
Since V*(s;) is the maximum expected total discounted reward starting from state
s¢, it will also be the maximum of Q*(s;, a,) over all possible actions a; € A,

Vi(s:) = ma;([ Q% (s¢,ar) (7.29)

If the optimal Q-function is known, then the optimal action a; can be extracted by
choosing the action a, that maximizes Q*(s;, a,) for state s, (i.e. the optimal policy
¥ is retrieved),
a; = arg max Q*(s;,a,) (7.30)
areA
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without requiring knowledge of the environment dynamics. This last point is pre-
cisely why the Q-function enables model-free RL.

Lastly, the advantage function is defined to measure how advantageous the action
is compared to the action drawn from policy,

A7 (st,a;) = Q" (s ar) = V7™ (1) (7.31)

Actor-Critic

Actor-critic is an approximate dynamic programming (ADP) method which solves
dynamic programming heuristically. Importantly, the actor-critic approach allows
for continuous state/action spaces by using a function approximator, e.g., a neural
network. In RL, as well as in dynamic programming, the action is taken by a policy
to maximize the expected total discounted reward. By following a given policy and
processing the rewards, one should estimate the expected return given states from the
value function. In the actor-critic approach, the actor improves the policy based on
the value function that is estimated by the critic. We specifically focus on the policy
gradient-based actor-critic algorithm in this work, and, in particular, the Proximal
Policy Optimization (PPO) [?] is considered. The critic is the parameterized value
function V4 and the actor is the parameterized policy mg.

Critic

The role of the critic is to evaluate the current policy prescribed by the actor. The
action is drawn from a Gaussian distribution, namely,

ar ~ N(u,0%), where [u, 0] = fonn(s::6), (7.32)

where a mean u and standard deviation o computed from a deep neural network
(DNN), fponn(s::6) © S — R?, and the DNN is parameterized by weight vector 6.
After applying the action, we observe the reward r;,; and the next state s;1. For each
time step ¢, the tuple (sy, ay, rr+1, S¢+1) 18 stored in the buffer, D. From a collected
set of trajectories, the parameterized value function denoted by V4 is updated to
minimize the following loss function, £:

1 N
L=5 D0 Ve (sia) = Rii)? (7.33)

ieD t=0

where R;; is the total discounted reward at time ¢ in the i-th trajectory stored in
the buffer. The critic network parameters, ¢, are updated numerically via gradient
descent.
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Actor

The actor is updated based on the value function estimates. The objective function
for the actor is formulated in terms of the expected reward of policy my and the
advantage of g, [?, ?I:

A [ﬂe(at|st) A] (7.34)

max B, p
ﬂgo]d (at IS[)

where the hats on I, signify a sample mean, and A, indicates an estimated advantage
function obtained from the critic. In [?], the authors prove the expected reward
corresponding to g increases relative to mq,, if a distance measure between mg
and 7, is sufficiently bounded. This motivates the following trust region policy
optimization algorithm:

max B, [MA, (7.35)
0 7T901d (a[ |sl)
subjectto B, [KL[mg,,(-[s:),mo(|s)]] <6, (7.36)

where 64 is the vector of policy parameters before the update. KL-divergence
measures the difference between the old policy and current policy. The constraint
ensures that the new policy does not deviate from the old policy by 6.

In this work, we adopt the PPO reinforcement learning algorithm [?], which is
based on trust region policy optimization (TRPO) [?]. The PPO algorithm similarly
limits the new policy from being excessively far from the previous one. However,
it does so with a modified objective that penalizes changes to the policy that move
re(0) = mg(as|s;)/mg,,(asls;) away from 1. The key idea is to use probability
clipping, as follows:

max E, [min(r,(H)At, clip(r,(6),1 —g, 1 + S)A,]. (7.37)

The main idea of PPO is to modify the objective by clipping the probability ratio.
This removes the incentive for moving r, outside of the interval [1 — g, 1 + &]. With
this clipping method, the lower bound of objective function is maximized. Readers
are referred to [?] for more details.

Proximal Policy Optimization

We adopt a policy gradient-based approach to obtain a continuous-valued stochastic
control policy. Mathematically, the goal is to find:

0* = arg mgle [R:] (7.38)
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where the expectation is taken w.r.t. P (s+1|s¢,a;) and mg(as|s,), and 6 param-
eterizes the control policy distribution. Policy gradient methods essentially solve
(7.38) via gradient ascent. The key challenge is estimating the gradient since it is
computationally intractable to compute it exactly.

One can re-formulate this optimization problem (7.38) in terms of the expected
reward of policy ¢ and the advantage of mg,, [?, ?]:

max I, [MA,] (7.39)
0 ﬂgold(atlst)

where the hats on I, signify a sample mean, and A, indicates an estimated advantage

function from simulations. In [?], the authors prove the expected reward correspond-

ing to my increases relative to mg,,, if a distance measure between 7y and g, is

sufficiently bounded. This motivates the following trust region policy optimization

algorithm:

max B, [MA, (7.40)
0 ﬂﬁold(at|st)
subject to B, [KL[mqy, (:|s:), o (|s)]] < 6, (7.41)

where 6,1q is the vector of policy parameters before the update. KL-divergence
measures the difference between the old policy and current policy. The constraint
ensures that the new policy does not deviate from the old policy by é.

Both the RL and Lyapunov-based approaches provide state-feedback controllers
for the ARZ PDE model. Figure 7.2 compares the RL and Lyapunov-based ap-
proaches as signal flow diagrams. The Expert Design system developed by a Control
Engineer is replaced with an iterative learning process by a RL algorithm. In ad-
dition, the prior assumption of the initial condition and model parameters are not
required in the RL approach. In the next section, we will conduct several numerical
simulations to compare these two methodologies.

7.5 Comparative Simulation Study

In this section, we numerically test the RL controller and compare its performance
with that of the Lyapunov-based controllers. Two settings are considered: (i) full
knowledge of the system dynamics, and (ii) partial knowledge of the system. In
the full knowledge setting, both the Lyapunov-based and model-free RL controllers
have perfect knowledge of the model with known model parameters and steady state
conditions. For the partial knowledge setting, both controllers have partial knowledge
of the model, i.e., the true steady state has deviated from the ones used in the model.
For each setting, we test the model-free RL controller with the following cases:
(i) outlet control, (ii) inlet control, and (iii) outlet & inlet control, as defined in
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(7.6), (7.7). For each case, one Lyapunov-based controller is used to evaluate the
performance of the RL controller.

Simulation configuration

We simulate traffic on a freeway segment with length L = 500 m for a time period
T =240 s = 4 min for system with full knowledge of dynamics and 8 min for system
with partial knowledge. Steady states density p* = 120veh/km,v* = 36km/h
are chosen given the maximum density p,, = 160 veh/km, and maximum velocity
vm = 40m/s. The steady state traffic is lightly congested such that 1, = 10 m/s, 1 =
—20 m/s, which satisfy the conditions in (7.2), (7.3). This configuration represents
heterogeneous propagation of oscillatory waves of density and velocity in congested
traffic. The 500 m long road segment is considered and the simulation is run for
4 min. The spatial grid size is chosen as Ax = 10 m and the temporal grid size is
chosen as At = 0.25 s. The discretization in spatial-temporal domain guarantees the
convergence of the numerical scheme. Besides, the computational time for training a
RL controller increases with the number of grid size but the closed-loop performance
is not affected significantly for the order of discretization we choose. The following
simulations are performed on a Python running an Intel core i19-9900K CPU with a
clock rate of 3.60 GHz, and GPU device, GeForce RTX 2080 Ti.

Comparative study with full knowledge of system dynamics

We assume sinusoidal initial conditions:
3
o(x,0) = 0.1sin (%) 0% + p*, (7.42)

3
v(x,0) = —0.1 sin (%) VEEvE (7.43)

Learning process of RL controllers

The learning process for RL controllers is illustrated in Fig. 7.3 and Fig. 7.4. The
learning curve for RL corresponding to each control scheme is presented in Fig. 7.3.
The evolution of the cumulative reward R;, defined in (7.18), reflects the overall
learning performance. In addition, several episodes of the simulation in the learning
process are compared more closely in Fig. 7.4. We plot the reward values r,, defined
in (7.24), over several hundreds of iterations of testing candidate RL outlet feedback
laws on ARZ model simulations over a time window of 4 minutes for each simulation.
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In Fig. 7.3, the shaded area represents min/max of different actor-critic parameter-
izations while the bold line measures the average of the performance during training.
Notice that the training process converges over different numbers of episodes across
the controllers. This motivates us to set a large enough number of episodes in order
to make sure that RL converges. We obtain the actor-critic parameters by the end of
training. It is also observed that there is a spike in cumulative reward for the inlet and
outlet RL controller at the episode around 500 which indicates that the closed-loop
system at the iteration becomes unstable and states diverge. For example, if density
state is greater than the maximum density, there will be collision in the ARZ model.
Therefore, this training process cannot perform in a collision free fashion in real
traffic.

In Fig. 7.4, we choose the outlet control case to illustrate the RL learning process.
We plot the reward evolution for the closed-loop system with RL outlet controllers
that are obtained from training episodes 1, 100, 200, 400 and 800 respectively. In
addition, the reward of the setpoint control is also plotted as a baseline comparison.
It turns out that the initial reward is worse than the baseline performance. After 100
iterations of training, the outlet RL controller plotted with dotted blue line performs
even worse with reward decreasing with time and the lowest cumulative reward R =
-615.5. However, the RL performance improves after the iteration number increases
from 200 to 400 and reaches its best at episode 800. As demonstrated in this figure,
the learning process does not guarantee a monotonically improving performance.
Certain episodes can be even worse than the baseline case due to some iterations of
unsuccessful training.

State evolution, reward and control inputs

InFigs. 7.5-7.16, the initial condition is highlighted in blue. The actuated inlet and/or
outlet boundaries are highlighted in red. In other words, the red curves visualize the
control inputs for the setpoint control, backstepping control, P control, PI control and
the RL controllers in each case. Specifically, the closed loop results are compared
between the outlet backstepping controller and the outlet RL controller, as shown
in Figures 7.7-7.10, between inlet P controller and inlet RL controller as shown in
Figures 7.11-7.14, between inlet and outlet PI controller and inlet and outlet RL
controller as shown in Figures 10.9-7.18.

Figure 7.5 plots the evolution of density and velocity under setpoint control. The
setpoint control is open-loop that does not use feedback of the system. We observe the
persisting oscillations, although they appear lightly damped. We regard the setpoint
control as a baseline case against which the subsequent feedback control designs
should outperform. In setpoint control, the outlet and inlet boundary flow rates are
controlled to be constant (7.8), (7.9). As highlighted with red in 7.5, the product
of density and velocity values is constant at inlet and outlet boundary whereas the
boundary states of density and velocity oscillate over time.

Figures 7.7-7.10 present the closed-loop result of the outlet backstepping con-
troller and outlet RL controller. In Figures 7.7 and 7.8, the states are stabilized to
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Table 7.2 Closed-loop results comparison

| Lyapunov-based RL
Stability outlet|inlet outlet&inlet|outlet inlet|outlet&inlet
St 79.5| 84 140 121 204 139
SE 7.9 [10.5 12.6 5.5 94 9.5

spatially uniform steady state values by the outlet backstepping controller and outlet
RL controller, respectively. An interesting finding from comparing between the two
controllers is that RL learns a policy which produces a control input (red line in
Fig. 7.8) that closely replicates the backstepping control input (red line in Fig. 7.7).
The RL policy is developed without explicit knowledge of the differential equations
and parameters. It is trained iteratively on the nonlinear simulation model. As a
state-feedback controller, the RL policy produces an action for boundary input given
the current state. In contrast, the PDE backstepping state-feedback control law is
obtained by rigorous theoretical control design assuming perfect knowledge of the
model.

As shown in Fig. 7.10, both methods yield similar control input trajectories.
However, RL underperforms relative to backstepping in terms of the instantaneous
reward over time. The convergence of the L spatial norm represents the stabilization
of the closed-loop system. Unlike the finite-time convergence for the backstepping
controller shown with red line, the RL controller’s reward in blue takes a longer time
for convergence, about 3 min. The cumulative reward for the RL outlet controller is
R = —104.9 while the cumulative reward of backstepping is R = —81.7.

In the same fashion, we compare closed-loop results for inlet P controller and
inlet RL controller in Fig. 7.11-7.14. The incoming flow rate is actuated either with
the P controller or RL controller. The control inputs at the inlet are highlighted with
red in Fig. 7.11 and Fig. 7.12. As shown in the Fig. 7.14, the inlet RL controller
needs more than 4 min to converge, longer than the P control. Although the inlet
RL controller almost recovers the performance of the inlet P controller, we can see
from Fig. 7.13 that the RL control input is quite different than the P control input,
requiring longer convergence time and is oscillated.

Figure 7.15-7.18 describe the closed-loop results for PI controller and RL con-
troller, actuating the incoming and outgoing flow rates. We observe that the RL
controller achieves a better reward evolution in Fig. 7.17. The convergence of the
closed-loop system with RL is faster than that of the PI controller, and with a slightly
smaller cumulative reward. It could also be noted that control efforts are smaller for
the RL controller in terms of magnitude, as shown in Fig. 7.17. These results will
vary, however, with the PI controller gain selection.

The comparison of closed-loop results between the Lyapunov-based and RL ap-
proaches is summarized in the Table. 7.2.The stabilization result is mainly evaluated
by convergence time St and control effort Sg. The convergence time is defined as
the time instance such that the instant reward converges to zero r;—s,, = 0. We mainly
focus on the control efforts that varies around the nominal values g*. Therefore, the

control effort is defined as Sg = fOST |Uin.out(t) — g*|dt.
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Table 7.3 Performance improvement

| Lyapunov-based/baseline RL/baseline
Percent outlet | inlet outlet&inlet| outlet inlet |outlet&inlet
Jrrr 1.6% | 1.5% 1.5% 1.4% 1.6% 1.4%
Jiuer  3.4% | 2.5% 3.3% 3.9% 3.6% 4.0%
Jeomfore 30.6%|37.3%  30.1% |48.3% 47.8%| 47.9%

Figure 7.19 includes all the closed-loop results with the Lyapunov-based con-
trollers and their corresponding RL controllers. All of the Lyapunov-based feedback
controllers and RL controllers outperform the setpoint controllers. The RL agent
achieves sub-optimal performance compared to Lyapunov-based approaches. In ad-
dition, backstepping outperforms the P and PI controllers for stabilization of the
traffic flow. RL controllers almost recover the closed-loop results of the Lyapunov-
based design in the outlet control or inlet control cases. RL outperforms the PI
controllers when both the inlet and outlet boundaries are controlled. The aforemen-
tioned results are uncertain model parameters, which we will discuss in the next
subsection. Note that the reward in (7.24) is defined as the L2 spatial norm of the
state values without considering control effort. The RL controllers were design for
comparison with the stabilizing Lyapunov-based controllers, and thus control effort
was not penalized. However, RL controllers can be trained to consider control effort
by modifying (7.24) with a control effort penalty.

Other performance measures

Common traffic performance indices include total travel time (TTT), fuel consump-
tion, and travel comfort. These indices are calculated for the closed-loop system
with either the Lyapunov-based controllers or the RL controllers. The performance
indices are given by

T oL
Jrrr = / / p(x, 1)dxdt, (7.44)
o Jo
T pL
Jtuel = / / max{O, b0+b1v(x, t) +b3v(x,t)
o Jo
+ byv(x,t)a(x,t)}p(x, t)dxdt, (7.45)
T oL
Samion = [ [ (@t + o P)p e (7.46)
o Jo

where a(x, t) is defined as the local acceleration

As shown in Table. 7.3, the performance indices of each controller are compared
with their improvement percentage over the baseline setpoint controller. Among the
three performance indices, drivers’ comfort is the most significantly improved for all
Lyapunov-based and RL controls, since the stop-and-go oscillations are suppressed
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in the closed-loop system. For fuel consumption of total traffic, RL actually performs
better than its corresponding Lyapunov-based controller. This may be coincidental,
or could be related to RL’s control effort and the induced acceleration. In any case,
RL provides the flexibility to define the reward as fuel consumption, which can be
directly optimized. Backstepping does not provide this capability. We also see that
total travel time is only marginally improved, since the traffic dynamics are stabilized
to steady state and the average speed remains relatively similar.

Comparison study with partial knowledge of system

In the previous comparative study, we assume a perfect knowledge of the traffic
system for the Lyapunov-based controllers. In practice, model parameters are ob-
tained by calibrating the nonlinear ARZ PDE model with field data obtained from
loop detectors measuring the traffic flow rate or by high-speed cameras recording
vehicle trajectories. The model calibration process can be laborious. More impor-
tantly, it is hard to determine some model parameters such as the steady state density,
fundamental diagram and relaxation time. These macroscopic models are just that —
model idealizations of reality. In Chapter 5, see also [?], an adaptive output-feedback
controller is designed to stabilize the linearized ARZ model with a gradient-based
estimator for unknown relaxation time. The adaptive stabilization problem has not
been studied when the steady state is uncertain. In traffic field data, it is observed that
a certain steady state density in the congested regime possesses a significant spread
of flow rates. Therefore, it is hard to accurately determine the steady state for a real
world traffic system that is often periodically evolving, as exhibited in freeway traffic
data [?]. On the other hand, the steady states in the reward function encode our belief
in the current averaged and aggregated traffic condition which could deviate from
reality. Moreover, there are measurement errors in raw data. The data needs to be
pre-processed leading to more approximation and processing errors. In [?] and [?],
the ARZ model was calibrated with the Next Generation Simulation (NGSIM) traffic
data which records the trajectories of vehicles on a 500 m freeway segment over a
45 min rush-hour period. Data reconstruction is conducted to obtain the aggregated
state values. All in all, the Lyapunov-based control approaches cannot overcome the
limitation of model uncertainty when they are implemented in practice. In other
words, their performance is limited by the best prediction the PDE model can make.

Therefore, it is of practical relevance to evaluate the closed-loop performance of
the Lyapunov-based and RL controllers given partial or inaccurate models. Here we
investigate the performance of the Lyapunov-based controllers that employ incorrect
steady state density, and then compare with RL controllers obtained from a stochastic
training process.

We choose two representative scenarios characterized by the steady state density.
We define p, as the real steady state density while p* = 120 veh/km is assumed
by the Lyapunov-based feedback controllers. We consider p,, = 115 veh/km for the
outlet backstepping control case, representing that the actual traffic is lighter than
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the parameters used by the PDE backstepping controller. In the second scenario, we
consider p,, = 125 veh/km for the inlet control such that the actual traffic is denser
than the value employed by the P controller. For both scenarios, RL controllers are
trained in a stochastic environment where a steady state density value of the traffic
system p* is randomly chosen from a uniform distribution of the integer values
{115,120, 125} in each episode. Then the RL controllers are validated for each
specific scenario.

The RL learning curve is plotted in Fig. 7.20. Note that the steady state density
used to calculate the cumulative reward is randomly chosen at each episode, which
affects the initial condition and the associated steady state velocity in (7.1) during
training. The shaded area represents min/max of different actor-critic parameteriza-
tions, while the bold line measures the average performance. Similar to Fig. 7.19, it
should be noted that the performance of RL controllers do not monotonically improve
in the learning process as the number of training episodes increases. Additionally,
cumulative reward convergence for some initiations of the actor-critic parameters is
not guaranteed.

We observe that the RL controllers are more adaptable to the stochastic environ-
ment. Figure 7.21 shows all the closed-loop controller results in Scenario 1 where
the Lyapunov-based controllers assume a greater steady state density value than
the actual traffic environment. It is interesting to find out that all of the RL con-
trollers in blue outperform the setpoint control in green, with larger reward values.
Among them, the inlet RL controller ultimately performs the best. In addition, all
the Lyapunov-based feedback controllers in red have smaller rewards, indicating
the traffic states do not converge to the actual steady state value after applying the
controllers. Assuming an incorrect steady state density value deteriorates the closed-
loop stabilization results. The backstepping outlet controller, which performs the
best in a system with perfect knowledge from Section. 7.5, turns out to be the worst
controller in terms of cumulative reward in Scenario 1, as depicted in Fig. 7.21. This
observation demonstrates that Lyapunov-based control is sensitive to full knowledge
of the system dynamics, and even perturbing the steady state values can result in
worse performance than a baseline control method.

Scenario 1 of lighter in-domain traffic

As shown in Fig. 7.22, we apply the outlet backstepping controller to a nonlinear
ARZ model with lighter steady-state traffic density, p, = 115veh/km than the
controller assumes, i.e. p, < p*. The closed-loop simulation is run for 8 min,
since the stabilization requires a longer time. When we apply the PDE backstepping
controller in (7.11), which is constructed using p* = 120 veh/km, the traffic is
actually slowed down, leading to a reduction of velocity and an increase of density in
Fig. 7.22. The closed-loop traffic is more congested, due to the controller’s incorrect
model assumptions. In contrast, since the RL controller is trained in an environment
with stochastic conditions, where some episodes use a lighter traffic scenario, it
successfully stabilizes the traffic state to a uniform value. We find out in Fig. 7.23
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that the closed-loop system with the RL outlet controller converges close to the
actual steady state. This leads to a larger cumulative reward R = —534.3 for RL than
the backstepping controller R = —3093.3 in Fig. 7.24. Comparing the backstepping
control input and RL outlet control input in Fig. 7.25, we find out that backstepping
applies less control effort than RL. Backstepping’s discharging flow rate is less than
the actual steady state flow rate in the segment, thus unnecessarily holding vehicles
back from leaving the segment and thus exacerbating traffic congestion. As shown
in Fig. 7.22, traffic congestion forms and propagates backwards to the segment inlet,
whereas there is no such congestion in Fig. 7.23.

Scenario 2 of denser in-domain traffic

In Fig. 7.26, we apply the inlet P controller to a nonlinear ARZ model with denser
traffic p, = 125 veh/km than the controller assumes, i.e. p, > p*. The inlet controller
in (7.14) assumes p* = 120 veh/km to design the control gain. As a result, the P
controller applies a larger incoming traffic flow rate than it should, since it receives
the feedback of slower velocity than the incorrect reference value. This creates
congestion in the downstream traffic. As shown at the inlet of the Fig. 7.26, the traffic
density increases while velocity reduces. In contrast, the RL controller trained from
the stochastic environment alleviates this situation in Fig. 7.28, and also exhibits an
improved cumulative reward. However, the RL controller cannot stabilize the system
to the true steady state p,, as shown by the blue reward initially increasing and then
decreasing. Figure 7.29 describes the evolution of the P and RL inlet control inputs.
The incoming flow rate is eventually regulated by the inlet controllers to the real
steady state value, at the inlet. However, neither the RL controller nor the P controller
successfully stabilizes the states to their true steady state values across the segment,
as highlighted in red Fig. 7.26 and Fig. 7.28. This is also demonstrated by the reward
evolution in Fig. 7.28. However, the RL controller does not diverge as quickly, and
in this sense is more robust.

In both scenarios, the performance of the Lyapunov-based controllers deteriorates
with small errors to the assumed steady state conditions. Comparing the state and
reward evolution with outlet control and perfect system knowledge in Fig. 7.7, 7.9 and
Fig. 7.22,7.24 in Scenario 1, with the same comparison between Fig. 7.11, 7.13 and
Fig. 7.26, 7.28 in Scenario 2, the Lyapunov-based control systems do not converge to
the actual steady states and the corresponding rewards do not converge to 0. On the
other hand, the RL controllers trained in a stochastic environment perform worse in
the deterministic setting, but are more robust to steady state errors compared to the
Lyapunov-based controllers, as shown in Fig. 7.24 for Scenario 1 and in Fig. 7.28. It
should also be noted in Fig. 7.27 and Fig. 7.28 that RL controllers do not guarantee
convergence of the closed-loop system, despite some improvements of the reward.

Simulation results show that RL controllers achieve comparable performance
with the Lyapunov-based controllers in a traffic system with perfect knowledge of
model parameters, with slightly longer convergence times. The analysis becomes
more interesting when we consider the reality of model uncertainty and imperfect
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knowledge. Specifically, the RL controllers outperform the Lyapunov-based con-
trollers when the assumed steady-state conditions contain errors. Importantly, we
find the Lyapunov-based controller loses its stabilizing properties, whereas the RL
controllers obtained from a stochastic training process maintain stability or at least
slow down divergence. Nevertheless, the RL controllers are obtained from thousands
of iterative training episodes, and reward convergence is not guaranteed. For practi-
cal considerations, RL controllers should be developed in a simulation environment
where trial and error are allowed.

7.6 Notes and References

In this chapter, we have address the freeway traffic control problem within a reinforce-
ment learning paradigm. We are motivated by two challenges currently unaddressed
in the literature: (i) Controllers natively designed for nonlinear macroscopic traffic
dynamics do not exist, and existing stabilization results are local and derived with
linearized systems; (ii) Model-based controllers depend on accurate models.

We have formulated a state regulation control problem for the ARZ PDE model
via boundary control and then developed a RL control approach based on the PPO
algorithm, which falls within the class of policy gradient methods. PPO ultimately
yields a state-feedback boundary controller from iterative interactions with a simu-
lation environment, as opposed to direct synthesis from a mathematical model. The
performance of the RL controller is compared with a PDE backstepping controller,
a P controller, and PI controllers.

Comparative assessment of RL and backstepping

RL controllers nearly recover the stabilization performance of the Lyapunov-based
PDE control approaches for a system with perfect knowledge of the model. In a system
with partial knowledge where the steady state traffic is lighter or denser than what
we assumed in constructing Lyapunov-based controllers, the RL controller obtained
from a stochastic training process outperforms the Lyapunov-based controllers.

However, any apparent advantage of the RL approach, except for the fact that it is
expertise-free, is questionable:

* The RL controllers are obtained by conducting about one thousand training
episodes on a simulation model. Collision-free training is not possible in real
life traffic, nor is the iterative training guaranteed to converge. Although RL
demonstrates learning (i.e. adaptation) potential under uncertain and changing
conditions, it is neither simple nor a fully safe substitute for model-based control
in real traffic systems. For real world implementation, it is an active research area
to develop safe RL strategies with some safety constraints guaranteed. Readers
are referred to a more exhaustive review on this topic [?], and constrained policy
optimization approach [?].
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* In the “partial knowledge” scenario, the RL control is given an unfair advantage
of being trained. In a real traffic application, the ARZ model, calibrated on one
data set, would have to be recalibrated to accommodate parameter shifts due to
changes in weather, evolving commute patterns, discrete events, and other big
uncertainties. This poses a major challenge for the RL method because the con-
troller’s re-training would require first a recalibration of the ARZ model, with the
new data. No such challenges are faced by the adaptive backstepping controllers
in Chapter 5 which perform online estimation and controller adjustment.

RL versus Extremum Seeking

Extremum Seeking (ES), a real-time adaptive optimization technique, is an alter-
native to RL for tuning controller gains in a model-free fashion. The algorithms
in [?] [?] [?] can be applied for offline learning of feedback laws based on simu-
lation models, as with RL and the ARZ model in this chapter. There even exists
an ES algorithm [?] which is designed for online tuning of feedback laws and is
equipped with online convergence guarantees. In ES, a small excitation is used to
perturb the feedback gains being tuned and to produce estimates of the gradient of a
cost function. Convergence to a neighborhood of the optimal gain values is proved
by means of averaging analysis and singular perturbation theory. While performing
the same task of learning a reward-maximizing feedback law, RL techniques do not
possess convergence guarantees. In contrast, guaranteed convergence is the hallmark
of controller training by Extremum Seeking.

The traffic control community would be well advised to give the ES training
techniques at least the same amount attention as is given to the heuristic techniques
traditionally used in the training of RL controllers. ES has been used with experimen-
tal success, and even as a technological game changer, in a number of applications
that mathematically resemble, and are even physically analogous to traffic: charged
particle accelerators, lasers in chip manufacturing, elongated combustion chambers
with thermoacoustic instabilities, and other applications.

In fact, the reader need not go far to get acquainted with the power and advantages
of Extremum Seeking. In Chapter 14, maximization of a reward in the form of outflow
through a bottleneck is accomplished using ES. Moreover, this is accomplished
without offline training and with a guarantee of online convergence.

Possible advances with RL

The traffic performance on ramp, such as total waiting time, can be incorporated into
the reward function and the evaluation of the mainline traffic under RL control.

It is worth exploring the incorporation of elements of Lyapunov-based designs,
which provide stability guarantees, in order to endow the RL controllers with faster
learning rates and more robust performance.



142 7 Comparison of Backstepping with Reinforcement Learning
Code availability

All the data and experiment codes are made available online. https://github.com/saehong/RL-
ARZ-PPO.
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Fig. 7.4 The reward evolution for the closed-loop system with outlet RL controller that is obtained
for different episode numbers k.
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Chapter 8
Two-Lane Traffic Control

8.1 Modeling and Controlling Two Lanes—by Four PDEs and
Two VSL Inputs

The basic ARZ model, such as the one for which control design was proposed in
Chapter 3, is applicable to freeways with one or more lanes. However, modeling
traffic in which there are lane changes using a model that is a physical equivalent of
gas flowing through a thin duct, is less precise than employing a model in which lane
changes are specifically accounted for. In this chapter we pursue a control design
in which traffic takes place in two lanes, each lane has its own density and velocity
states, and there is density and flow “exchange” between the lanes when significant
density and flow differentials exist between the lanes, as in real traffic.

The Chapter 3 treated multi-lane freeway traffic cuamulatively as a single lane by
assuming averaged velocity and density over cross section of all lanes. The individual
dynamics of each lane and inter-lane interactions were neglected. In fact, the different
velocity equilibria in the multi-lane problem give rise to lane-changing interactions
and further lead to traffic congestion [?]. To address the phenomenon, a number of
macroscopic multi-lane models [?, ?, ?, ?] have been developed from microscopic,
then kinetic to macroscopic descriptions. In this chapter, we adopt the multi-lane
ARZ traffic model by [?, ?] to describe a two-lane freeway traffic with lane-changing
between the two lanes. Lane interactions appear as interchanging source terms in
the system, leading to more involved couplings and a higher order of PDEs. The
complexity of the PDE model for multi-lane problem is greatly increased compared
to the one-lane problem.

The two-lane traffic is modeled by an appropriate extension of the basic ARZ
model. With one density and one velocity state per lane, the two-lane traffic is mod-
eled using four first-order hyperbolic nonlinear PDEs. Lane-changing interactions
between the two lanes lead to exchanging source terms between the two pairs of
PDEs. Based on the driver’s preference for the slow and fast lanes, a reference
system of lane-specific uniform steady-states in congested traffic arises.

155
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To stabilize traffic densities and velocities of both lanes to their steady-states, two
distinct VSL inputs are applied at the outlet boundary, controlling the traffic velocity
of each lane. It is not possible to stabilize traffic to distinct and lane-specific steady
states using a single ramp-metering input.

In terms of the structure for control design, the ARZ system of four physical
PDEs can be regarded, in the Riemann variables, as what we refer to as a (2 +
2) X (2 + 2) heterodirectional hyperbolic system. Two inputs (VSL) are applied at
the downstream boundaries of two PDEs that convect in the upstream direction.
The task of a stabilizing control law is to sever the coupling of the two additional
downstream-convecting PDEs with the upstream-convecting ones.

In comparison with the basic (1 + 1) X (1 + 1) ARZ model of Chapter 3, the
additional challenge is to also deal with the mutual coupling of the two upstream-
convecting PDEs, as well as the mutual coupling of the two downstream-convecting
PDEs.

Using a backstepping transformation, we map the coupled heterodirectional hy-
perbolic PDE system into a cascade target system, in which the traffic oscillations
are damped out through actuation of the velocities at the downstream boundary. Two
full-state feedback boundary control laws are developed. We also design a collocated
boundary observer for state estimation with sensing of the densities at the outlet.
Output feedback boundary controllers are obtained by combining the collocated ob-
server and full-state feedback controllers. The finite-time convergence to equilibrium
is achieved and a performance improvement in fuel consumption, drivers’ comfort
and total travel time is demonstrated with the proposed output-feedback controllers
for some parameter choice, compared with the open-loop system. The proposed
output-feedback design is also validated for different congested traffic scenarios and
compared with one-lane backstepping and PI control designs.

We limit ourselves to a two-lane freeway purely for notational convenience and
for the sake of clarity. The clutter of sums and integer subsripts for enumerated
lanes would impede comprehension of how multi-lane traffic is dealt with by VSL
boundary control. It is straightforward to extend the results of this chapter to a
freeway with N lanes, using N VSL inputs, one for each lane.

8.2 Two-lane Traffic ARZ Model

The two-lane traffic on unidirectional roads is described with the following two-lane
traffic ARZ model by [?, ?]. We use two VSL at the outlet to regulate the exiting
velocities of the fast lane and slow lane traffic. The two-lane traffic ARZ model is
given by
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f » | VSL

S » | VSL

Fig. 8.1 A unidirectional freeway segment of the fast and slow lanes, with a VSL for each lane
regulating the exiting velocities.

1 1
Orpr + Ox(pivy) ST T T Pr (8.1
1 1 Vv — v
;i (prve) + 0x (pevy) — (YPr)Oxvy SPsVs = PVt W, (8.2)
S f f
1 1
atps + 6x(psvs) :YTfpf - Fsps’ (8.3)
1 1 V(ps) —v
O (psvs) + 8x(psVZ) - (yps)axvs :YTprf — = PsVst+ ,‘L&e‘)s) 8.4)
f Ts Tq

The traffic density p;(x,t) and velocity v;(x,7) (i = f, s) are defined in x € [0, L]
for position, ¢ € [0, o0) for time, where L is the length of the freeway segment.

The above nonlinear hyperbolic PDEs consist of two subsystems of second-
order nonlinear hyperbolic PDEs, each describing one-lane traffic dynamics. Lane-
changing interactions and drivers’ behavior adapting to the traffic appear as source
terms on the right hand side of PDEs. The variable p;(p;) is defined as the traffic
density pressure

N\
pi(pi) = vm (&) : (8.5)
Pm
which is an increasing function of density p;. vy, is the maximum traffic velocity,
Pm is the maximum traffic density and the constant coefficient y € R, reflects the
aggressiveness of drivers on the road. The parameter 77 is defined as relaxation time
that reflects driver’s behavior adapting to the traffic equilibrium velocity in the lane
i. The parameter 7; € R, describes the driver’s preference for remaining in lane i,
which relates to both lanes’ density and velocity. The equilibrium velocity-density
relationship V(p;) is given in the form of the Greenshield’s model,

V(pi) = vm (1 - (ﬁ)y) . (8.6)

Pm

The equilibrium flow-density relation Q(p;) is then given by
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m

\7Y
Q(pi) = Pivm (1 - (&) ) (8.7)

The Greenshield’s model is proposed for equilibrium velocity-density relation of
cumulative one-lane traffic. However, distinct velocity equilibrium does exist in each
of the two lanes [?, ?]. The two-lane control model is sketched in Fig. 8.1. The
lane-specific steady traffic velocities will be discussed in the following section.

Driver’s preference over two lanes

Our first step towards developing a control design for a two-lane model is to linearize
the nonlinear hyperbolic system (p;, v;) around uniform steady-states (p}, v}). We
obtain the following equations that need to be satisfied by the steady-states

1 * 1 *
— X — —p* =0, 8.8
Tsps Tfpf (3.8)
pr(V(pf) —vy)
ip:v: - Tfp;(v? + T—fe =0, (89)
1 1 pX(V(pkX) —v¥)
TRV el B =0, (8.10)

The steady-state density-velocity relations are defined based on the Greenshield’s
model. Thus the steady-states (pf, vF, p¥, v}) need to satisfy

pf =0opl, (8.11)
*\ Y
Vi =Vm (l—rf(p—f) ), (8.12)
Pm
where v;‘ and v} differ from single-lane V(p;). The ratio coefficients r¢ and ry are
defined as

Y Te Te
L D I
1+((T) =+ T

re = 7 —, (8.13)
1+ % + TT
Te e
I+ 4+ 73 (o)
g =———— (8.14)

T.(‘ T()
_ft s
1+ =+ T

The parameter o = T;/Ty defines the drivers’ preference for the fast lane over the
slow lane according to (8.11).
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A A * [k
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(a) velocity-density relation (b) fundamental diagram

Fig. 8.2 Steady states of one-lane traffic, and two-lane traffic including a fast and slow lane

Compared with the single-lane Greenshield’s model, the relations of steady-state
traffic velocities v and densities p} depend on the drivers’ lane-changing preference
parameter 0. Assuming that the drivers, overall, prefer the fast lane over the slow
lane, we use Fig. 8.2 (o0 > 1,7 = 1) to show the equilibrium velocity-density
relation and the fundamental diagrams of the single-lane, the fast and slow lane. p,,
represents the equivalent maximum density of the single-lane. The actual maximum
density in the fast lane pf" and the slow lane pg* are related to pp, by

o =rips, (8.15)
o =[rsps. (8.16)

If the drivers prefer the fast lane, the decrease of velocity gets steeper in the slow
lane and less steep in the fast lane, and then we have

oc>1 = rp<1<rs. (8.17)

At the same density, the fast lane traffic is "more tolerant to risk" of high density
than in the single-lane case, and the slow lane traffic is "less tolerant to risk" than
in the single-lane case. As a result, the traffic flow in the fast lane is higher than in
the slow lane at the same density in the fundamental diagram shown in Fig. 1. If the
drivers prefer the slow lane, it holds that

o<l = rp>1>rs. (8.18)

In general, the activities of lane changing segregate the drivers into the more "risk-
tolerant" ones in the fast lane and the more "risk-averse" ones in the slow lane. The
risk-tolerant drivers prefer to drive with a faster speed at the same density, compared
with the risk-averse drivers.
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VSL control of linearized two-lane ARZ Model

We assume that a constant traffic flow is entering from the inlet boundary x = 0
of the two lanes. Two VSL implemented at the outlet Us(¢) and U(z) actuate the
traffic velocity variations for the fast and slow lanes respectively. So, the boundary
conditions are given as

_ PV
p£(0,1) =000 (8.19)
_
ps(0,1) =0:0.0)° (8.20)
ve(L, 1) =Us(t) + vy, (8.21)
ve(L, 1) =Us(1) + vy (8.22)

The control objective is to stabilize and to homogenize the traffic upstream with the
VSL. Observers for state estimation are also designed by measurements of boundary
values around the steady-states,

ys(2) =ps(L, 1), (8.23)
ye(t) =pe(L, 1). (8.24)

Each lane’s exiting traffic density is measured, which in practice could be obtained
by video cameras.

Next, we linearize the above nonlinear hyperbolic system (ps, v¢, ps, vs) around
the steady-state (pf,vF, pF,v}), satisfies (8.11)—(8.12). The deviations from the

steady-states are defined as p; = p; — pl?‘, Vi=v; — v?,i =fs.
Pr=pr—pf, Vr=vi—vy, (8.25)
Ps =ps — pY, Vg=vs—v}. (8.26)

The linearized hyperbolic system is
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~ - . 1. 1.
0:Ps +vi0xPs + plOxVs = — —ps + —Pr, (8.27)
. T
~ ~ N SR
01 Pt + Vi Ox Pt + pf OxVt =—Ps — — P (8.28)
Ts Tf
_ _ L vE=vy_  1vE=vi
0; Vs + (V: - VP:)asz =- Fsp—§ps + I_} o Pf
. psV’ (p¥) — Vs
+ FS(Vf — V) + —T:e : (8.29)
1 vi-vf 1 vy =}
8.r * RO e = — 5, — — 5
(e + (Vi — yp§)0x T T pF s~ oF Pt
1 . . pV(pf) - ¢
+ Tf(vS —Pf) + —Tfe , (8.30)
with the linearized boundary conditions
ox
ps(0.1) = = = 55(0,1), (8.31)
"
- Pt _
p£(0,1) =~ v_*Vf(O’ 1), (8.32)
f
ﬁf (L,t) =Ug(z). (8.34)

In order to diagonalize the spatial derivatives on the left hand side of the PDEs,
we convert the above linearized hyperbolic system into the Riemann variables

*
__YPi
Wi =—=pPi + Vi,

i

(8.35)

v =P;. (8.36)
Furthermore, in order to design a backstepping boundary controller, we scale the
state variables 75 and ¥ with functions that depend exponentially on the spatial
variable x, in order to cancel the diagonal terms in the source terms of the equations.
The Riemann variables w¢ and W remain the same, whereas the Rieman variables
75 and V¢ are scaled as

aVV

— 11 ~

Vg =exp (—x) Vs, (8.37)
H1
aVV

r =exp (ﬁx) Bt (8.38)
H2

With the Riemann and scaling transoformations, we arrive at a scaled coupled
4 x 4 first-order hetero-directional hyperbolic system in (W, Wg, Vs, V¢),
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B Ws +vi0xWs =a)" W + ayy we+al) v + aly’ vy, (8.39)

O Wi + VO Wi =y W + ayy" Wi+ ay," Vs + ay vy, (8.40)

Bvs — (YpI = vi)0xVs =ay " W + ay, Wi + ajy v, (8.41)
B vr — (ypF — vi)0xvr =ay W + ayy we + as) v, (8.42)
W (0,1) =ksv5(0,1), (8.43)

we(0, 1) =keve(0, 1), (8.44)

vs(L,t) =L,Us(1), (8.45)

Vs (L, 1) =liUe(2), (8.46)

where the constant boundary coefficients k; are defined as

* ¥
k= -0V (8.47)
Vi
The constant coeflicients /¢ and [ are defined as
aVV aVV
Is = exp (LL) , Ily=exp (ﬁL) ) (8.48)
H1 H2

The in-domain coefficient matrix A(x) of the PDE system (8.39)—(8.42) is ob-
tained by applying the spatial transformation (8.37)—(8.38), given by the matrix

I 0
T()C) = [ 252 TVV(x) s (8.49)
where
aVV
exp | tx 0
TV = ( H ) v | (8.50)
0 exp( /ﬁ x)

to the constant matrix A obtained after applying the conversion to the Rieman
variables to the PDE system (8.27)—(8.30), which is given in the block form

AWW AWV
A= [Avw AW}, (8.51)

and whose blocks are defined as
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R B etk 724 1 v wHYps
AV = e T, ypy I yp}
- 1 vf—vt*+yp; 1 1 vs*—v;"+yp; ’
Tt yps Tt ypy
v 1 pEvO-(rpF v
AWV = I yp3 T 7
T pFv)-(ypE-ve) | vE-vE ’
T; Yoy Ti yp}
_L _ lv:—v; LV:_VS*
AVW = ¢ T ypy T yp}
I TS O
T ypy e T yp}
[ v-woypr  vvEop)
* *
AVY = Ty *Vp:‘ . T; R ):Pf .
_1 Vg —Vy =YDy 1 Vs V¢ —’YPf
Tt yp3 I yp}

In the derivation, the following property is used:
A=TAT™". (8.52)

Among the blocks of the transformed matrix A(x), the block A" is constant and
the blocks A"V (x), AV (x) and A"V (x) are spatially varying.

We consider the congested regime in [?] where steady-state traffic density distur-
bances convect downstream and the velocity disturbances travel upstream. Therefore
the conditions

vi—ypi <0, (8.53)
v —ypf <0, (8.54)

hold for the characteristic speeds of v;. States w; convect downstream while states
7; propagate upstream. We denote the transports speeds as

€1 =v, (8.55)
€ =vf, (8.56)
u1 =(yp3 =vy), (8.57)
w2 =(ypf —vy). (8.58)

The steady velocity of the fast lane is larger than that of the slow lane, the constant
transport speeds satisfy the following inequalities,

-1 < —ur <0< e€ <e. (8.59)

The flow diagram of (W;, ¥;)-system is shown in Fig. 8.3 . The above 4 X 4 first-
order hyperbolic system is composed of two coupled second-order heterodirectional
hyperbolic systems. We use two VSL to damp out the oscillations to zero from the
outlet.
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Fig. 8.3 Flow diagram of linearized two-lane ARZ model

8.3 Full-state Feedback Control Design

Following the full-state feedback design introduced in Chapter 2.3, we introduce the
backstepping transformation to the scaled (Ww;, ¥;)-system in (8.39)—(8.46),

as(x, 1) _ [Ws(x, 1)
af(x,t)] ‘[wf(x,;) ’ (8.60)
Bs(x,t)| _[vsCet)| [ [Kun Kia| [ws(x, 1)
|:ﬁf(x’ t)] B [vf(x’ t) \/0‘ [KZI KZZ] \;f/f(x, t):| df
Ly L vs(x,1)
g A P [ @)

The kernel variables {K(x, &)} and {L(x, &)} evolve in a triangular domain 7~ =
{(x,€) : 0 < ¢ < x < 1}. Taking derivatives with respect to time and space on both
sides of (8.60)—(8.61) along the solution of a target system, we obtain the kernel
equations that govern the kernels {K (x, &)} and {L(x, &)}.
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H10xK 1 — €10:K11 = c_lYV]wKH + &EVIWKQ + d‘l)le” + C_lzlelz, (8.62)
H10xK12 — €0:K1p = dYVZWKH + ﬁEVZWKu + ﬁrzwLn +C_152WL12, (8.63)
H20x K21 — €10:K>1 = dmme + d;’lezz + drleZI +6751WL22, (8.64)
,uZaszz - Ez@szz = C_IYVZWKzl + C_IEVZWKQZ + ﬁ‘l)zw Lo + ﬁZQW L, (8.65)
H10x L1y + p10g Ly = ﬁ;le]z +(i¥1WK1] +6_l;]WK12, (8.66)
M10xL12 + o0 L1y = ajy Ly + ay, Ki + ay,” Ky, (8.67)
M20x Loy + u10g Ly = ayy Loy + @)} Koy + @y, Ko, (8.68)
,llzaxLzz + yza_szz = (irzvl,y + (i‘l/2WK21 + a_gszzz, (8.69)
de (x) de (x)
Ki(xx) = -——=, Kpp(x,x) = ——2—, (8.70)
€1+ 1 €+
de (x) de (.X)
Kai(x,x) = ——=—,  Kn(x,x) = ——=—, 8.71)
€1+ (2 €+ (2
k ay, (x)
Lin(x.0) = 22K (x,0),  Lip(ex) = ——2— (8.72)
i Hi— H2
e ks ayy (x)
Lia(x,0) = ——K12(x,0),  Lai(x,x) = ———, (8.73)
H2 M2 — M1
k
La(L.) =0, Ln(x,0) = ZHKa(x,0) (8.74)

The well-posedness of the kernel equations is proved using the method of character-
istics and the successive approximations, following the result for a general class of
kernel system in [?]. There exists a unique solution K, L € L®(7"). Therefore, we
establish the invertibility of the backstepping transformation (8.60), (8.61) and can
study the stability of the target system due to its equivalence to the (W;, v;)-system.
More details on the target system and the kernel equations are included in [?]. It
should be noted that we impose an artificial boundary condition Lj; (L, &) in (8.74)
for the well-posedness of the kernel equations. This leads to one degree of freedom
in backstepping transformation of the hyperbolic system as well as the associated
control design. The stabilization of the target system is achieved with two controllers
and the one degree of freedom enables the coordination between the two VSL.

With the backstepping transformation and the kernel equations, we map the
(Wi, v;)-system in (8.39)—(8.46) to a cascade target system
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s = — vy asa) " as +ay ap+al)’ (x)Bs + ayy’ (x)Br
¢ [Contoaiene+ [ ban o @ae
¢ [Centop@der [entop@aE  ©15)
Orar = — vy Ocaray)" as + ay,"” ar + ayy’ (x)Bs + ayy’ (x)Br
+ /Ox ba1 (x, &) as(€)dE + /Ox by (x,&)ay (£)dé

+£<m@8&@%+£<mw@m@%, (8.76)

0 Bs =(yp% = v)0xPs, (8.77)
0Bt =(ypy — vi) B+ 0(x)Bs(0,1), (8.78)
a5(0, 1) =kgBs(0, 1), (8.79)
(0, 1) =ks(0, 1), (8.80)
Bs(L, 1) =0, (8.81)
Br(L, 1) =0, (8.82)

where the spatially varying parameter matrices B(x,¢) and C(x, &) are given by
B(x,&) =AYV (x)K (x,&) + / i B(x, )K (s, £)dé, (8.83)
3
C(x,&) =AY (x)L(x,&) + /x C(x,s)L(s,&)d¢, (8.84)
£

and 6(x) is obtained from the kernel variables K»;(x,¢) and Ly (x,€&), 0(x) =
—€1ksKo1(x,0) + p1 Loy (x,0).

The boundary conditions (8.45), (8.46), along with the boundary conditions
(8.81), (8.82), as well as the backstepping transformation (8.61), yield the full-state
feedback control laws, to be stated in Theorem 8.1.

The following stability result holds for the target system.

Lemma 8.1 Consider the target system (8.75)—(8.78) and the actuated boundary
conditions (8.79)—(8.82). The equilibrium ay = ay = By = By = 0 is stable and
reached in finite time

L L L
tf =— + . (8.85)
S A S
Proof By solving (8.78) and (8.82) directly, we obtain that after r > ﬁ,
f f
Br(x,1) = 0. (8.86)

Using the cascade structure of the S¢-system, we have
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Bs(s,1) =0 (8.87)
aftert > —L—— + —L . Then, after ¢t > L 4+ L 4 L \eobtain that
YP; =V YPI =V YDPg —V YPs ~Vs Vs
ag(x,t) =0, (8.88)
as(x,1) =0 (8.89)
which concludes the proof. O

By employing the properties of the backstepping transformation and its inverse,
we arrive at the main stabilization result.

Theorem 8.1 Consider the linearized two-lane traffic ARZ model with the boundary
conditions in (8.39)—(8.46), the initial conditions Ww;(x,0),7;(x,0) € L* ([0, L])
and the following control laws

vy L * *
Us(t) =exp (_ail‘) / 7[): KII(L’ f) (Ps(fa t) - ,0:) + ’YIif KlZ(L’ é:) (pf(§7 t) - p?)
M1 0 P Pt
+ | K1 (L, &) + Ly (L, &) exp (%f)] (vs(&,1) = vY)
+ | KL, &) + Lia(L, £) exp (%5)} (ve(é,1) - v¥) de, (8.90)

vy L * *
Ug(1) =exp (—%L) /0 );;D: Ky (L, &) (ps(&.1) — p¥) + y’:*f Ky (L, &) (pi(€,1) — pf)
s f

vy

Ky (L&) + Ly (L, &) exp (62_115)} (vs(&,1) = v7)

+

+

KZZ(L’ f) + L22(L’ é':) exp (%‘f)} (Vf(fs t) - VF) dé:’ (891)

where the kernels {K} and {L} are obtained by solving the kernel equations (8.62)—
(8.74). The steady-states (p}, vy, p3,vy) are stable and reached in finite time t¢
given in (8.85).

8.4 Collocated Observer and output-feedback control

In this section, we develop a collocated observer by taking measurement of density
states at the outlet of the segment defined in (8.24). Using the state estimates obtained
from the observer design and the full-state feedback control laws, we construct
output-feedback controllers.

An anti-collocated observer can be also designed by taking measurement of
velocity states ¥5(0, 1) and v¢(0, 7) at the inlet. The anti-collocated observer design
is trivial as it involves little more than a copy of the (Wg, Wy, Vs, V¢)-system. More
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importantly, we limit ourselves to the collocated observer design because of its
practical benefit in the implementation along with the full-state feedback control
design where the sensor is placed near the actuator.

Collocated observer design

For state estimation of the scaled system in (8.39)—(8.46), we generate the measure-
ments of wg(L,t) and w¢(L, t) from (8.35), namely, in the following fashion:

Yo(t) =g (L, 1) = 7”5 Bs(L,1) +7s(L, 1), (8.92)
Yi(r) =e(L.1) = %ﬁf@, 0) +5e(L. 1), (8.93)
f

Thus, the values of Y, (¢) and Y;(¢) are obtained from y(¢) = gs(L, ), y¢(¢) = p¢(L, t)
and control inputs Us(t), U(t),

Yi(1) =7pp: Vo) + Uy(1), (8.94)
(o) =S i() + U ). (8.95)
f

The observer equations (Wg, Ws, ils, ilf) that estimate (Wg, Wg, Vs, vr) read as follows:

O Ws = —vIdeWsay" W +as we+ay (x)is + aly’ (x)is
+p11()Ws(L, 1) + pra(x)we(L, 1), (8.96)
W = — Vi O Wray," W + as we + ay,” (x)is + ay,” (x)is
+ p21()Ws(L, 1) + pa2 (x)We(L, 1), (8.97)
Oty =(yp¥ — v)0xiis + @y}’ (x)Wws + ayy’ (x)we +ay, (x)is
+qu()Ws(L, 1) + g2 (x)we(L, 1), (8.98)
Aty =(ypf — vi) sl + ay” (X)W + ayy” (x)Wr + asy (x)is
+qa1 (X)Ws(L, 1) + qa2(x)We(L, 1), (8.99)
Wws(0,1) =kss(0,1), Wwe(0,1) = kel 5 (0,1), (8.100)
as(L,t) =L Us(t), g (L,t) = 1;Us(t). (8.101)

The output injections in (8.96)—(8.99) are defined as

We(L, 1) = Ys(t) = Ws(L, 1), (8.102)
We(L, 1) = Ye(t) — we(L, 7). (8.103)
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The observer output injection gains matrices P(x) and Q(x) are to be designed so
that the estimation error system is driven to converge to zero in finite-time. The
error system (Ws, Wy, Vs, Vy) is straightforward to derive by subtracting the observer
(8.96)—(8.101) from the original linearized system (8.39)—(8.46),

O Ws = — VI 0xWs +a " We +ay we+al)” (x)vs + aly” (x)vy
= pri()Wws(L, ) = pra(x)we(L, 1), (8.104)
s = — vy O W + @y Wg + ayy” Wi + ay;” (x)Vs + ay,’ (x)vr,
= pa1(xX)Ws(L, 1) = poa(x)we(L, 1), (8.105)
0,5 =(ypk — vZ)OxVs + ayy” (x)ws +ayy" (0)we +ay, (x)ve
=g (x)Ws(L, 1) — qr2(x)we(L, 1), (8.106)
O Ve =(ypf = vi)OxVi + ay)” (X)W + ayy’ (xX)Wr + @y, (x)Vs,
= q21(xX)Ws(L, 1) = g (x)we(L, 1), (8.107)
W (0, 1) =ksv5(0,1), (8.108)
we(0,1) =k (0, 1), (8.109)
Vs(L,1) =0, (8.110)
vy (L,t) =0, (8.111)

where the estimation errors are defined

§'<
Il
%1

W, (8.112)
-4 (8.113)

Vi

<<
I

We then apply the backstepping transformation to the error system given by

Ws(x, t) _ és(x,t) L My Mi» as(f t)
e A L [ PR T
Vs(x, 1) Bs(x 1) L Nit Nia| [as(€,1)
ve(x, t)] Br(x,1) ‘/x' Noi sz] &5 (&, l‘)] dé, (8.115)

where the kernels {M (x, &)}, { N (x, &) } evolve in the triangular domain 7~ = {(x, &) :
0 < x < ¢ < L} and are defined later. Then we obtain the following cascade target
system
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Oplts = — VE0xds + @) & + @) (x)Bs +ays” (x)fr
L . L .
. / i1 (6, )P (€)dE + / dis (e, )7 () de. (8.116)
Oplp = — vy + @y’ (x)Bs + @y (x)fr
L . L .
. / 1 (5, €V (E)dé + / i (5, €7 (£)dé, (8.117)
B =(yp¥ — VOO B + @l (O
L . L .
s f Fir(e. )P (6)de + / Fia(r. )35 (£)dé. (8.118)
0:Pr =(ypf — vi)OxPr + a5y (x)Ps
L . L .
+ / (e, )P () de + / P, 6B (£)de. (8.119)

L

ds(o’ t) :ksﬁvs(o’ t)’ d’f(o’ t) = kfﬁvf(o’ t) - / /l(-x)d's(x’ t)dé:, (8120)
0

Bs(L,1) =0, ff(L,1) =0, (8.121)

where the coefficient matrices {D(x, &)} and {F(x, &)} are given by
D(x,&) == M(x,6)A™" + /X M(x,s)D(s, &)dé, (8.122)
£
Fx.) == NwOA™ + [ N o) F(s.e)de (3.123)
&

The spatially-varying coefficient A(x) is obtained from the kernel variables
A(x) = M21(0,x) — keN2p (0, x). (8.124)

Lemma 8.2 Consider the target system (8.116)—(8.119) with the boundary condi-
tions (8.120)~(8.121). The equilibrium &, = &y = fs = fr = 0 is stable and reached
in finite time

+— . (8.125)

Proof Noting that the cascade structure of s, ¢f and S, S system, 3 variables appear
as the right hand source terms in & equations and through the inlet boundaries. The
integral of variable ¢ enters the boundary condition of &. Therefore we solve
the target system explicitly, in several steps. The S-system is independent of the &
system. Given the homogeneous boundary conditions at x = L in (8.121), and given
that the integrals in the ﬁs, ﬁf systems are forward (from x to L, not from 0 to x),

1 3 = 3 = 1
after r > o We have that Ss(x,1) =0, Sy (x,f) =0. When ¢ > T the

f
a-system becomes
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Opty = —viOxls + ay)” s, (8.126)
Opr = —vF O s + ay,” d, (8.127)
@s(0,1) =0, (8.128)
L
&¢(0,1) = — / A(x)&s(x, 1)dE. (8.129)
0

1 1
After t > o + Yo

another time period v% Therefore, @-system eventually identically vanishes after ¢,

we have that &(x,¢) = 0. Then &¢(x,t) = 0 follows after

which concludes the proof. O

Taking spatial and temporal derivatives of the backstepping transformation
(8.114), (8.115) along the target system (8.116)—(8.121), then plugging the result
into the error system, we obtain the kernel equations that govern the kernels M (x, &)
and N(x, &), for j,k=1,2, as

2 2
€50 Mk + €My = = @8 Mk = Y @' Nk (8.130)
n=1 n=1
2 2
Wj0xNji = €Ny = G N+ Y @i Nuj+ Y @5 Maj, (8.131)
n=1 n=1
ay’ (x) ay”
N (x,x) = -2 . My(x,L)y=——2— (8.132)
M + € € — €]
M1 (0,8) = kN1 (0,€),  M2(0,€) = keN2a(0,€), (8.133)
ay” ay"”
Mlz(x’x) = - ) M2] (x7x) =" (8134)
€ — € € — €
Introducing the new spatial variables ¥ = L — x, ‘f =L-¢,
M (%,€) =M(L-%,L-§&) =M(x,&), (8.135)
N (%,&) =N(L-x,L-¢)=N(x,¢), (8.136)

on the triangular domain D = {(¥,€) : 0 < £ < ¥ < L}, we find that the kernel
equations obtained for M (¥, &) and N (¥, £), and given by
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€10: My + €10z My =ay,” My +a)}" Niy +a)y" Nai, (8.137)
€10: M2 + €0z My =ay" Miy + @y, Mo +a\'\" Nia + a}y’ Noa, (8.138)
€0: Moy + €10z My =ay"” My + @y, May + @y Ny + ay," Noj, (8.139)
@0 My + €20 Moy =@y Mz + a3 Nia + @y’ Noo, (8.140)

p10xN11 — €10gN1 = —ay " Ny —ayy Ny —ay\" My —aj} My, (8.141)
p10xN1 — €0N1p = — @y, Nia — ayy Ny — @y " My — @)} Ma,  (8.142)
p20xNay — €10 Ny = — @y Noy — ayy Niy — @y My — ay My, (8.143)

205 Nyy — 0Ny = — @y, Nog — @y Nip — a5\ Mip — @y My, (8.144)

_ a’V(L-x _ a’V(L —x
Nii (%, %) :M’ N (%, %) = M’ (8.145)
€1+ U €+ U
_ a’V(L-x _ a’Y(L —x
Ny (%, %) :M, Ny (%, %) = iy L% (8.146)
€1+ 2 €+ U
My (L, ¢) =ksN11(L, &), Mxn(L,¢) = kNyn(L,€), (8.147)
_ _ _ _ _ &WW
M2 (L, &) =ksNi2(L,€),  Mai(%,%) = _622_‘ o (8.148)
“Ww
My (,0) =0, Mp(%,%) = ——2—, (8.149)
€] — €

have the same structure with the controller kernel system. The well-posedness is
therefore obtained following the same steps as in the proof in [?]. Therefore, there
exists a unique solution M, N € L*(7"). The stability of target system (8.116)—
(8.121) is equivalent to the error system. The observer gains matrices P and Q are
obtained from the kernel matrices

P) =M(x.L) |3 O*] 8.150

(x) =M (x )[O . (8.150)
v 0

=N, L) | 5. 8.151

0(x) =N (x )[0 VJ (8.151)

Note that the states estimation of the original traffic flow variables (p, V¢, Ps, Vs) are
obtained by the inverse transformation of (8.36).
The following conclusion is reached for the observer design.

Theorem 8.2 Consider the linearized two-lane traffic ARZ model with the boundary
conditions in (8.39)—(8.46), the initial conditions w;(x,0),v;(x,0) € L* ([0, L]),
the state estimates obtained from the collocated observer design (8.96)—(8.101) for
(Ws, Wy, Vs, ¢), and the output injection gains P and Q obtained in (8.151) by solving
the kernels M and N from (8.130)—(8.134). The equilibrium Wy = Wi = Vg = ¥y = 0
of the observer error system is stable and reached in finite time t,, given by (8.125).
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Proof Lemma 8.2, along with the backstepping transformation for the observer
in (8.114), (8.115), yields stability and the convergence of the estimation errors
(Ws, Wi, Vs, V) to zero for ¢ > t,, given in (8.125). |

Output-feedback controller

The output-feedback control laws for the slow and fast VSL are constructed by
employing the states estimates generated by the collocated observer (8.96)—(8.101)
in their respective full-state feedback laws (8.90), (8.91), which yields finite-time
stability of the closed-loop system at the zero equilibrium.

Theorem 8.3 Consider the linearized two-lane traffic ARZ model with the boundary
conditions in (8.39)—(8.46), the initial conditions w;(x,0),V;(x,0) € L* ([0, L]),
and the output-feedback laws combining the full state feedback (8.90), (8.91) and the
collocated observer (8.96)—(8.101), where the output injection gains are obtained by
solving for the kernels M and N from the system (8.130)—(8.131). The equilibrium
(Pt Ps> Vs, V) = (Pr, Ps» Vs, Vp) = (pf, pX, V¥, vF) is finite-time stable and reached
in toy defined as

tout = Io +1f, (8.152)
where t, is given in (8.125) and t; in (8.85).

Proof Theorem 8.2 guarantees that state estimates (s, O, Vs, ¢) reach and remain
at (pr, ps, vs, vr) after t = t,. Applying Theorem 8.1, one has that (py, ps, Vs, Vr)
reach and remain at (p;, o vE, vf) after t = t;. Therefore, after t = ¢, + t;, we
have the convergence of the state variables to the steady-states. Stability of the
equilibrium can be established either from the explicit solutions of the target systems
or using the Lyapunov stability of the target systems (for the observer error system
and for the observer or the plant), along with the direct and inverse backsteppign
transformations. O

8.5 Numerical Simulation

The control design presented in the previous sections are validated by numerical
simulation. The simulation is performed for the linearized two-lane ARZ PDE model
and the two-step Lax Wendroff method is used to approximate the solution. Both the
fast-lane and slow-lane are considered in the congested regime. Steady-state density
p¥ = 180 veh/km,v} = 28.5 km/h and p; = 90 veh/km,v} = 33 km/h are
chosen given the maximum density pg" = 220 veh/km, p{" = 142 veh/km, y = 0.8
and maximum velocity v, = 140 km/h so that the traffic of both lanes are lightly
congested. We consider the situation that overall drivers prefer remaining in the slow
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Fig. 8.4 Density and velocity of slow and fast lane traffic of open-loop system with sinusoid initial
conditions.

lane rather than changing to the fast lane so that 7t = 15 s is chosen to be smaller

than 75 = 30 s. Therefore, higher density traffic appears in the slow lane and it can

contain a higher rate of traffic flow. The relaxation time is chosen as 7 = 100 s and
=200 s.

output-feedback stabilization and performance

Since we are interested in stop-and-go traffic and its suppression, we assume that
the initial traffic states are oscillatory around the equilibrium states. Hence, we im-
plement sinusoidal initial conditions, which are highlighted in blue. The constant
incoming flow and outgoing flow are considered for the open-loop simulation as
shown in Fig. 8.4. Considering the steady-state velocity as the averaged traffic veloc-
ity, it takes around 2 minutes for both the fast-lane and slow-lane vehicles to leave the
considered freeway segment. But the oscillations sustain for more than 12 minutes.
The full state feedback stabilization results are shown in Fig. 8.5. The finite-time
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Fig. 8.5 Density and velocity of slow and fast lane traffic of closed-loop system with full-state
feedback controllers.

convergence of the density and velocity to the spatially constant steady-states is
achieved in ty = 5 min, which is highlighted in green.

Combining the observer design and the full-state feedback controllers, we derive
the output-feedback controllers and then simulate the closed-loop system in Fig. 8.6.
The finite convergence time of the closed-loop with output-feedback controllers is
t = t,+ty = 10 min, as illustrated in the figures with green highlighted lines. We can
see that the states converge to the steady-state values before the green highlighted
lines. The velocity control inputs that are displayed on the VSL for fast and slow
lanes are plotted in Fig. 8.7. Compared with the slow lane velocity control input, the
variation of the fast lane control input around the steady-state velocity is larger. For
example, the output feedback driving speed advisory for vehicles in the fast lane to
leave the segment varies in a range of 25 km/h to 44 km/h while that of the slow
lane varies in a range of 26 km/h to 34 km/h.

For practical consideration, it is not feasible to directly implement the continuous
time-varying velocity control inputs as shown in Fig. 8.7, since drivers need reaction
time to follow the driving speed displayed by VSL. The digital post processing of the
continuous in time control signals is thus required in the implementation of VSL and
we briefly discuss it in the next section. It should also be noted that if VSL cannot
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Fig. 8.6 Density and velocity of slow and fast lane closed-loop system with output-feedback
controllers.

be changed discretely on the time scale of the stop-and-go oscillations, then such
oscillations are not stabilizable by any VSL-implemented algorithm. For example, in
Fig. 8.7, if VSL can only be changed every 2 minutes on the time scale exhibited by
the stop-and-go oscillations in Fig. 8.4, no VSL control can stabilize such congested
traffic.

The performance of the output-feedback controllers is evaluated for three perfor-
mance indices which are total travel time (TTT), drivers’ comfort and fuel consump-
tion. The considered performance indices are defined as

tsnm
Jtuel :/ / max{0, bg + byv(x,t) + bov(x,t)a(x,t)
+ b3a*(x,0)}p(x, 1)dxdt (8.153)

Lsim L
Jeomfort = / / (a(x,1)? +a,(x,0)%)p(x, 1) dxdt (8.154)
0 0

Lsim L
JTIT = / / o(x, 1)dxdt (8.155)
0 0
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Fig. 8.7 Velocity control inputs of full-state feedback and output-feedback controllers for the slow
and fast lanes.

according to [?] where a(x, t) is defined as the local acceleration a(x, 1) = v,(x,t) +
v(x,1)vx(x, 1) and the parameters for fuel consumption are taken from [?] as by =
251073 s, by =24.5-1070 I/m, b3 = 32.5- 1077 153 /m?, by = 125 - 1076 15?2 /m?
fora L = 1km, ty,, = 12 min. We denote Jx open as the performance indices with
respect to the open-loop results, whereas Jx oupue as the indices with respect to the

closed-loop results, where X = {fuel, comfort, TTT}. The improved performance
indices are

J
fucloutput _g 24 (8.156)
J] fuel,open
J
“comiortonput _g» 63%, (8.157)
J comfort,open
J
TTT,output —02.79%. (8.158)
J TTT,open

The fuel consumption of total traffic reduces 7.26% with driver’s comfort improved
17.37% and the total travel time reduced 7.21% for the closed-loop system with the
output feedback VSL controllers in 12 min. The numerical simulation demonstrates
that the proposed output-feedback control design not only stabilizes the two-lane
traffic flow system in the finite time but also improves all the performance indices.

Different traffic scenarios, one-lane backstepping and PI controllers

To demonstrate the effect and relevance of the proposed VSL controllers, we compare
the stabilization result for different traffic scenarios and simulate one-lane backstep-
ping and PI controllers.
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Fig. 8.8 Output stabilization for different traffic steady-states.

For different traffic scenarios, we evaluate the overall closed-loop stabilization
result with the state variables in the L®-norm, defined as S(¢) = Ss(¢) + S¢(z), where

vi(x,1) —vF
*
i

s [P
P

i

(8.159)
v

(o) (e8]

The stabilization result is demonstrated with the temporal evolution of the stabiliza-
tion result S(#), whose convergence to zero is guaranteed by Theorem 8.3. Four dif-
ferent traffic scenarios that are represented by different steady-states (o7, pf, v3, v})
are plotted in Fig. 8.8. The same sinusoidal initial conditions around the steady-states
are considered. The red dashed line represents the output-feedback stabilization re-
sult. We can see that the traffic becomes less dense from the blue dashed line to
the black line. As the traffic density becomes smaller and velocity becomes bigger,
the closed-loop system goes through a larger transient before being stabilized. This
is because the faster velocity in the congested traffic requires a larger VSL control
effort and induces a more oscillatory system behavior. On the other hand, comparing
the red dashed line and green dotted line, it is found that the green dotted line shows
a bigger transient than the red dashed line since it has larger density and velocity
discrepancies between the fast and slow lane than that of the red dashed line. More
lane-changing activities exist when the speed difference is larger between lanes.

For comparison, we consider the two-lane traffic as a general one-lane and impose
the same displayed VSL values for the two lanes at the outlet. Then the lane-changing
activities are ignored. Two existing control strategies for one-lane ARZ model are
employed including the PDE backstepping VSL in [?] and PI control by VSL and
ramp in [?]. The general one-lane density is defined as the lateral spatial summation
and the averaged velocity is
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pa(-x’ t) :pS('x’ t)"‘Pf(x’ t)» (8160)
valx.t) _Ps (X v (x, 1) + prlx, Dve(x, 1) 8.161)
Pal(x,1)

The control objective is to regulate the one-lane traffic to averaged steady-states
px =270 veh/m, vi = 29.8km/h. We use the previous model parameters and conduct
the simulation under the same initial conditions. The two-lane traffic evolution is
shown in Fig. 8.9. There are still oscillations when the same backstepping controller
is applied to both lanes. Meanwhile, the steady-state velocity of the fast lane and
slow lane slowly adapt to the general one-lane velocity v.

PI boundary feedback controllers are developed in [?] for the linearized ARZ
model. Boundary values of velocity at the inlet is measured to construct one PI
VSL implemented at the outlet, actuating the exit velocity of the two lanes. The PI
controller is given by

t
va(L,t) = v} +kpva(0,1) + k / (va(0,5) —vZ)ds, (8.162)
0

where ky, = -0.1, k; = —0.02 are the PI gains. The density and velocity in the fast
and slow lane still oscillate, as shown in Fig. 8.10. The slow lane traffic increases
in velocity and the fast lane traffic decreases in velocity, as a result of using a
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Fig. 8.11 Velocity control inputs of one-lane backstepping and PI.

single VSL. The backstepping and PI velocity control inputs are plotted in Fig. 8.11.
The PI control signal has some offset relative to the steady-state v}, in addition to
oscillations. Both of the one-lane VSL control algorithms fail to obtain satisfactory
stabilization results when applied to the two-lane traffic. This is because the inter-lane
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activities and distinct fast and slow lane steady-states are neglected in the one-lane
control designs.

8.6 Notes and References

This chapter has presented a solution to the output-feedback stabilization of stop-
and-go oscillations in a congested two-lane traffic with lane changing. The finite-time
convergence of the linearized two-lane ARZ model is achieved with two VSL actuat-
ing velocities at the outlet of a freeway segment. By taking the collocated boundary
measurement of density variations, observers are designed for state estimation. The
control designs are simulated for different traffic scenarios, evaluated with several
performance indices and compared with two one-lane control approaches. This re-
sult paves the way for applying PDE backstepping techniques for multi-lane traffic
with inter-lane activities. With suitable advances in coupled 2D hyperbolic PDEs,
this work on two lanes is a stepping stone towards stabilization of oscillations in 2D
traffic flows and lane-free traffic, including first-order models [?] and second-order
models [?].
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Chapter 9
Two-Class Traffic Control

9.1 Diverse Driver and Vehicle Classes: Additional PDEs
Controlled by a Single Input

In this chapter, we develop an output-feedback control law to damp out oscillations in
the condition of traffic that is congested and involves two classes of vehicles. A vehicle
class is defined to be a group of driver-vehicle entities that share the same properties,
see [?]. For instance a vehicle class may be characterized by the vehicle size and,
therefore, inertia (small/large, light/heavy), driver’s style in operating the vehicle
(deferential/aggressive, cautious/rash, attentive/inattentive), propensity to delayed
reaction (old/young, tired/fresh, under-the-influence/sober), and other factors.

With so many possible categories, and so many classes within each category, one
can envision many combinations, resulting in dozens of classes of vehicles (young
and tired driver of a large pickup truck, old and attentive driver of a small sporty car,
and so on). In fact, one can envision finer classifications, on a continuum, rather than
through coarse categories (tired vs. fresh). With many possible classes, and even
a possible continuum of classes, one could be formulating problems much more
general and complex than the problem with two vehicle classes which we tackle in
this chapter. What our chapter offers should be regarded as a first step in a possible
much more general direction of designing controller for the suppression of stop-and-
go oscillations on a freeway with a very diverse population of vehicles and drivers.
For problems with a finite number of classes the control design methodology would
not differ substantively. Therefore, our deliberate restriction to two classes is relevant
beyond what it offers on the face value. We restrict our attention to two classes for
reasons of notational simplicity and conceptual clarity.

The interactions between different classes of vehicles and drivers lead to many
phenomena such as the existence of more than one equilibrium state, frequent lane
changing movements in congested traffic, fast vehicles overtaking slow vehicles, and
platoons dispersion [?, ?, ?].

Multi-class traffic models are an important extension of single-class models,
decomposing the homogeneous single class traffic flow into class-based macroscopic

183
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component flows. For each component flow, PDEs of the single-class models are
employed to describe traffic states including density and velocity. The first-order
macroscopic multi-class traffic models are developed based on the LWR model [?,
?, ?]. The second-order extensions of the ARZ model can be found in [?, ?, ?, ?].

In this chapter, we adopt the macroscopic multi-class ARZ model [?]. In this
model, the dynamics of each vehicle class is described with the density and velocity
for each class, i.e., with two PDEs per class. The model of our two-class ARZ traffic,
therefore, consists of four hyperbolic PDEs—two density PDEs and two velocity
PDEs.

The stabilization problem of the two-class traffic is more challenging than sta-
bilization of single-class traffic since instabilities arise not only from congestion
within each class but also from interactions between the two classes of vehicles. In
the macroscopic models, these interactions take place at each location on the freeway,
in other words, as in every macroscopic model, multiple vehicle could be present at
any location and, by extension, in multi-class traffic, vehicles of different classes can
coexist at any location. The real-world interaction of vehicles of different classes,
such as sports cars passing trucks, aggressive drivers passing defensive drivers, etc.,
is aggregated into the PDE models density and velocity states for the classes, rather
than bein microscopically captured.

In a multi-class model, the concept of “area occupancy” is introduced to describe
how each class of vehicles affects the overall traffic dynamics. In particular, area oc-
cupancy is used in the traffic pressure and equilibrium velocity relationship, yielding
a coupling between the two classes of vehicles.

We develop boundary feedback control laws in order to damp out traffic oscilla-
tions in the congested regime. As in the rest of the book, we employ the backstepping
design to design a boundary controller. The design objective for backstepping is to
stabilize the 4 X 4 heterodirectional hyperbolic PDE system, which arizes from the
two-class ARZ model. The control input actuates the traffic flow using a single ramp
metering input at the outlet of the freeway segment.

The solvability of the problem with a single (ramp metering) input is a crucial
difference between the two-class problem and the two-lane problem, the latter of
which we studied in Chapter 8. While both the two-class and the two-lane problems
involve one pair of density PDEs and one pair of velocity PDEs, totaling four PDEs
in both cases, for suppressing the two-class stop-and-go oscillations a single ramp
input suffices, whereas for suppressing the two-lane stop-and-go oscillations two
VSL inputs are needed. The reason for this difference is not revealed by the ARZ
models, namely, by the density and velocity PDEs. The reason for the controllability
of the four-PDE model of two-class traffic with a single input is revealed by examining
the differences between the two four-PDE models in the Riemann variables. In the
Riemann variables, it is revealed that, while in the two-lane traffic there are two
downstream waves and two upstream waves, in the two-class traffic there are three
downstream waves and only one upstream wave. Therefore, it suffices to use a single
input, to sever the destabilizing feedback from the three downstream waves into the
single upstream wave.
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We first design a full-state feedback law to achieve finite-time convergence of the
density and velocity variations to the zero equilibrium. The state feedback controller
is then combined with an anti-collocated observer, which we design in order to
estimate the density and velocity states of the two classes of traffic. Hence, an
output feedback control law is constructed. The performance of the proposed output-
feedback controller is validated by simulation of the open-loop and closed-loop
models, and also quantified by performance indices including fuel consumption,
comfort and total travel time.

9.2 Two-class ARZ Traffic Model

The extended ARZ model for multi-class heterogeneous traffic in [?] is considered
in its special two-class case. The two-class ARZ traffic model is given by

0:p1 + 0x(p1v1) =0, ©.1)
A1+ p1(A0) a1+ pr(ao) =2LEZZN o)
0:p2 + 0x(p2v2) =0, 9.3)
002+ p2(A0)) +1ady vz + pa(a0)) =222 oy

where each vehicle class is represented by the traffic density p;(x,t) and velocity
vi(x,t), where (x,t) € [0,L] X [0, 0),i = 1,2. The parameter L is the length of the
freeway segment.

The traffic density p; (x, t) and velocity v (x, t) refer to the first vehicle class and
the traffic density p; (x, t) and velocity v, (x, t) refer to the second vehicle class. The
traffic density p;(x,t) is defined as the number of vehicles in a given class per unit
length, at location x at time ¢. The higher the traffic density p;, the more crowding of
vehicles of class i is present at a specific spatial point x. In addition, the higher the
velocity v;(x, t), the faster the vehicles of class i at a specified spatial point in the
freeway segment. This velocity of a class at a particular place and time is unrelated
with the propensity of vehicles in a given class to go fast or slow, or accelerate
fast or slow. For instance, if the two vehicle classes are heavy (potentially fast‘O
and light (potentially slow) vehicles, it is entirely possible that, at a particular time
and location, the vehicles from the “slow class” go faster than the vehicles of the
“fast class.” The two-class ARZ model matches the reality in this regard—it is not
uncommon to see trucks pass slow-moving high-performance cars on the freeway.

The non-zero terms on the right hand side of the four-PDE model above represent
the adaption of velocity of the vehicles of each class to the desired velocity for that
class, where 7; is the adaptation time of class i.

The variable AO(p1, p2) describes the area occupancy, defined as
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aiLpy +axLps

AO(p1,p2) = Wi

9.5)
where q; is the occupied surface per vehicle class i and W the width of the investigated
freeway segment. The traffic densities of class 1 and class 2 are p (x, ) and p(x, 1)
on the considered freeway segment, the area occupancy AO (p1, p2) is the percentage
of occupied road space by both classes of vehicles. Itholds that0 < AO < 1.The area
occupancy depends on both densities since the occupied road surface is influenced
by the vehicles of both classes.
The traffic pressure function p;(AQ) is formulated as

AO(pl,pz))”
AO; ’

pi(AO) =V; ( (9.6)

where V; corresponds to the free-flow velocity, y; > 1 to the traffic pressure exponent
and 0 < AO; < 1 to the maximum area occupancy. The traffic pressure p;(AO) is
the traffic pressure of class i vehicles and depends on the area occupancy. The higher
the area occupancy, the higher the experienced traffic pressure. For instance, if a
vehicle suddenly decelerates, then the following vehicle experiences a high traffic
pressure forcing the follower vehicle to decelerate. Therefore, the free-flow velocity
V; represents the desired velocity of a driver, if no other vehicles of any class are
present. The pressure exponent y; is a parameter that models the experience of
the traffic pressure. The maximum area occupancy AQ; describes the percentage
of occupied road surface for which the corresponding vehicle class is jammed. To
obtain physically meaningful results, 0 < AO < 1 holds. For instance, AO, = 0.8
means that if 80% of the highway is covered by vehicles of any class, then the class
2 vehicles are jammed and therefore their desired velocity is zero.

Finally, the equilibrium speed-AO relationship is based on the Greenshield’s
model and given by

Yi
AO(p1.p2) 2)) ) , 9.7)

Ve,i(AO) =V; (1 - (
AO;

which represents the desired velocity of the class i vehicles. If the area occupancy
is at the maximum AQ;, then the corresponding equilibrium speed-AO relationship
valueis V, ; (AO;) = 0.In order to show the qualitative behavior of the traffic pressure
function (9.6) and the equilibrium speed-AO relationship (9.7), both functions are
plotted in Fig. 9.1. The plots on this figure indicate that, the more crowded the
highway, corresponding to a higher area occupancy, the higher the traffic pressure
and the lower the equilibrium speed.
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Fig. 9.1 Traffic pressure functions p; (AO) and p; (AO) (left) and equilibrium speed-AO relation-
ships V.1 (AO) and V, 7 (AO) (right) for the example parameter set y; = 2.5, V| = [80]km/h,
AO = 0.9 for class 1 and y» = 2, V3 = [60]km/h, AO = 0.85 for class 2.

Linearized two-class PDE model

The two-class ARZ traffic model (9.1)—(9.4) is linearized around a constant equi-
librium state (o7, v}, p3,v5). Inserting this constant state in (9.1)~(9.4) yields the
conditions
vi(p1, p3) = Ve, 1 (AO(pY, p3))s 9.8)
v3 (01, 03) = Ve 2(AO(p1, p3)). 9.9)

The equilibrium velocities are determined by the equilibrium densities p} and pJ.
The variations of the state variables p; (x, ¢) and v;(x, t) are defined as

ﬁi(x’ t) :Pi(x’t) _p?’ (910)
Vi(x, 1) =vi(x, 1) — v}, 9.11)

for each class i and the linearized model equations are given by

Pu Dix o1 0
Vi Vix V1 0
Ji | . +J, ] - +J| . | = s 9.12
" P | Pax 02 0 ©-12)
Vo Vox vy 0
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where the introduced Jacobian matrices are

(1000
_ B 1B120
Jr = 0010l 9.13)
| B21 0 B 1
[ vi p; 0 0
_ V’{IB“ V’{ VTﬁlz 0
]X - O 0 V; p; ’ (9.14)
| V3B21 0 viBan v}
0O 0 0 O
1 11
=B B2 0
=1 0 "o ol (9.15)
| 5821 0 2P0+
where Ops(AO( )
Bij(p}, py) = TRRECPL L)) 9.16)

op; . .
Pj 1= .02=p}

are introduced with 7, j = 1, 2. The abbreviations S;; (o], p5) represent the derivative
of the class i traffic pressure function with respect to class j traffic density. The
boundary conditions are assumed to be

p1(0,1) = py, 9.17)
p2(0,1) = p3, 9.18)
q1(0,1) + q2(0,1) = g} + ¢5, (9.19)
q1(L,1) +q2(L,1) = q| + g5, (9.20)

where (9.19) and (9.20) assume that the constant total traffic flow enters and leaves
the considered freeway segment, which is given by the sum of the class 1 and class
2 equilibrium flows g7 and g3. The traffic flow of class i is defined as

qi(x’t) :pi(x’t)vi(x’ t)' (921)

Boundary conditions (9.17) and (9.18) indicate that the traffic densities of the in-
coming traffic flow are equivalent to the equilibrium densities. The linearization of
the introduced boundary conditions (9.17)—(9.20) is

0= 51(0.1), 922)
0= 52(0.1), 9.23)
0= vi51(0.1) +p}71(0.1) +v5p2(0. 1) + 3720, 1), 9.24)

0=vip1(L,t) + p191(L, 1) +v3p2(L, 1) + p392(L,1). (9.25)
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Free/congested regime analysis of two-class traffic

In the previous chapters the reader has encountered numerous times the two distinct
regimes for one-class traffic: the free-flow regime and the congested regime. The
free-flow regime is characterized by the fact that all traffic states travel in the down-
stream direction. In the free-flow regime, the two-class traffic model is a fourth-order
homodirectional hyperbolic PDE system, whereas in the congested regime, there are
traffic waves propagating upstream such that the traffic model becomes a heterodi-
rectional hyperbolic PDE system.

The heterodirectional propagation phenomenon induces feedback coupling, with
delays, among the counter-convecting PDEs, and causes the formation of stop-and-
go traffic. Therefore, we investigate which choices of equilibrium densities and
parameters lead to homodirectional/heterodirectional propagation of waves, namely
free and congested traffic. The characteristic speeds are studied next.

The linearized PDEs (9.12) have a matrix J;, which multiplies the time derivatives.
This matrix is invertible. By inverting this matrix, one obtains a PDE system that is
solved for the temporal velocities and given by

P1r Dix p1
el ge it =g (9.26)
P2t P2x P2
Vo Vox V2
with the new Jacobian matrices
vi i 0 0
7= 0 vi—Bupi Brz(vi —v3) —Prp;
* 0 0 V3 P
B (v —v]) —Pup] 0 v = B2p;
and
0 0 0 0
1 11
F= — B =7~ B2 0 ©9.27)

0 0 0 0
1 1 1
5B 0 —5Bn -4
System (9.26) is still not in a conventional form for coupled hyperbolic PDEs

from which the characteristic speeds could be noted by inspection. To find the
characteristic speeds we compute the eigenvalues of J, and obtain
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A1 =vi(p1, p3), (9.28)
}'2 =V;(pT,P;)» (929)
V* *, * +v* *’ * _a *’ * _a *’ * A *’ *
A = 1(.01 pg) 2(p1 pz) . 1(Pl pz) 2(p1 pz) + (912 pz)’ (9.30)
vi(pl. p3) +vi(p1, p3) — ai(pl, p3) — a2(pl, p3)  Alpl,p3)
Ay = P10 2122 1> P2 1P 122’ ©9.31)
where
* * * * * %) 2 * %
A(p], p3) = \/(agpz —a1p] +v] - Vz) +4a1207p; (9.32)
and

- (9.33)
Pi p1=p}.02=p3

ai(p}. p3) = Bii(py, p3) =

For physical validity of the model as a model of traffic of human-operated ve-

hicles, where no driver would operate his vehicle on the freeway in reverse, the

equilibrium velocities of both vehicle classes are chosen to be positive, i.e. vi > 0

and v > 0. Thus, the first two characteristic speeds (9.28) and (9.29) are positive. It
is straightforward to find that the following inequality holds

Ag < min{A;, A2} < A3 < max{4;,A2}. (9.34)

Since A; > 0 and 4, > 0, (9.34) implies that A3 is also positive.
Hence, the only characteristic speed that may have a negative sign is A4.

e Free-flow regime : A1, A3, 43,44 > 0.

In the free regime, we have all the four traffic waves propagating in the down-
stream direction of traffic flow. All the characteristics speeds are positive. The
density variations of class 1 transport downstream with characteristic speed of
A1 and the density variations of class 2 transport downstream with characteristic
speed of 1,. The velocity differences between the classes 1 and 2 are also carried
downstream with the speed A3. Finally the average velocity variations of the two
classes transport downstream with the speed 4.

e Congested regime : Ay, 42,43 > 0,44 < 0.
In the congested regime, the first three waves transport with the vehicles in
the downstream direction, while the fourth wave, governing the average of the
variations in the class velocities, propagates in the upstream direction. Since the
traffic is dense, the braking or accelerating action of the leading vehicles results
in the following vehicles acting in the same fashion.

When the two classes of vehicles are the same, namely, when there is actually only
one vehicle class on the freeway, we have vi = v} and then 4; = A = A3. The
fourth-order hyperbolic PDE system (9.26) reduces to the second-order one-class
ARZ traffic model.

The critical value of the fourth characteristic speed, which distinguishes the two
regimes, is 44 = 0. In case of the two-class traffic model, this boundary is a curve
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Fig. 9.2 The contour plots of the fourth characteristic speed A4 = 0 and the maximum flow rate g,
against p} and pJ.

which can be drawn in the pj-p3-plane. In the one-class traffic, the boundary is
equivalent to a single density which is the critical density segregating the free-
flow and congested regime. The numerically computed boundary between the two
regimes is plotted as a contour plot for an example parameter set in Fig. 9.2. The
figure indicates that small values for equilibrium densities p} and p; correspond to
A4 > 0, in which case homo-directional transport results, namely, the traffic is in free
flow. When the density of either of the phases is large, we get that 44 < 0, namely,
hetero-directional transport, congested traffic, and stop-and-go behavior.

Another interesting difference between the single-class and two-class traffic lie
in the densities that maximize the traffic flow. In the general one-class traffic, the
maximum traffic flow is achieved at the critical density of the fundamental diagram,
as introduced in Chapter 1. In addition, the critical density is the same density that
segregates the free-flow and congested density. However, in the two-class traffic
Model, the densities that maximize the traffic flow and the ones that satisfy A4 = 0
are not the same set.

The equilibrium flow and density relation are given by,

Qi(A0) = piV;(AO). (9.35)
For the two-class traffic, the total equilibrium total flow rate is defined as

0.(AO0) = Q1(AO(p1,p2)) + Q2(AO(p1, p2)), (9.36)
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and the maximum equilibrium flow rate g is defined as

qc(p1,p2) = Qc(AO(p1, p2))| 01 (40)=0 (9.37)

as plotted with the green line in Fig. 9.2.

9.3 Boundary control design model

In this section, we introduce the backstepping control design that stabilizes the
linearized two-class ARZ traffic model using a boundary input. The preparation
for backstepping control design is done using two transformations, including the
transformation to the Riemann coordinates and a second spatial transformation to
further simplify the equations.

We use ramp metering located at the outlet of the freeway segment to regulate
the traffic outflow so that upstream traffic is stabilized in the freeway segment.

G1(0,1) + G2(0,1) =U(1). (9.38)
The boundary condition (9.25) becomes
vip1(L,t) + p1P1(L, 1) +v3p2(L, 1) + p392(L, 1) = U(2). (9.39)

Similar to the application of multi-phase flow in oil pipelines [?], a ramp metering
works as a valve at the end of the pipe to regulate the total outgoing flow by controlling
on-ramp flow.

The system is transformed to the Riemann coordinates to decouple the spatial
derivatives. The Riemann variables (w1, Wy, w3, w4) are defined in the new coordi-
nates. The linear state transformation is given by

wi o1
W2l oyt U (9.40)
W3 P2
A Vo

where the matrix V is a standard similarity transformation that diagonalizes the
Jacobian J; and satisfies

410 00
8 ’1)2103 8 =V V. (9.41)
000
The entries of V are denoted as
V= {Vif}1§i54,l§js4 9.42)
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and can be obtained from the eigenvectors of J;. Since the eigenvalues A; of J; are
known explicitly, the eigenvectors of J; can also be obtained explicitly and, there-
fore, V can be found explicitly, making the transformation (9.40) into the Riemann
variables also available explicitly. We omit this explicit computation as it amounts
to freshman linear algebra and it does not make a difference in the control design for
the PDE system .

Substituting the transformation (9.40) into (9.12) yields the model equations in
Riemann coordinates

W], /ll 000 Wix w1
Woy 01, 00 Wox | 5| W2
W3y * 0 0430 W3y =/ wi |’ (9.43)
Wi 0 0 0 A4 | Wiy W4
where
J=vjv, (9.44)

and the entries of the Jacobian J are denoted by

J={iheicarcjen (9.45)

sSisa,l5)s

Since the coefficient matrix of the spatial derivatives is now diagonal, decoupling
in spatial derivatives is achieved. The characteristic speeds (9.28)-(9.31) form a
diagonal matrix because they are the eigenvalues of J,. In addition, the same trans-
formation is applied to the boundary conditions (9.22), (9.23), (9.24) and (9.39),
yielding

w1(0,1)
w2(0,7) | = Qow4(0,1), (9.46)
w3(0,7)
wi(L,1)
Wwa(L, 1) = Ry | waL,t) | +U(2). (9.47)
w3 (L, 1)
The matrices are given by
R vitvizvis | | vis
Qo =— | v31 v32 V33 v |, (9.48)
K1 K2 K3 K4
. 1
Ri=-— ki k2 k3]. (9.49)
K4
where
Ki = ViVii+pivai +vavai + pova. i=1,2,3,4, (9.50)

The control input in (9.47) is obtained by transforming (9.38)
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N 1

U(t) = —U(@). 9.51)
K4

The next transformation sets to zero the diagonal elements of J in (9.43) and
sorts the positive characteristic speeds (9.28)—(9.30) in the ascending order in the
resulting diagonal matrix of coefficients that multiply the vector of spatial derivatives.
We define an ascending order 4; > A, without loss of generality. It is assumed that
class 1 vehicles represent small-size and fast vehicles whereas class 2 describes big
trucks which are large and slow. Thus, for the equilibrium velocities vi > v holds
and therefore the ascending order of positive characteristic speeds is 4p < A3 < 4.
We take the transformation

_In
wi=e 2 Wy, (9.52)
Wy =& B 5, (9.53)
LT
wy=e "1 wy, (9.54)
wg=e 4wy, (9.55)

apply it to (9.43), and obtain the following PDEs:

Wit Wix [ w1 ]
wor [+ AY [wox [ =2 (x) [ wa | + 2 (x)wy, (9.56)
w3 Wix w3 |
o]
War — N way =27 (x) w2 |, 9.57)
-W3 .
where
(V5 0 0
A=|0a;0], (9.58)
00 v’{
A = -, (9.59)
0 J(x) Jis(x)
I(x) = La(x) 0 Jaa(x) |, (9.60)
| J31(x) J32(x) O
S (x) = [J1a(x) Joa(x) j34(x)]T, 9.61)
) = [ () Jaa(x) Ji3(x) | (9.62)

The coeflicients of the source term, J_ij (x), i,7=1,2,3,4, are:



9.3 Boundary control design model 195

ﬁ_ﬁ)

Ji2(x) =fzze( B

X

Jia(x) = Jae

Jo1(x) =J3el 2

~
I\)
&4

2 1

(%)
J31(x) =j12€( ER ) T3 (x) = Jize
(%)

=

Jaa(x) = Jise

J33 144

;.‘A

X

X

el - E )

Y In(y) = J31e(1% %3))‘ Toa(x) = Jygel 7
(-2
)

Ja1(x) =Japel 2 Jap(x) = J43€( = Ju3(x) = Jage\”

The diagonal elements of A* are sorted in an ascending order. The in-domain cou-
pling terms £ (x), X*~(x) and X7*(x) are spatially varying functions. Their entries
Jij(x) are bounded and either positive or negative on the whole domain, depending
on the sign of the corresponding J;; in (9.45). Applying the transformation (9.52)—
(9.55) on the boundary conditions (9.46) and (9.47) yields

Wl(O, t) ~
w2(0,1) | = Qow4(0,1), (9.63)
W3(0, t)
wi(L,1)
wa(L,t) = Ry | wa(L,t) | +U(r) (9.64)
w3 (L, 1)
with
001]”"
Q=100 OQo,
010
Ju_ Jas
0 0 e( Mo )L
5 _ D o _Ju
Ri=Ri| (&%) . (9.65)
0 e(%}‘%)L 0
In addition, the control input given in (9.64) is defined as
_ g o
Ul)=e 4“7 U(1). (9.66)

In summary, the control design model is given by (9.56), (9.57), (9.63) and (9.64).
The system diagram is illustrated by Fig. 9.3. According to the sign of the character-
istic speeds, the propagation direction for each state w; (x, t) is drawn in Figure 9.3.
It shows that the control input U(¢) actuates the outlet of the traffic system. In the
congested traffic PDE system, there are three states transporting downstream and
one state transporting in the upstream direction.
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Fig. 9.3 Schematic diagram of the heterodirectional PDE model used for control design. The blue
arrow indicates the location where the control input is applied, namely, the point of actuation. The
green arrows represent the in-domain couplings between all four states.

The composition of the two transformations is summarized as

Wi o A1 wi
w2 -1 V1 V1 wo
=T - |le || =T R 9.67
w3 ) 02 P2 x) w3 .67
\n Vo Vo Wy
where
_In
0 e ™ 0 0
0 0 _J;ﬁ 0
_ e b _
T =| ) v, (9.68)
e 0 0 0
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= X
0 0 e 0
Tx)=v|¢" j?? 0 0 (9.69)
0 e 0 0

The above transformation 7'(x) is a transformation that involves only spatial scaling.
In addition to being linear, it is also local (it involves no integrals in x) and bounded
(no derivatives in x). In addition, we have

_ _dap 1
Ult)=e 4" —U(t) (9.70)
K4
and the inverse is given by

U(t) = K46%LU(I). 9.71)

Since all the transformations are invertible, the stability properties of the linearized
model (9.12) with boundary conditions (9.22)—(9.24), (9.39), and the control design
model (9.56), (9.57), (9.63) and (9.64) are equivalent.

9.4 Full-state Feedback Control

In the section, a full-state feedback control design is proposed for the system of four
coupled hyperbolic PDEs given by (9.56) and (9.57) with boundary conditions (9.63)
and (9.64). The control objective is to achieve the stabilization of the states to zero
equilibrium in finite time. The full-state feedback controller is designed using the
backstepping method for general hetero-directional coupled hyperbolic PDEs, as
stated in Chapter 2. The essential idea is to transform the coupled hyperbolic PDEs
to a cascade target system. The control law is chosen such that the instabilities of the
system are eliminated through the application of a boundary control input.

The states of the target system are denoted as (a1, az, @3, 8). The kernels of the
backstepping transformation are denoted by K (x, &) and L (x, ¢). The backstepping
transformation is defined as

ar(x, 1) =wi(x,1), (9.72)
(}’2(]6, t) :WZ(-X’ t)7 (9.73)
az(x,t) =ws(x,1), (9.74)

X Wl(f’t)
Bl.1) =walx.1) - /O K(n.&) | walor) |+ Lin(r.ewa(e.n) |de, 9.75)
W3(§,f)
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where

K(x,&) = [ ki(x, &) kia(x, &) kiz(x,€) | (9.76)

and Ly (x, ) are defined on a triangular domain 7~ = {0 < ¢ < x < 1}. The kernels
K(x,&) and L (x, &) will be determined later on.
The target system is postulated as

ai @iy a; |
@y | ==A"an | +Z7(x) |2
@3¢ a3x s |
X —O,’l(f,t)
FET (B / CH(0.8) | aalenr) | de
0 »a3(§’t)
+ /0 C™(x,&)B&,1)dé, 9.77)
Bt =A"PBx. (9.78)

The coefficients C*(x,&) € R and C~(x,¢) € R are defined on the same
triangular domain 7~ and will be given later. The boundary conditions of the target
system are formulated as

al(O, t) _
@2(0,7) | = Qop(0,1), 9.79)
0/3(0, t)

B(L,1) =0. (9.80)

Fort > 0,x € [0, L], the target system (9.77)—(9.80) converges to its equilibrium at
Zero

Qe i(x) =Bc(x) =0, 1=1,2,3, (9.81)

in the finite time L L
tp = —+—. 9.82
F 1 + Y ( )

The proof of stability of this target system is a special case of Lemma 2.1 and thus
omitted in this section.

Taking the derivatives of (9.75) with respect to space and time, substituting the
resulting derivatives and (9.63) into (9.78) yields the kernel equations that determine
K(x,&) and L1 (x, ). The kernel equations are given by the following coupled first
order hyperbolic PDEs as well as four boundary conditions

~AN K (x,6) + Ke (X, )AT == K(x, E)E7(¢) = L1 (x, E)Z77(€),  (9.83)
~A L1 (x,€) = L1t (x, )A” == K(x, )T (€), (9.84)
K(x,00A*Qp — L11(x,0)A” =0, (9.85)
K(x, x)A* + A"K(x,x) = - X7 (x). (9.86)
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Substituting A7, K(x,§), A*, Z¥(€), (), ¥ (§) and denoting the entries of
Qo= {QOil }1 ;<3 the kernel equations in matrix form become

kllx V; 000 kll§
ki2x 043 0 0| ke _
Al ks [ T10 0 v 0| kise | T
L 0002 L
x| 0 A Lne ©0.87)
0 =€) =J31(8) () | |k
—J12(§) 0 —J3n(E) —Ja(f) | | ki2
—J13() —3(&) 0 —Ju3(§) || ki3
—J14(&) =J24(€) —=J34(é) O Ly
with boundary condition at & = 0,
ki1 (x,0)
3 * ) A * klZ(x’O) _
[ Qo11v; Q02143 Qoa1v} A4 ] kis(x.0) | = 0, (9.88)
Lyi(x,0)
and boundary conditions at £ = x,
ki (o) = 2 9.89)
Ag — vy
Ja(x)
k LX) = ———, 9.90
12(x, x) T (9:90)
J.
ki3(x,x) = ﬂ 9.91)
/14 - Vl

Following [?], it is straightforward to show that the kernel equations (9.83)—(9.86)
are well-posed and thus there exist unique solutions K (x, &) and Ly (x, &) in L (7).
Moreover, solving the equations (9.84) and (9.85) with the method of characteristics
yields

1 _
Lii(x,&) =- ZK(X - £,0)A" Qo
_£
+ / Ry +x, Ay + O (v + £)d. (9.92)
0

Substituting (9.92) into the remaining PDEs (9.83) reduces the kernel equations to
three coupled first-order hyperbolic PDEs with three boundary conditions
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1 _
0 =24K, (x,&) + ATK ¢ (x,€) + K (x,£)Z7(¢) - /1—41(()6 —£,0)ATQoZ T (é)
_£
+ / M Ky +x, 4y + )T (Lgy + E)dvE— (&) (9.93)
0
0=K(x,x)A* + A"K(x,x) + 7% (x) (9.94)

Furthermore, taking the derivatives of (9.72)—(9.74) with respect to space and time
and substituting (9.75) and (9.56) into (9.77) yields

cwxa=2Fuﬂmna+/wcxxwLufw& (9.95)

'3

0@@%&*@K@@+/wcuMKmaw. (9.96)
'3

Finally, evaluating (9.75) at x = L and then substituting (9.64) and (9.80) into it,
we obtain the full-state feedback control law

) C[wiLn] s wi(£,1)
U(t) = —R; | wa(L,1) / K(L,&) | wa(&,1) | + L1 (L, §)wa(&,1) | dE. (9.97)
ws(L, 1) 0 W3(€’[)

In order to formulate the control law with the original physical variables, i.e. the
densities and velocities of two classes, we apply the inverse transformation to the
states. The transformation matrix 7-!(x) in (9.68), is represented as

DN €9
T7'(x) = [Tl_l ol (9.98)

where 7,;!(x) € R¥* and 7;7!(x) € R, Hence, the states of the control design
model can be formulated as

wi(E.1) [1(6.1)]
wa(é, 1) | =T, (é) Vf(f’t) , (9.99)
W3(f,l) 82(5’0
_VZ(g’t)_
—él(f’t)-
wa(Ln =17 | 1) (9.100)
_‘72(5’t)_

and the control law after applying the inverse input transformation (9.71) becomes
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) PI(LJ) _pT
U(r) =—K4€%‘?LR1Tu_1(L) ;;EZ 3 :/‘C}’l;
va(L,1) = v
A ; pl(é:’t) _p>lk
~ %L -1 Vl(‘f’t)_vi
Kye /0 K(L,&T, (&) p2(€.1) = p} %
V2(§,t) _vz
A . pl(é:’t) _'01k
_ %L -1 vi(&,1) _VT
V2(§’t) —V;

The result is now summarized in the following theorem.

Theorem 9.1 Consider the linearized two-class ARZ traffic model (9.12) by (91, P2, V1, V2),
with the boundary conditions (9.22)—(9.24) and (9.39), the initial conditions

(ﬁl (-x’ O), V1 (-x’ 0),

P2(x,0),72(x,0)) € L ([0,L]), and a full-state feedback control law (9.101),
where the kernels K(x, &) and Ly (x, &) are obtained by solving the kernel equa-

tions (9.93) and (9.94). The equilibrium (p¥, p3, v}, v3) is stable and reached in
finite time tg, given by (9.82).

The full-state feedback law in (9.101) requires measurements of the densities and
velocities of both classes at every spatial point. In practice, it is usually not feasible to
measure the densities and velocities at every spatial point. Therefore, it is important
to develop an observer for traffic state estimation with only boundary sensing of the
traffic states.

9.5 Anti-collocated Boundary Observer Design

In this section, an observer design for the estimation of the full traffic state from
its boundary measurements is proposed. In particular, an anti-collocated boundary
observer is designed, i.e., the sensing of boundary states is perfomed at the opposite
boundary from the one where the control input acts.

It is assumed that

F(t) = wa(0,1), (9.102)

is measured. This signal is obtained by measuring the densities p;(0,t) as well as
velocities v; (0, ¢) and applying the transformation (9.67) afterwards.

The observer states w. = (W, wa, W3, W4)T are estimates of the control design
model states w. = (wy, wa, w3, ws)! . The observer is given
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Wi Wix W1
Wor | =— At Wox | + E++(,X) wo | + Z+_(x)v'f)4
W3¢ W3x w3
= P*(x)(W4(0,1) = wa(0,1)), (9.103)
Wi
War =N Wy + >t (x) [ W2
w3
= P11 (x)(4(0,1) —w4(0,1)), (9.104)

with the boundary conditions

WI(O, t)
#2(0,1) | = Oowa(0, 1), (9.105)
W3(0, t)
Wl(L,l‘)
W4(L, t) = Rl Wz(L,t) + U(l), (9.106)
W3(L,l‘)

where the output injection gains P*(x) and P[,(x) need to be designed such that
estimation errors converge to zero.
The estimation errors are defined as

wi(x,t) =w;(x,t) —w;(x,1), i=1,2,3,4. (9.107)

Subtracting the linearized PDEs model (9.56), (9.57), (9.63) and (9.64) from the
observer equations (9.103)—(9.106) yields the following error system

Wi Wix W1
Wor | == AT [ Wy | + Z++(x) Wo
W3y W3 w3
+ 3 (X)W — PHx)W4(0, 1), (9.108)
wi
War =N Wax + 277 (x) | W2
w3
— Py, (x)4(0,1) (9.109)

with the boundary conditions

wi(0,1)
w(0,1) | =0, 9.110)
W3(0, t)
wi(L,1)
wa(L,t) = Ry | wa(L,0)|. 9.111)

W3(L,[)
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Using the backstepping method, the output injection gains are designed such that
the error system converges to the equilibrium at zero in finite time. Similar to the
control design, a target system and a backstepping transformation are defined in
the observer design. The output injections gains P*(x) and P, (x) are chosen such
that the equilibrium at zero of the target system is reached in finite time. The state
of the target system is denoted as (&, @», @3, B) and the kernels introduced in the
backstepping transformation are M (x, &) and Ny (x, &).

The backstepping transformation is postulated as

wi(x, 1) a(x,1)

Walx,t) | = | @ (x,t) +/XM(x,§)E(§,t)d§, 9.112)

W3(x,t) &3()6,1‘) 0

Wa(x,1) = B(x,1) + /0 Nii(x, &)B(€, ) dE, 9.113)
where ,

M(x,€) = [mi1(x,€) mai(x,€) ma1(x, )] . (9.114)

The kernels M (x, &) and Ny (x,¢) are defined in the triangular domain7 = {0 <
& < x < 1}. The target system is chosen as

ay @x @ x a(&,1)
@y |=—A"|ao | +Z7F(x) [ | + / D*(x,&) |ax(&,1) | dé,  (9.115)
~ 0

@3 @3x @3 as3(é,1)
&1 X &1((‘3,1‘)
B =A B+ (x) | dn | + / D™ (x,8) | @a(é.1) | de 9.116)
d’3 0 &3(§7t)
with the boundary conditions

&'1(0,[)

@(0,1) | =0, 9.117)

a@3(0,1)
d’](L,l‘)

B(L,1) =Ry | @ (L,1) |. 9.118)
asz(L,t)

As discussed in Chapter 2, the target system converges to zero in finite time ¢, given
by (9.82). Besides, the coefficients D* (x, &) € R¥3 and D~ (x, £) € R need to be
determined.

The kernel equations for M (x, &) and Ny (x, &) are



204 9 Two-Class Traffic Control

Mg (x, )N = AT My (x,6) == Z7T ()M (x,€) =T (Y)N11 (x,€),  (9.119)

Nitg(x, E)A” + A Nyix(x,€) ==X (x)M (x, €), (9.120)
M(E,E)N + NTM(£,€) =27 (¢), 9.121)
N1 (L, &) - RiM(L,§) =0, 9.122)

where (9.119), (9.120) and (9.121) are obtained by applying the transforma-
tion (9.112) and (9.113) to the error system (9.108) and (9.109), followed by partial
integration and noticing that 5(0,¢) = w(0,7). In addition, (9.122) is deduced by
evaluating (9.113) at x = L, Plugging in A", M(x,£&), A~, Z**(x), Z*~(x) and
¥*(x), yields the kernel equations in the matrix form:

[m11g(x,&) vi 0 0 0 [mpx(x,&)
1 mzlg(x,f) 0 /13 0 | [ m21x(x, &)
4 m31§(x,§) 0 0 vy 0] |m31x(x,&)
| Ni1g(x, &) 000 A4 | | Niix(x,€)

S0 T Ji3(x) L) ] [mn(x,€)

_|J2(x) 0 In3(x) Joa(x) | | mai(x, §) 9.123)
J31(x) Ja2(x) 0 Ja(x) | [ m31(x,8) '

| Ja1(x) Ja2(x) Jaz(x) O || Nii(x,€)

with boundary conditions at x = ¢ and x = L,

mun (e, &) = 246 (9.124)

VS—/M’

J24 (&)
p (9.125)

ma1(€,6) =

m31(£,€) = ;’34_(?4 (9.126)
1

B mll(L’ ‘i:)
N (L, &) =Ry | ma (L, &) . 9.127)
m31(L, &)

Following [?], it is straightforward to show that the well-posedness of the kernel
equations (9.119)—(9.122) is equivalent to the kernel equations (9.83)—(9.86) since
they share the same mathematical structure. Similar to the full-state feedback de-
sign, solving the PDE (9.120) and boundary condition (9.122) with the method of
characteristics yields the relation

NU(X, é:) =R1M(L’ L- (-x - f))

+/ S (v + )M (= Ay +x, =gy + E)dy. (9.128)
0

Substituting the above relation into (9.119), the kernel equations reduces to the
following three PDEs with three boundary conditions
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0=—A"Mg(x,&) + A"M(x,&) = ()M (x, &) =7 (x)RIM(L, L - (x - §))

-7 (x) / w T (x = Av)M (x — A4y, € — Aav)dy, (9.129)
0=M(£, 6N (-)+A+M(§, &) - (8). (9.130)

Besides, we obtain that for M (x, ¢) and Ny (x, &),

D*(x,8) == M(x, )X (&) + /X M(x,s)D™ (s,&)ds, (9.131)
3
D™(x,6) == Nu(x, )7 (£) +/€ Nii(x,s)D™ (s, )ds, (9.132)
and the output injection gains are given by
Pt (x) = —A44M(x,0), (9.133)
P, (x) = =A4N11(x,0). (9.134)

Since the kernels M (x, &) and Ny (x, &) are well-posed, (9.131)—(9.134) imply that
the output injection gains as well as the target system coefficients are well-posed.
Thus, the observer design is summarized in the following theorem.

Theorem 9.2 Consider the estimation error system (Wi, Wy, W3, Wy4) in (9.108)—
(9.111), obtained from the observer (9.103)—(9.106) and control design model (9.56)—
(9.64), with initial conditions w;(x,0) € L% ([0,L]), i = 1,2,3,4. The output in-
Jection gains P*(x) and Py, (x) are chosen as (9.133) and (9.134), where the kernel
M (x, &) is obtained by solving equations (9.129), (9.130) and Ny (x, &) by (9.128).
The observer error systems equilibrium

We,i(x) =0, i=123,4, (9.135)

is stable and reached in finite time tp given by (9.82).

The estimates (W1, Wy, W3, W4) can be transformed to the estimates of the density
and velocity variations (01, V1, 02, V2) of two-class vehicles according to

P1 122
V1 Wo
[ =Tx) | 7. 9.136
5 (%) Vo ( )
2 Wa

Furthermore, the estimates of the original state variables are obtained by

pi(x,1) =pi(x,1) + p, (9.137)
Di(x, 1) =V;(x,1) + v} (9.138)

with respect to the estimates of the densities and velocities (41, 91, 2, P2).
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9.6 Output feedback control design

The output-feedback control law for the two-class traffic ARZ PDE model is con-
structed by employing the state estimates generated by the anti-collocated observer
(9.103)—(9.106) and substituting the state estimates into the full-state feedback law
(9.101), which yields finite-time stability of the closed-loop system at the zero equi-
librium.

The output-feedback control law is given by

p1(L,1) - pj
P1(L,t) — VT
02(L,1) = p;
Vo(L,t) — v;
(&, 1) - p]
v1(é,0) - v)
p2(€,1) - p;
P2(&,1) = v

) o1& 1) - py
Jagq

~kge e / L@ | ED T g (9.139)
5 OO 560y - p1 | 960 :

D2(&,1) - 5

Jup o
U(t) =—kae s "RiT, (L)

J,

44 L
e L /O K(L.&)T;'(£) dé

where the estimates (Jy, V1, 02, V2) are obtained by transforming the states of the
anti-collocated observer (9.103)—(9.106) according to (9.136)—(9.138), the transfor-
mation matrices T;; ! (-) and Tl_1 () are given by (9.98), the kernel K (x, £) is obtained
by the solutions of (9.93) and (9.94), L, (x, ¢) is given by (9.92), and the coefficient
k4 is introduced in (9.50). We reach the result formulated through the following
theorem for output-feedback stabilization.

Theorem 9.3 Consider the linearized two-class ARZ model given by (9.12) with the
boundary conditions (9.22)—(9.24) and (9.39), the initial conditions g (x, 0), V1 (x, 0),
P2(x,0),V2(x,0) € L2([0,L]), and the output-feedback control law (9.139),
where the estimates are generated by the anti-collocated observer (9.103)—(9.106).
Let the kernels K(x,&) and Ly (x,&) be obtained by solving the kernel equa-
tions (9.93), (9.94) and let the observer output injection gains be given by (9.133)
and (9.134), where the kernel M (x, &) is obtained by solving (9.129),(9.130) and
Ni1(x, €) is given by (9.128). The equilibrium (p¥, p3, VY, v3) is stable and reached
in finite time 2tg, where tr is given by (9.82).

The finite convergence time of the output feedback stabilization is twice as long
as the convergence time of full-state feedback stabilization or observer estimation,
because it requires 7 to obtain accurate state estimates and then the control needs
another ¢ to achieve convergence of the state variable to the equilibrium state.
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Fig. 9.4 Traffic density and velocity of class 1 without control.

9.7 Numerical Simulation

In this section, the performance of the output-feedback controller is investigated
by a simulation of the closed loop involving the original nonlinear model (9.1)-
(9.4). First, we discuss the simulation results for the open-loop system and for the
closed-loop system. Then performance indices are introduced to evaluate whether
the output-feedback controller achieves fuel savings, more comfort, and reduced
total travel time.

For the implementation, the traffic state variables pi, p2, vi, v are transformed
to the conservative variables pi, p2, y1 = p1(vi = Ve,1(p1,02)) and y2 = pa(va -
Ve.2(p1, p2)). The update for each time step is computed in a two-stage Lax-Wendroft
scheme. More details on applying the scheme to ARZ-type traffic models can be
found in Section 1.8. The equilibrium densities are chosen as p} = [150]veh/km
and p; = [75]veh/km such that the investigated traffic is in the congested regime.
The equilibrium velocities are determined by the choice of the equilibrium densities
and result in v{ = [38]km/h and v = [20]km/h. The initial condition

N 4
pi(x,0) =pt + Pisin [Fy), i=1.2, (9.140)
4 L
. O)—*—v—;ﬁsin4—ﬂ i=1,2 (9.141)
VvilXx, _Vi 4 I X, 1=1, .

represents stop-and-go oscillations described by density and velocity of sinusoidal
shape.

The simulation results for the open-loop system are displayed in Figure 9.4 for
the vehicle class 1 and in Figure 9.5 for the vehicle class 2. In each figure, the left
plot shows the density of the corresponding vehicle class, whereas the plot on the
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Fig. 9.5 Traffic density and velocity of class 2 without control.
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Fig. 9.6 Traffic density and velocity of class 1 with full-state feedback control. The green line
indicates tf.

right hand side shows the velocity. The values of the states at the outlet of the track
section are marked with a red line, whereas the blue line emphasizes the initial
profiles (9.140). The four plots indicate that the stop-and-go oscillations do not
vanish without the influence of control.

Next, Figures 9.6 and 9.7 illustrate the simulation results for the same initial
condition but with activated full-state feedback control. The green line marks the
finite convergence time fr =~ [237]s. Thus, it is easy to see that the convergence to
the constant equilibrium profile in ¢ is achieved.

Finally, Figure 9.8 and Figure 9.9 show the simulation results for the initial
profiles using the designed output feedback control. Since the observer requires ¢
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Fig. 9.7 Traffic density and velocity of class 2 with full-state feedback control. The green line
indicates tf.
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Fig. 9.8 Traffic density and velocity of class 1 with output feedback control. The green line indicates
2t

to estimate the states without error and afterwards the controller needs ¢z to achieve
finite time convergence, the total finite convergence time is now 2tp ~ [474]s and
therefore green line is adjusted accordingly.

Let us also examine the control input in Figure 9.10. This plot shows that
U(t) is continuous and nontrivial (non-monotonic) for this test case. Addition-
ally, the control input is negative and bounded satisfying |U(t)| < [0.25]veh/s.
While taking (9.20) into account, the constant total boundary flow rate is ¢* =
pivi + p5v; = [2.0242]veh/s. Furthermore, the open-loop ramp inflow that we
take, g7, = [0.4]veh/s, is around 20% of the mainline flow, which implies that
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Fig. 9.9 Traffic density and velocity of class 2 with output feedback control. The green line
indiciates 2¢f.
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Fig. 9.10 Traffic flow perturbation U () controlled by the ramp metering.

gy +U(1) > 0, V1 € [0, tim] (9.142)

and, therefore, the traffic flow leaving the track section is positive.

Performance indices

The considered performance indices
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tsim L
Jtuel = / / max{0, bg + b1v(x,t) + byv(x,t)a(x,t)
0 0

+ bsza®(x,0)}p(x, 1)dxdt (9.143)
tsim L
Jeomtort = / / (a (e, + ay (v, 1)), 1) (9.144)
0 0
Lsim L
JrrT = / / p(x, 1)dxdt (9.145)
0 0

are introduced in Chapter 21 of [?]. The traffic flow control objectives are the
minimization of the fuel consumption and of the total travel time, as well as the
maximization of the driving comfort.

The performance of closed-loop system is considered for a freeway segemnt of
length L = [1]km and the simulation is run for zy;, = [600]s. The parameters
are chosen as by = [25 - 107]L, by = [24.5-107°]L b, = [125- 10*6]5;1—‘2 and

it is assumed that b3 = [95 - 1074] %Z Notice that a(x,?) is defined as the local
acceleration a(x,1) = v,(x,t) + v(x, t)vx(x, t). The performance of the controller is
evaluated by computing (9.7) for the open loop simulation and comparing it to the
values obtained by the closed loop simulation.

In the expressions given next, terms of the form Jx or denote the performance
indices obtained for the open-loop results, whereas terms of the form Jx cr, denote
the indices obtained for the closed-loop results, where X € {fuel, comfort, TTT}.
The relative values

J fuel,CL J comfort,CL J TTT,CL -

=0.9407, =0.7933,

1.0 (9.146)
Juel,oL Jcomfort,OL JrrT0L

indicate that the vehicles that are controlled by the PDE backstepping feedback
law implemented by ramp metering consume 5.93% less fuel, enjoy 20.67% more
driving comfort, and require the same total travel time, when the controller is applied
within tg4, = [600]s. Over a longer testing interval, the improvements would only
be higher, though possibly only by a marginal amount relative to the reported 5.93%
and 20.67% improvements.

9.8 Notes and References

This chapter develops an output-feedback controller for the linearized two-class
ARZ traffic PDE model. We develop the boundary control design model in its
characteristic form and investigate the obtained characteristic speeds for the free
and congested traffic regimes. Backstepping control design is employed to stabilize
the 4 x 4 heterodirectional hyperbolic PDEs for the congested two-class traffic and
an anti-colloated observer is designed for traffic state estimation with boundary
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sensing. This result can be extended to multi-class traffic models, for which n + m
heterodirectional backstepping control design can be applied.



Chapter 10
Control of Two Cascaded Freeway Segments

10.1 Taking the ARZ Control Design Beyond a Single Freeway
Segment

Thus far our attention in this book has been restricted to traffic on a single freeway
segment. The segment could have various real-world attributes. First, it can be
curved, on an incline or decline, affected by weather or visibility changes—which
would all manifest itself through the fundamental diagram. Second, the traffic on the
freeway can be in multiple lanes, with lane changes, or multiple classes of vehicles
or drivers may be participating in traffic, which is captured by ARZ models that
incorporate more than two PDEs.

The reader will have observed that not a word has been said thus far in this
book about freeway networks. Even though our focus is on traffic stability and the
suppression of stop-and-go oscillations, which readily emerge in single freeway
stretch configurations, there surely must be an effect on traffic flow stability from
freeway branches merging or diverging, from branches looping back or forming a
“beltway,” and from more general freeway network configurations.

While, for a single freeway stretch (with possibly multiple lanes and multiple
vehicle or driver classes) the controllability of the density and velocity states from
a ramp, via metering, is a question that is easily answerable, and is answered in the
negative only in the case of a free traffic regime upstream of a ramp (in which case
stop-and-go doesn’t arise anyway), the controllability of general networks of ARZ
models, with inputs at various locations along the interconnected freeway branches,
is a very complex question in its own right.

Indeed, before designing controllers to suppress stop-and-go in a freeway network
one needs to determine first what are the input locations and actuation types that
would make the density and velocity at all locations in the network controllable.
This controllability would be expected to hold only in the sense commonly seen for
wave PDEs and coupled hyperbolic PDEs, namely, after sufficient time determined
by the propagation speed through the hyperbolic PDEs. Posing the question in this
fashion—namely, what input locations and types yield controllability—is a design

213
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mindset, applicable at the time of designing infrastructure. More realistically, given
the freeway network and the ramps that have already been built, the controllability
question may have either negative or positive answers, and the answers may depend
on the flow regime (free or congested).

Questions of controllability, or stabilizability, of networks of 1D flow channels,
have been tackled to various degrees of completion in the literature. The answers
to these questions, for such physical models, do not necessary translate to ARZ
dynamics and traffic so we shall not review in detail such literature. However, we
shall highlight that efforts on controllability and stabilizability of networks of pipes
with gas (compressible, as is traffic) and of water channels (where the states like
water height and velocity are somewhat analogous to the traffic density and velocity)
are of definite relevance to the study of control of traffic networks, though the traffic
models are more complex.

In fact, it is instructive to even recall results on networks of ODE models of fluid
flow, such as control of mine ventilation networks [?]. Such results, while different
in terms of actuation (mine ventilation networks are actuated by doors that open or
close to react to the presence of the dangerous methane—a gas that is both noxious
and explosive—namely, through actuation that is nothing like ramp metering) do
inform us that a fluid network can be satisfactorily controlled without having to
place an actuator in each branch of the network. Instead, actuators in a co-tree of
the graph of the network suffice for successful control. This is intuitively obvious,
thanks to the Kirchhoff current law which acts as an algebraic constraint on the flows
through the branches, which are governed by ODEs. Simply put, a door in a branch
of a mine ventilation network may be able to control the flow through that branch
and another branch as well, or control, additionally, a combination of flows through
other branches, at least in the ODE model of the network. Such a capability may not
carry over to a spatially distributed (PDE) flow model.

This is all to indicate that, while it is certainly practically relevant to consider con-
trol of dynamical behaviors like stop-and-go in traffic networks, it may be premature
to engage in stabilizing feedback design for ARZ networks before their controllabil-
ity is thoroughly studied. And, judging from the experience with mine ventillation
networks, whose models in [?] involve a single ODE per branch for the flow state,
enormous complexity is expected to arise for a general network topology, shifting
the problem from PDE dynamics and control to graph theory problems.

In fact, one has to imagine the potential complexity of answering the controllabil-
ity question for a general traffic network in which not only may the flow be congested
in one branch and free in another branch, but a transition from free to congested may
be occurring within the same branch.

For this reason, we believe that stabilization of general ARZ networks is beyond
the scope of this book. And perhaps even beyond the scope of future interest for
researchers focused on feedback design under challenges arising from PDEs (rather
than from graph theory), such as ourselves.

Therefore, in this book we make only a couple of modest steps beyond control
of a single stretch of freeway. In this chapter, we consider the simplest configuration
beyond a single freeway branch: a cascade of two freeway segments, with ramp
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metering applied either where they connect or at the exit from the downstream
branch.

At first that may seem as a rather trivial configuration—a “glorified single freeway
segment,” misrepresented as two. But there are non-trivial challenges there. First,
if applying control at the junction of the two segments, one has to simultaneously
control both downstream and upstream traffic. The propagation speeds in the down-
stream and upstream directions are different even if the two segments of freeway have
identical fundamental diagrams and are operated at the same density and speed. But,
structurally, the system exhibits challenges that cast it outside of the methodologies
reviewed in Chapter 2. The system is of the (2 +2) x (2 + 2) form, but with only
one input, i.e., it is an underactuated set of coupled hyperbolic PDEs. Such a system
requires an assumption on the model parameters to permit stabilizability.

Second, even if the control is applied at the exit of the downstream segment, in
which case the cascade of segments may appear as a single longer segment, things
are not quite trivial. Suppose the freeway looses a lane or two at the point of transi-
tioning from the upstream to the downstream segment. This creates a discontinuity
in many things—the fundamental diagram, the density and velocity (while the flow
is continuous), and the feedback gains. The single-segment design does not apply
and backstepping needs to be carefully recrafted for this configuration.

Taking into account also the deed to design an observer in order to eliminate the
need for the unrealistic full-state feedback, the set of actuator and sensor placement
options go up from two to four and the design challenges multiply.

From the configuration of a cascade of two freeway segments in this chapter, we
go one step further in Chapter 10 where we consider the “diverge” configuration,
i.e., one stretch of freeway branching out into two. We do not consider in this book
the comparably canonical “merge” configuration.

In closing this lengthy discussion on controlling ARZ networks, when this inquiry
attains the topological generality of [?], the field of control of macroscopic flows in
traffic networks can be considered to have matured. To get to that point may take a
few decades. Is this prediction overly pessimistic? Are we inflating the magnitude
of the challenge because we are unable to meet it at present, in this book? Are we
setting the expectation low so that any partial success is impressive? No. Expecting
that it will take decades until control of macroscopic models of traffic flows is fairly
exhaustively understood is informed by the awareness that it has taken nearly seven
decades since the formulation of the LWR PDE model, for a single freeway segment,
until the achievement of the current results on stabilization of ARZ PDE models
for a single segment. Of course, heuristic leapfrogging is possible using practically-
minded tools, such as RL, but methods that supply stability guarantees will take
decades to develop for general traffic network topologies.

What we actually do in this chapter is described next.

We develop boundary output feedback control laws for the simplest nontrivial
example of a traffic flow network system: two cascaded freeway segments connected
by a junction. The macroscopic traffic dynamics are governed by the ARZ network
model in which two subsystems of second-order nonlinear PDEs describe the evolu-
tion of traffic density and velocity on each segment. Due to the change of road access
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at the junction, different equilibria are considered for the two connected segments.
To suppress stop-and-go traffic oscillations on the cascaded roads, we consider a
ramp metering that regulates the traffic flow rate entering from the on-ramp to the
mainline freeway. Different control designs are proposed such that the output feed-
back stabilization is realized with either the ramp metering located at the middle
junction or the outlet with only boundary measurements of flow rate and velocity.
The control objective is to simultaneously stabilize the upstream and downstream
traffic to a given spatially-uniform constant steady-state. The distinct actuation lo-
cations motivate our design of two different delay-robust full state feedback control
laws. The proposed designs are based on the PDE backstepping methodology and
guarantee the exponential stability of the under-actuated network of two systems of
two hyperbolic PDEs. Two types of collocated boundary observers are proposed to
construct output feedback controllers where the sensor location is the same as the ac-
tuator location. Numerical simulations are performed to validate the control designs.
The two collocated output feedback controllers are compared for their stabilization
performance. Robustness to delays is also investigated. The proposed controllers are
also compared with some PI boundary feedback controllers.

10.2 Possible Control Configurations for a Cascade of Freeway
Segments

Macroscopic modeling of a cascade of freeway segments

Macroscopic modeling is well-established in the previous chapters to describe free-
way traffic dynamics since the aggregated state values used by the models are easy to
sense and actuate, leading to a particular interest in freeway traffic management. The
macroscopic models predict the evolution of continuous traffic states in the temporal
and spatial domain by employing hyperbolic PDEs to govern the dynamics of traffic
density and velocity. Macroscopic modeling of traffic flow on a network has been
considered using different approaches, taking into consideration the complexity of
the road network structure [?].

The traffic network model based on the LWR model is developed in [?, ?, ?]. A
two-dimensional conservation law for a dense urban area is studied in [?]. An urban-
scale macroscopic fundamental diagrams exsit for space-mean flow, density and
speed [?]. More recently, the macroscopic road networks based on the ARZ family
of models have been developed in [?, ?]. Considering the problem of suppressing the
stop-and-go congested traffic on cascaded freeway segments, it is, therefore, essential
to study the state-of-art second-order macroscopic traffic network models.

In this chapter, we adopt the second-order macroscopic traffic network model
in [?] for the two cascaded freeway segments. The model is chosen such that the
junction connecting the two roads conserves the mass and drivers’ properties, as
detailed later in the chapter. This property is not smooth across the junction in [?].
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Fig. 10.1 Traffic flow on upstream and downstream roads of a junction, actuation is implemented
at the junction or at the outlet of the downstream road segment.

The solution in [?] is a weak solution (in the sense of the conservative variables of
the ARZ model) that guarantees the well-posedness of a closed-loop system for our
control design. The considered system of two cascaded freeway segments can then
be rewritten as a network of two interconnected PDE systems coupled through their
boundaries. Each subsystem corresponds to a 2 x 2 coupled hyperbolic system.

Boundary control of of a cascade of freeway segments

Traffic control strategies have been developed and successfully implemented for the
traffic management infrastructures for a single freeway segment, as introduced in
previous chapters. These control laws are restricted to control problem of traffic
on one freeway segment which necessitates certain road homogeneity. As shown in
Fig. 10.1, the traffic flow rate is actuated through on-ramp traffic lights so that either
the upstream or the downstream traffic is stabilized. Such control design can not
stabilize the two segments simultaneously, and distinct traffic scenarios appearing
on the cascaded segments are not addressed by the model. Ramp metering control
of the upstream traffic may cause congestion for downstream traffic and vice versa.

In this chapter, we solve the boundary control problem of two cascaded traffic
freeway. The control design proposed in this chapter mainly advances previous
designs in the following aspects:

» Stabilization by single ramp metering control: the downstream and upstream
traffic be stabilized simultaneously, using only one actuator. We introduce output-
feedback control designs that simultaneously stabilize the traffic on two cascaded
segments modeled as an underactuated a fourth-order PDE system. The actuation
and measurement are only taken from either the middle junction or the outlet. The
underactuated formulation presents significant challenges, which backstepping
design overcomes by exploiting the cascaded structure of the traffic system.
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Table 10.1 Output feedback law

actuator/sensor location  |sensor x = 0 sensor x = L
actuator at x = 0 collocated anti-collocated
actuator at x = L anti-collocated collocated

¢ Collocated controller and observer: in the same fashion, backstepping provides
boundary observers with sensing information from only one location. Moreover,
the sensor can be at the same the location as the actuator, unlike for PI control. For
instance, for two cascaded freeway segments in Fig. 10.1, PI [?] requires ramp
metering controllers located at x = —L and x = 0,and VSLs located at x = 0
and x = L, i.e., a total of four actuators. Ramp metering takes density sensing at
x =0and x = L and VSL control takes velocity sensing at x = —L and x = 0.
Backstepping requires only one ramp metering with two options: 1) Control Uy
at the middle junction x = 0 and measurements of flow rate and velocity at the
same location; 2) Control Uy at the outlet x = L and measurements of flow rate
and velocity at the same location.

¢ Output feedback control with flexible actuation and sensing location combi-
nations: we design four output-feedback controllers shown in Table. 10.1: two
collocated and two anti-collocated. Such design is of practical relevance when
collocated implementation fails temporarily or anti-collocated implementation is
unavailable.

* Robustness to input delays: Perturbations that are common in traffic flow
include boundary disturbances, uncertain model parameters, and actuation and
measurement delays. The adaptive backstepping control design for uncertain
model parameters is provided in Chapter 5 for the ARZ model on one segment.
However, the backstepping design is finite-time stabilizing but not robust to
actuation delays. This chapter provides output feedback robust to input delays.

¢ Comparison between PI control and Backstepping: This chapter provides a
conclusive comparison between PI control and Backstepping method, and trade-
offs are discussed.

10.3 ARZ PDE Model of a Cascade of Freeway Segments

We consider a road network that consists of two connected road segments with
unidirectional traffic flow and different road conditions, as shown in Fig. 10.1. The
two segments are assumed to have the same length L for simplicity of notation. The
spatial scaling can be easily made for equations that are used to describe traffic states
on segments with different lengths. The downstream traffic is defined on [0, L] while
the upstream traffic is defined on [—L, 0]. These two segments are connected at the
junction through the boundary x = 0. The traffic dynamics are described with the
ARZ PDE model and the junction between the two segments is represented with
the boundary conditions of the PDE model. The adopted ARZ PDE-based traffic



10.3 ARZ PDE Model of a Cascade of Freeway Segments 219

network model by [?] allows the existence of weak solutions, which we will define
later for the open-loop and closed-loop system.

The evolution of traffic density p; (x, t) and velocity v; (x, t) (with (x, ) € [0, L] X
[0, o)) on the downstream road segment and traffic density p(x,?) and velocity
va(x,1) ((x,1) € [-L,0] x [0, 0)) on the upstream road segment are modeled by
the following ARZ model.

0rpi + 0x(pivi) =0, (10.1)

_Pivi—V(pi))
T; ’

9 (pi(vi + pi)) + 0x(pivi(vi + pi)) = (10.2)
wherei € {1, 2} represents downstream and upstream road respectively. The labeling
of freeway segments is chosen as the reverse direction of traffic flow but same as the
propagation direction of the control signal, which will be explained later. The traffic
pressure p;(p;) is defined as an increasing function of the density

pi(pi) =cip]’, (10.3)

where y;, ¢; € R*isdefined as ¢; = v,,,/ pZ:J.. The coeflicient y; represents the overall
drivers’ property, reflecting their change of driving behavior to the increase of density.
The positive constant v, represents the maximum velocity and the positive constant
Pm.i 1s the maximum density defined as the number of vehicles per unit length. The
equilibrium density-velocity relation V;(p;) is given by V(p;) = v,,, — p; (p;) for both
segments, which assumes the same maximum velocity for the two segments when
there are no vehicles on the road p; = 0. We define the following variable

w; =v; + pi(pi), (104)

which is interpreted as traffic "friction" or drivers’ property [?]. This property trans-
ports in the traffic flow with vehicle velocity, representing the heterogeneity of
individual driver with respect to the equilibrium density-velocity relation V;(p;).
The maximum velocity v,, is assumed to be the same for the two road segments
while the maximum density p,, ; and coefficient y; are allowed to vary. The positive
constant 7; is the relaxation time that represents the time scale for traffic velocity v;
adapting to the equilibrium density-velocity relation V;(p;).
We denote the traffic flow rate on each road as

4i = pivi. (10.5)

The equilibrium flow and density relation, also known as the fundamental diagram,
is then given by

Qi(pi) = piV(pi) = pivin (1 = (pi/Pmi)"") . (10.6)
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Fig. 10.2 The equilibrium density and velocity relation V; (p) on the left, the equilibrium density
and flux relation Q; (p) on the right

We assume that the equilibrium traffic relation is different for the two segments
due to the change of road situations and access to road junction. The illustration
is given in Fig 10.2. The critical density p. segregates the free and congested
regimes of traffic states. The critical density is given by pe; = pm.i/(1+7y;) '/
such that Q;(p)|p=p. = 0. The traffic is free when the density satisfies p < p. ;.
The traffic is defined as the congested one when the density satisfies p > p. ;. For
the free traffic, oscillations around the steady states will be damped out fast. For the
congested traffic, there are two directional waves on road with one being the velocity
oscillation propagating upstream and the other one being the density oscillation
propagating downstream with the traffic.

We consider the situation that the upstream road segment 2 for x € [—L, 0] has
more lanes than the downstream road segment for x € [0, L], in which congested
traffic is usually formed up from downstream to upstream. Therefore, the maximum
density p,,2 > pm,1. The maximum driving speed v, is assumed to be the same for
the two segments. The maximum flow rate of the upstream road Q»(p.) is reduced
in the downstream to Q(p.), due to the change of road conditions from segment 2
to segment 1.

Actuated boundary at two different locations

Regarding the boundary conditions connecting the two PDE systems, the Rankine-
Hugoniot condition is satisfied at the junction such that the weak solution exists for
the network (10.1)-(10.2). This condition implies piecewise smooth solutions and
corresponds to the conservation of the mass and of the drivers’ properties defined
in (10.4) at the junction. Thus the flux and drivers’ property are assumed to be
continuous across the boundary conditions at x = 0, that is

pl(o’ t)vl(o’ t) :PZ(O’ t)VZ(O’ t)’ (107)
wy (0, 1) =w; (0, 1). (10.8)
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For open-loop system, we assume a constant inflow ¢* entering the inlet boundary
x = —L and a constant outflow ¢g* at the outlet boundary for x = L:

q2(=L,1) =q™, (10.9)
q1(L,1) =q*, (10.10)

The control problem we solve consists in stabilizing the traffic flow in both the
upstream and downstream road segments with a single actuator. Three possible
locations for implementing a ramp metering control input are either at the inlet
x = —L, at the junction x = 0 or at the outlet x = L. We only present the control
and estimation results for control input either from the middle junction or from
the outlet, as shown in Fig.1. Actuation at the inlet is a less challenging control
problem that can be solved following [?] by reducing the traffic inflow. Except for
the controlled boundaries, the boundary conditions remain to be the same with the
open-loop system in (8.20)-(10.10).

Ramp metering control U (7) from the junction x = 0: The traffic flow entering
from the junction to the mainline road is controlled by Uy (¢). Given the flux continuity
condition, the boundary condition at the junction is

q1(0,1) =q2(0,1) + Up(1), (10.11)

where the downstream segment flow consists of the inflow from the mainline up-
stream segment and the actuated traffic flow from the on-ramp.

Ramp metering control Uy (7) from the outlet x = L: The downstream outflow
atx = L is actuated by Uy (7),

qi1(L,1) =¢* + UL (1), (10.12)

where the outflow rate equals to the summation of the on-ramp metering flow and the
constant mainline flow. In what follows, when we implement one choice of control
input, the other control input equals to zero. It should be noted that the designed
controllers Uy in (35) and Uy, in (49) are the flow rate perturbations around a nominal
flow rate. We assume that the steady state flow rate consists of a nominal on-ramp
flow rate g, > O which is a component of the steady state flow rate ¢g*. Then the
actual ramp flow input at a on-ramp is given by

Gramp(t) = qr +Up,.(t) 2 0 (10.13)

In practice, we only need to guarantee that g.,mp(f) is non-negative so that
Uo,.(t) = —q,. The value of g, depends on the road configuration and real-time
traffic conditions. We assume that there exists g, > 0 such that (10.13) always holds.
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Congested steady states (p], v}, p3,v})

We are concerned with the congested traffic and assume that the equilibrium of
both segments (p7,v}), (p3,v}) are in the congested regime, which is the only
one of theoretical control interest among all four traffic scenarios including free and
free, free and congested, congested and free, congested and congested. As shown in
Fig. 10.11, if the traffic of both segments is free, there is no need for ramp metering
control. If the upstream segment 2 is in the free regime and the downstream segment
1 is congested, then we only need to control the congested downstream traffic with
either Uy(#) or UL (?), as introduced in Chapter 3. The oscillations propagated from
the congested segment to the free regime segment will be damped out soon. The
same applies to the scenario of free traffic in downstream segment 1 and congested
traffic in upstream segment 2. The control objective is to stabilize the traffic flow in
the two segments around the steady states. In practice, the steady states represent
the equilibrium state values of the traffic flow when oscillations are successfully
suppressed by our control design.

The steady states (o7, vY), (p3,v3) are considered to be in the congested regime
and the boundary conditions (10.7) and (10.8) are satisfied, i.e.,

PV =p3vy =4q%, (10.14)
Wi =wy = v, (10.15)

where the steady state velocities satisfy the equilibrium density-velocity relation
v¥ = V;(p}). According to (10.4), the constant driver’s property in (10.15) implies
that we have the same maximum velocity v,, for the two segments (which corresponds
to our initial assumption):

VI+pT = v+ py = v, (10.16)

where pf = p;(p}). The steady states can be solved from the above nonlinear
equations (10.14),(10.16), however there are no explicit solutions. Therefore we
show the derivation process for obtaining the steady state values when p} and the
model parameters v, p,,.; and y; are given. The functions V;(p), Q;(p) and p(p)
are also known. The steady state flow rate in (10.14) is obtained as ¢* = Q1 (p7),
and the constant flux (10.14) O, EPII) :( %27&91; )s ylyfflds a relation for the steady state
densities of the two segments % = Z:{:z; Knowing p¥, p and ¢*, the

*
it

. . o
steady states velocities are obtained as v} = ¢*/p

Linearized model in the Riemann coordinates

We linearize the ARZ based traffic network model (p;, v;) in (10.1), (10.2) with the
boundary conditions (10.7), (10.8), (10.9), (10.10) around the steady states (o, v})
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Fig. 10.3 Control diagram for the closed-loop system with either the actuation from the middle
junction x = 0 or from the outlet x = L.

defined in the previous section. In order to obtain simplify the model for control
design, the linearized model is then rewritten into the Riemann variables and then a
invertible spatial transformation is applied

*
) 1
x*) (ygil(ﬁnvi-pfvf)* ,T(Vi-'vf) , (10.17)

Ti i

Wi =exp(

\7,' =V; —V*, (1018)

v

where the constant coefficients r; are defined as

X
rp = —l* (10.19)

YiPy =V}

Pm.i
(14y) i
Yip}F — v} > 0. The velocity variations ¥; (x, ¢) transport upstream. More precisely,

For the congested regime we have p* > so that the characteristic speed

P; Ny . Prmi
we have p* = v, — V(p}) = vm(ﬁ)” > Vp, since p¥ > W Thus,

(vi +2)p} > 2v,,, which implies y; p* > 2v,, — 2p} = 2v*. Thus the inequalities
“1<r <0, (10.20)

are satisfied for ;. The more congested of the traffic, the smaller the absolute value
of the ratio constant.

With such a change of variable, the linearized system with the controlled bound-
ary conditions (10.11) and (10.12) rewrites as
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Wi + v oxw; =0, (10.21)
O vi — (yipf —vi)0xvi =ci(x)W;, (10.22)
w1 (0,1) =w2(0,1), (10.23)
— 1=
51(L, 1) =r1 exp ( *) W1 (Lo 1) + —L UL (1), (10.24)
vy P
- 1
Wwa(=L,1) =exp( *) —v(=L,1), (10.25)
v, ) n
- r . ~ l-r
92(0,1) =6r—v1(0, 1) +ra(1=06)wy(0,¢) + o Uy(t), (10.26)
1 2
where the spatially varying coefficients ¢;(x) are defined as
1 X
ci(x) =——exp (— *) . (10.27)
i iV
and the constant coefficient ¢ is
*
5=202 5, (10.28)
YiP,

The constant ¢ represents the ratio related to the traffic pressure of the segments.
Derivation of the linearization and the spatial transformation is straightforward to
obtain by following [?] and thus are omitted here. The control diagram is shown in
Fig. 10.3 for the transformed system (10.21)-(10.26).

The well-posedness and the existence of the weak solutions for both the open-
loop and closed-loop system in (10.21)-(10.26) are defined and then discussed. The
initial conditions are denoted (¥¢); = ¥; (-, 0), (Wo); = W; (-, 0) and belong to L such
that ()1, (Wo)1 € (L*([0,L]))* and (¥p)a, (Wo)2 € (L*([-L,0]))*. We consider
weak solutions of the system (10.21)-(10.26) with the initial conditions (¥¢);, (Wo);-
More precisely, as suggested in [?], multiplying formally (10.21)-(10.22) by smooth
test functions (¢;, ;) and integrating by parts, the following definition of a weak
solution is given.

Definition 10.1 Let us consider T > 0. A L2-solution (weak solution) of the
problem (10.21)-(10.26) with the initial conditions (¥¢);, (Wo); € (L*([0, L]))?
and (¥9)2, (Wo)2 € (L*([-L,0]))?> and the control laws U; € L*([0,T]) and
Uy € L*([0,T]), is a map (¥1,W;) € (C°([0,T];L>([0,L])))* and (¥,,W») €
(C%([0,T]; L>([~L,0])))? such that for every (¢1,¥1) € C'([0,L] x [0,T])? and
(¢2,42) € C'([-L,0] x [0,T])? such that
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129 -L

Yo(=L,1) = (aps %) GXP(QV;)@(—LJ),
r * _ %
01(0,1) = %5%(0’ 1,
¢1(L,1) = mrl eXP(—L*)lﬁl(L, 1),
1 vy

$2(=L,1) = )/zpi—*—v;rz(l = O)Ya(2,0) + :—£¢1(03 1),

2 2

we have

T L
0:—‘/0 /0 (0rp1(x,1) + v 0xp1(x, 1) + c1p1 (x, 1)W1 (x, 1)dxdt

T L

- /0 /0 @1 (1) — (i — vt (5 1)) 71 (xa 1)
T 0

- /0 / (@2 () + 30,232, ) + caia(, )
T 0

- /0 / (@unn(x.1) = (2p3 =B, (x. D))
L

" /0 (610 1)1 (5, 1) + 1 (x. 1)1 (e, )] dx
0

" / L2 0ia(ran) + e, 072 O]

T * * 1—)‘1
—/ (1% =D (L UL (0
0 1

T
- / (y2p3 - V;)l—:sz(O, 1)Uo(t)dx (10.29)
0 Py

The open-loop system (10.21)-(10.26) (for which Uy, = Uy = 0) is well-posed by
[2, Theorem A 4], that is, for any initial conditions (7)1, (Wo)1 € (L*([0, L]))? and
(90)2, (Wo)2 € (L*([~L,0]))?, there is only one L*-solution. It is shown in [?] that
only marginal linear stability holds for the open-loop system of one segment. Our
objective is to design the control law Uy(z) or U (¢) to stabilize the system (10.21)-
(10.26) in the sense of the L?-norm. More precisely, we want to design the control
laws such that the closed-loop system is exponentially stable in the sense of the

following definition.

Definition 10.2 The linearized traffic PDE network system (10.21)-(10.26) is expo-
nentially stable for the L2-norm if there exists Mi,vi > 0and c¢;,d; > 0 such that,
for every L? initial condition (;(-,0), #;(-,0)), the L? solution of the closed-loop
system with designed controllers (10.21)-(10.26) satisfies
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[: (O < eze™ [l (-, 0)]], (10.30)
17: (Ol < die™ " [7:(, 0)]]. (10.31)

The control operator is admissible. Consequently, for any Uy € L?([0,T]) and
Uy € L?*([0,T]), and for any initial conditions (¥0);, (Wo); € (L*([0,L]))? and
(70)2, (Wo)2 € (L*([~L,0]))?, there is only one L2-solution to (10.21)-(10.26).

We make the following non-restrictive assumption so that the proposed feedback
laws have some (delay)-robustness margins.

The boundary couplings of the system (10.21)-(10.26) are such that

1 +exp( L )

TV}

(10.32)

1 +exp(T761*) .

If this assumption is not satisfied, then it is not possible to robustly stabilize
the system (10.21)-(10.26) when there are input delays (as the open-loop transfer
function would have an infinite chain of poles in the complex right half-plane). An
detailed discussion on robustness will be given in Section 10.7 after we introduce
control and estimation designs.

10.4 State feedback Control Designs

In this section, we design full-state feedback laws that guarantee the stabilization
of the system (10.21)-(10.26) for the different actuation locations. In each case,
the backstepping method is employed. Using a Volterra transformation (eventually
combined with an affine transformation in the case of the actuation located at the
outlet), we map the original under-actuated system to a target system for which the
in-domain coupling terms ¢ and ¢, have been moved at the actuated boundary in
the form of integral couplings. We can then use the actuation to eliminate these
terms. The resulting system is exponentially stable due to Assumption 10.3. As such
a control law does not modify the boundary couplings, it is strictly proper, and
consequently, the robustness margins are preserved.

Feedback law U, (¢) with flow rate control from x = 0

We consider the following backstepping transformations
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@;(x,1) =w;(x,1), (10.33)

L
Bi(xt) =5 (x.1) - / KDY (6, €)1 (£, 1)dé

X

L
‘/ KYY (x, )V1(£,1)dé, (10.34)

X

Pa(x.1) =va(x,1) - / Ky (x, €)W (€, 1)dé
-L
—/L K3V (x,€)02(é,1)d¢, (10.35)

where the kernels K" and K" are defined on the set 71 = {(x,¢) € [0, L) &
x}, while the kernels K2V W and KZV v are continuous functions defined on the set 7;
{(x.&) € [-L,0]%,

& < x}. On their corresponding domains of definition, they satisfy the following set
of PDEs:

>

(yip} = vO)OKY —vFoeKY" = ci (6K}, (10.36)
0K}V (x,€) + 0K (x,6) =0, (10.37)

along with the following boundary conditions

K () = 9O (10.38)
YiPy
K" (x,x) = —;2;‘2 (10.39)
2
*
K" (x, L) = i exp( L )K"W(x L (10.40)
b ri(yipt —v}) L
KYY (x,—L) v (_L)KVW( L) (10.41)
x,—L) = ex x,—L). :
: nOapy =)\ )

The well-posedness of this kernel PDE-system is guaranteed by the following lemma.

Lemma 10.1 /?] Consider system (10.36)-(10.41). There exists a unique solu-
tion K, K} in C(71) and KJ"', K}V in C(72).

The transformation (10.34)-(10.35) maps the original system (10.21)-(10.26) to the
decoupled target system
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dra; +vioca; =0, (10.42)
O Bi — (yip! —vi)0Bi =0, (10.43)
@1(0,1) = a(0, 1), (10.44)
Bi(L,t) =ryexp (— L*) ai(L,t), (10.45)

Tlvl

L\ 1
ar(=L,1) = exp( *) —Bo(~L,1), (10.46)

‘1'21/2 ra
B(0,1) = 5:—2/31(0, 1) + (1 = 8)a2(0,1). (10.47)

1

The controlled boundary (10.47) is obtained by defining the control input Uy(t) as

*

P
Uo(t) =7=

0
[ KO0 0 + K3 (.07 1)

L
—5% A K (0,6)Ww1(&,1) + KYV(0,6)71(€,1)dE | (10.48)

This control law is a L? function. According to Definition 1, for any initial conditions
(o)1, (Wo)1 € (L*([-L,01))* and (Po)2, Wo)2) € (L*([-L,0D))*(L*([0, L])),
there is only one L2-solution to the closed-loop system for (10.21)-(10.26) with
(10.48). Moreover, since the kernels are bounded functions, our control operator
is a linear bounded operator. Consequently, it is a continuous operator. Thus the
control law Uy : [0,7] — R is continuous. For practical implementation of the
ramp metering control input, we need to modulate the changing frequency of the
on-ramp traffic light. The event-triggered control in [?] provides a way to implement
the continuous-time controllers into digital forms by updating the input values only
when needed. It is strictly proper as it is only composed of integral terms. Following
the ideas of [?], we prove that it is robust with respect to delays in the actuation and
uncertainties on the parameters. We have the following theorem.

Theorem 10.1 Consider the PDE system (10.21)-(10.26) with the feedback law Uy
defined in (10.48). Then for any L? initial condition (W;(-,0), ¥;(-,0)), the closed-
loop system is exponentially stable at the origin.

Proof The proof is a simple consequence of Assumption 10.3. The system (10.42)-
(10.47) has the same structure as the one of system (10.21)-(10.26) in the absence
of in-domain couplings and actuation. As Assumption 10.3 implies the exponential
stability of this second system, the system (10.42)-(10.47) is exponentially stable.
Due to the invertibility of the Volterra transformations (10.34)-(10.35), the systems
(10.21)-(10.26) and (10.42)-(10.47) have equivalent stability properties. This implies
the exponential stability of (10.21)-(10.26). ]
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Feedback law Uy (¢) with flow rate control from x = L

We now consider that the available actuation is located at the outlet x = L.
ay(x,t) =wy(x,1), (10.49)

B (1) =51 (6, 1) — /0 RY™ (x, &) (&, 1)dé - /0 RYY (x, &)71 (&, 1)dé

0 0
- / AL / MR (1050

ar(x,t) =wy(x, 1), (10.51)
Ba(x.t) =P (x. 1) - / RY™ (x, &) (&, 1)dé - / RYY (x, )52 (£. 1) de,
- - (10.52)

where the kernels K" and K}V are defined on the set 71 = {(x,&) € [0,L]? & <
x}, the kernels K" and KV are defined on the set 7;. Finally the kernels M™
and MV are bounded functions defined on 7 = {(x,&¢) € [0,L] X [-L,0]}. The
Volterra transformation (10.51)-(10.52) is invertible. Thus, the first transformation
(10.49)-(10.50) is invertible as it is a combination of a Volterra transformation with
an affine transformation. The different kernels satisfy the following set of PDEs on
their corresponding domains of definition

(yir? = VIO = vide K™ = ci( K}, (10.53)

0K +8:K =0, (10.54)

(y1pY = v])OxM” + (y2p5 —v3)0eM” =0, (10.55)
(71T = VvD)OM” —v30:M" = cr(§) MY, (10.56)

along with the boundary conditions
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IZ;W (x,x) = o (10.57)
_ 04 l
K}V (x,0) = =6M" (x,0), (10.58)
v
1
VY -L R
K)V(x,—L) = —exp (‘rg_*) K% (x,-L), (10.59)
2
M™(0,¢) = ;—:ZKZVW(O, ), (10.60)
MY (0,&) = ;—:2132”(0, &), (10.61)
V¥ _
MY (x,0) = (1 = 6)M" (x,0) + V—LKIVW(x,O), (10.62)
2
v -L w
MY (x,-L) = —exp (7_27) MY (x,-L). (10.63)
2

We have the following lemma.

Lemma 10.2 For system (10.53)-(10.63), there exists a unique solution I?I’W, I?fv
in B(T7),
K", KYY in B(T2) and MY, M" in B(T).

Proof We start by assessing the existence of K'; " and K'; v using [?]. The rest of the

proof is based on an induction argument and is adjusted from the one given in [?].

*_ Lk
Let us define y = yzp‘f—*vz and let us define the sequence xj by
2

xx =min(y X k, 1).

Let us now define the following triangular domains defined for k > 1.
1
Rk = {('x’g) € [0’ 1] X [_1’0]7 é: < _;(x _kal)},

Re = (6. &) € [0,1] x [~1,0], & > —}((x—xk_l)},
Sk = {(x’é:) € [09xk]2’ X 2 é:}

Applying [?, Theorem 3.2] on equation (10.55)-(10.56) with the boundary conditions
(10.61) and (10.63), we prove the existence of the kernels MV and M" on the
triangular domain R|. Consequently, these kernels are defined on the line x = —y¢&.
Let us now perform the change of variables & = —)1(5 to map the domain S; to R;.
Consequently, we can express the kernels K ; on the domain Ri (when x < x). We
denote by K| the corresponding kernels after this change of variables. Again, we can
apply [2, Theorem 3.2] to prove the existence of the kernels M*, M" and K | on R1.
This imply the existence of K,  on S;. We then iterate the procedure on the intervals
[x-1,x%] to conclude the proof. |
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The kernels here are bounded functions (instead of continuous functions) since
we decided to apply the results from [?, Theorem 3.2]. This theorem has been stated
in a more general framework where the kernels may present some discontinuities.
However, these discontinuities occur along the characteristic lines and do not have
any consequence on the backstepping transformation. The transformation (10.50)-
(10.52) maps the original system (10.21)-(10.26) to the decoupled target system,
same with (10.42)-(10.47). The control input Uy (¢) is obtained as

*

o
UL(t) = 1 —lrl

L
/0 R (L. 6)wi1 (&0 de+ R (Lo )v (€. 1)de

0
+[LMW(L,§)WZ(§, Ndé+ MY (L, E)va(&,1)dE . (10.64)

We have the following theorem.

Theorem 10.2 Consider the PDE system (10.21)-(10.26) with the feedback law Ur,
defined in (10.64). Then for any L? initial condition (W;(-,0),;(-,0)), the closed-
loop system is exponentially stable at the origin.

10.5 Boundary Observer Designs

The control laws designed in the previous section require the value of the state all
over the spatial domain. This is not realistic when considering a real implementation
for freeway traffic. This is why in this section, we design boundary observers which
either rely on the measurement of traffic states from the junction or from the outlet
of the system.

Observer with measurement Yy (¢) at x =0

This section discusses the case of an observer that relies on the measurement of §;

and ¥; at the left side of the junction. Since it holds that w, (0, ) = 7;62* G»(0,1) —

%172(0, t), we consider that the following measurement is available
Yo(2) = w2(0,1). (10.65)

We choose the measurement at the left side of the junction W (0, f). In order to
preserve the robustness properties of the closed-loop system, we will not use the
measurement Yy (#) in the boundary conditions of the observer system.

The observer equations are a copy of the original dynamics with output injection
gains. They read as follows



232 10 Control of Two Cascaded Freeway Segments

Wi +vi0xWi = — ¢i(x)(W2(0,1) —W;(0,1)), (10.66)
O 0i — (yipf —vI)0xi =c;i(x)W; — xi(x)(W2(0,1) = W;(0,1)), (10.67)
wi1(0,1) =1w2(0, 1), (10.68)
—L 1 —
91(L, 1) =r1 exp ( *) Wi(L,t) + — UL (1), (10.69)
‘1'1V1 pl
L\ 1
Wa(=L,1) =exp( *) — (=L, 1), (10.70)
v, ) n

1—1‘2
*
2

9(0, 1) =5:—291 (0,7) + (1 = 8)rawa(0,1) + Us(r), (10.71)
1

where W;(x, 1), D; (x, t) are the estimates of the state variables w; (x, t) and ¥;(x, ).
The terms ¢; and y; are output injection gains that have to be designed. They are
continuous functions respectively defined on ([0, L]) and ([-L,0]). The corre-
sponding initial conditions are L? functions. This system can be seen as the adjoint
system of the closed-loop system presented int he previous section. This can be seen
using an operator framework analogous to the one used in [?]. Consequently, it is
well-posed. Its well-posedness could be stated in a similar way to what is done in
Definition 10.1 Defining the error estimates w; = w; — w; and v; = ¥; — ¥; and
using the fact that w(0,7) = W, (0, ), the error system is obtained by subtracting
the observer equations in (10.66)-(10.71) from (10.21)-(10.26),

Wi + v 0w =¢; (X)W, (0,1), (10.72)
Ovi — (vip! —v)OxVi =c;(x)W; + xi (x)W; (0, 1), (10.73)
w1(0,1) =w2(0, 1), (10.74)

L
vi(L,t) =r; exp (——*) wi(L,t), (10.75)

T1V1

. -L\ 1,
Wo(—L,t) =exp (—*) —Va(=L,1), (10.76)
7V, )
2(0,1) =625,(0,1) + (1 = 8)raw2(0, 7). (10.77)
r

Let us consider the following backstepping transformations

wi(x, 1) =a(x,1) — /0' lew(x,‘f)d/l (&,1)dé, (10.78)

B () =f () — /0 N (x, €)1 (€, 1)dE, (10.79)
0

Mvzz(x,t) =d;(x, t) - / Nng (x, §)d’2(§, t)df, (10.80)

0
B2 1) =P (x 1) - / NI (r, €)a (€. 1)dE, (10.81)

X
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where the kernels V" and N|"V are continuous functions defined on the set Ti,
while the kernels Ng” " and N;" vV are continuous functions defined on the set 75 =
{(x,&) € [-L,0], & = x}. On their corresponding domains of definition, they satisfy
the following set of PDE:s:

DN + 9 NY™ =0, (10.82)
(YipF = VvI)ONY —=vEde NI = —c;(x)N"™, (10.83)
1 L
N{"™(L,x) =Z exp(ﬁ)Nl"W(L,x), (10.84)
1
1 -L
Ny""™ (=L, x) :E exp(T V*)N;W(—L,x), (10.85)
2
N™ (x, %) 2011_(;*)’ (10.86)
1
NIY (x, %) =";22]§f) . (10.87)
2

The well-posedness of this kernel PDE-system is guaranteed by the following lemma.

Lemma 10.3 /?] Consider system (10.82)-(10.87). There exists a unique solu-
tion N/, NV in C(T1) and NJ™, NIV in C(72).

Let us now define the output injection gains ¢; and y; as

$1(x) = —VENI™ (1,0),  x1(x) = —vIN}™ (x,0), (10.88)
$2(x) = VNI (6,0, xa(x) = VAN (x,0). (10.89)
With this choice of injection gains, differentiating the transformations (10.78)-

(10.79) and (10.80)-(10.81) with respect to time and space, it can be proved that
the error system (10.72)-(10.77) is mapped to the following system

By + v Oyt; =0, (10.90)
0ifi — (yipt —v})0xpi =0, (10.91)
« L
Bi(L,1) =rjexp (-—*) a1 (L, 1), (10.92)
T]Vl
&1(0,1) =42(0, 1), (10.93)
-L\ 1.
ar(=L,1) =exp (—*) —B2(-L,1), (10.94)
v, | n
£2(0.1) =62 41(0,1) + (1 = 6)r2(0, 7). (10.95)
ri

This system is exponentially stable due to Assumption 10.3. Due to the invertibility
of the Volterra transformations (10.78)-(10.79) and (10.80)-(10.81), we have the
following theorem
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Theorem 10.3 Consider the PDE system (10.66)-(10.71) with the output injections
gains defined in (10.88)-(10.89). Then for any L? initial condition (w;(-,0), ¥;(-,0)),
the states (W;, V;) exponentially converge to the states (W;, v;).

10.5.1 Observer with measurement at outlet

In this section, we now assume that the measurement available corresponds to the
values of §; and 7; at the left side of the outlet x = L. Since we have

L W 1
) (le gLy - —w(L),  (1096)
v q r

wi(L,t) = exp(
1

we can consider that the boundary measurement is
Yr(t) =wi(L,1). (10.97)

The observer system is given by

Wi + v 0w = — pi(x) (Wi (L, 1) = Wi (L,1)), (10.98)
Vi — (yip} —vi)0xhi =ci(x)W; — vi(xX)(W1(L,1) —Wi(L,1)), (10.99)
#1(0,1) = (0, 1), (10.100)
L 1-
61(L, 1) =r) exp (— *) Wr(L,t) + ——UL(),  (10.101)
‘l']Vl 1
N -L\ 1,
Wwo(=L,1) :exp( *) —vy(=L,1), (10.102)
v, ) n
R ., N I-r
12(0,1) =5r—V1 (0,1) + (1 = 8)raw2(0, 1) + —5=Up (1),
1 Py

(10.103)

where W;(x, 1), P;(x, ) are the estimates of the state variables w; (x, t) and ¥;(x, 7).
The terms y; and v; are output injection gains that still have to be designed. They
are bounded functions respectively defined on ([0, L])? and ([-L,0])>. The cor-
responding initial conditions of the observer are L? functions. Defining the error
estimates w; = w; — w; and V; = ¥; — ¥;, the error system is obtained by subtracting
the observer equations in (10.99)-(10.103) from (10.21)-(10.26).

Then us consider the following backstepping transformations



10.5 Boundary Observer Designs 235

L
G (. 1) = (e 1) — / MY (x, )i (€.1), (10.104)

X

L
J () =51 (e, 1) — / N (e, €)1 (&, 1)de, (10.105)

0 B L
2 (1) = (x. 1) - / N2 (x, )90 (€, ) dé = /0 F™ (x, €91 (€, 1)dE,
(10.106)

. 0 _ L
P 1) =i (x. 1) / N2 (r, )0 (£, 1) dé — /0 F* (x. &)1 (€. 1)dE,
(10.107)

where the kernels N lw W and N lw v are bounded functions defined on the set 77, while
the kernels 1\75“ " and 1\72W v are bounded functions defined on the set 7;. The kernels
F? and FP are bounded functions defined on the set 7~ = {(x, &) € [-L,0]x [0, L]}.
Note that the transformation (10.104)-(10.105) is invertible. The transformation
(10.106)-(10.107) is a combination of a Volterra transformation with an affine trans-
formation and is consequently invertible. The kernels satisfy the following set of
PDEs:

(yip} = vON!™ (x, ) = v 9N}V (x,€) =0, (10.108)
N (x,€) + 0NV (x,€) =0, (10.109)

V30 F™ (x,€) +vi0g F" (x,€) =0, (10.110)

(y2p5 = v3)0xFY (x,€) = vidgFY (x,€) =0, (10.111)

with the boundary conditions

NY™ (x,x) =;22(;*) (10.112)
2
NP (x,x) =Cyll(;*) (10.113)
1
i L 1.
Ny"(=L,€) =exp(=—5)—N," (=L, ¢) (10.114)
TVy
vE o
F¥(x,0) =v—iN;W(x,0), (10.115)
1
vy o
F"(x,0) =v_i Y (x, 0), (10.116)
1
L1
F*(~L.£) =exp( ) F" (-L.&). (10.117)
2
FY(0.8) =07 2RP (0.6) + (1= 9)raF" (0.8, (10.118)

NY¥(0,€) =F*(0,£), (10.119)
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The well-posedness of this kernel PDE-system is guaranteed by the following lemma.
Lemma 10.4 Consider system (10.108)-(10.119). There exists a unique solution 1\71WW,
1\71Vw in B(7), 1\72WW, N;W in L (7;) and F», F” in L= (7).

Proof The well-posedness of the kernels 1\_/2W W and NZV " is proved following [?].
Then we prove the well-posedness of the kernels F*, FV, ]\71W W and N " adjusting
[?]. O

Let us now define the output injection gains y; and v; as
- L -
i ==V D+ [ @R (. g)de. (10.120)
X
— L -
N0 =R D+ [ i (@N) (e, (10.121)
X

0 _ L _
1 () = = v F (5, L) + / Lo ()N (x, £)dE + /0 L () F (x. £)dE.
(10.122)

0 _ L B
Vz(X)=—VTF"(x,L)+/ ﬂz(sf)szw(x,f)d§+/o 1 (E)F" (x,&)dE.
(10.123)

These output injection gains are perfectly defined: since (10.120) is a Volterra
equation of second kind, it is invertible and we can obtain y;. Once p; is obtained,
then equation (10.122) becomes a Volterra equation and we can compute p». Once
(1 and p, are obtained, the expressions of v; and v, are explicit. With this choice of
injection gains, differentiating the transformations (10.104)-(10.105) and (10.106)-
(10.107) with respect to time and space, it is straightforward to obtain that the
convergence of the observer in the following theorem.

Theorem 10.4 Consider the PDE system (10.99)-(10.103) with the output in-
jections gains defined in (10.120)-(10.121). Then for any L? initial condition
(Wi (-,0),9;(-,0)), the states (W;, V;) exponentially converge to the states (W;, V;).

10.6 Output Feedback Laws

The two state feedback laws and the two observers that we have previously designed
are employed to construct four possible output feedback laws, which consist of two
collocated and two anti-collocated ones, as shown in Table. 1. We are now able to
give the main theorem of this chapter.

Theorem 10.5 Consider the system (10.21)-(10.26) with the control law at x = 0
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*

0
UO(t) = ;121"2(‘/_[‘ K;W(O’f)WZ(f’ t)+K;v(O’§)">2(f’ t)dé‘:

1
r L
-2 KrW(o,§>w1(§,r>+Kr”(0,§)91(§,r>d§), (10.124)
oratx =L
pT L vV w ~ Vv s
UL =12 [ R Lo nde K (Lo € nde

0
+ /L M (L, &)Wy (£, 1)dé + MY (L, €D (£, t)dg). (10.125)

where the estimated states are either given by equations (10.66)-(10.71) or (10.99)-
(10.103), depending on the available measurements. Then for any L? initial condi-
tion, the closed-loop system with the controller (10.124) or (10.125) is exponentially
stable at the origin in the sense of Definition 10.2. This implies the local convergence
of the initial states of p; and v to the steady states p} and v} .

Proof We will do the proof only considering the case of an actuation located atx = L.
First it should be noted that the control law is a L? function and that consequently
the closed-loop system is well-posed in the sense of Definition 10.1. The other case
(actuation at x = 0) is treated in a similar way. We consider that an observer is
available (either given by (10.66)-(10.71) or by (10.99)-(10.103). The proof uses
the same ideas as the ones given in [?, Theorem 5]. As we have ¥ = —V; + ¥; and

W = —w; + W;, the control law (10.125) can be rewritten as

*

P
UL =y=

L
/O R (L. &) (£, 1)dé

L 0
o [ R LonEndss [ m Lo nde

0
+/ MY (L, &)P2(€, t)df) +D(1), (10.126)
-L

where D is function that corresponds to Uy, (as given in 10.125) in which the terms
v; and w; have been replaced by V; and w; respectively. Since V; and w; converge to
zero due to Theorem 10.3 or Theorem 10.4, the term D can be seen as a bounded
disturbance that converges to zero. The rest of the proof is a consequence of the
Input-to-State Stability of our control law (as shown in [?]). Using the transformation
(10.49)-(10.52), we can map the original system (10.21)-(10.26) to the target system
the only difference being that a term ]/;f’ D(t) remains in the actuated boundary.
Using the method of the characteristics, {Jve can express @3 (0, t) as the solution of a
difference equation. This yields
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_ -L\ _ 1 1
a(0,1) = (1 —6)exp(—T v*)az (0,1— e —‘yzp*—v*)
2~
1

2V 2
U N 7 DAY | 1 1
ex - xw|0t-——-—F—— - —————
T R S R e
- L 1 1 1
+ fjexp(— *)6D(t——*— — - — *). (10.127)
1Py (e Vo 72Py TVy YIPL TV

In the absence of the disturbance term P, equation (10.127) is exponentially
stable, due to Assumption 10.3. Thus, the corresponding operator generates a con-
traction semigroup. Using the variations of constants formula (see [?, Section 9.5])
and the fact that D converges to zero, we can conclude to the convergence to zero of
the state @, (0, 7). Using the transport structure of the target system, we can conclude
to the convergence of the state (@;, 8;) to zero. The invertibility of the transforma-
tion (10.49)-(10.52), implies the stabilization of (10.21)-(10.26) and consequently
the local convergence of the initial states of p; and v; to the steady states p** and
V¥, O

13

10.7 Robustness to Input Delays

Considering the uncertainty of traffic flow system, it is practically meaningful to
investigate the robustness of our control design. In this section, we mainly discuss
the robustness of the proposed controllers to input delays Uy (t — D) and Ur (1 — D),
where Dg and Dy, are the constant input delays, as shown in Fig. 10.4. Boundary
disturbances are also depicted in Fig. 10.4, including time-varying upstream demand
disturbance d_y (), off-ramp traffic flow disturbances dy(¢) at the middle junction
and the outlet boundary flow rate disturbance dy (¢). The proposed controllers can
be adapted to reject the boundary disturbances and therefore the assumptions on
boundary conditions (8.20), (10.9), (10.10) are relaxed accordingly.

The control and estimation problem for one segment of traffic flow is discussed in
[?], of which the finite-time convergence result is not robust to delays in the actuation.
However, the proposed output feedback design in this chapter with Assumption 1
guarantees the existence of robustness (delay-) margins for the closed-loop system.
More precisely, we have the following theorem

Theorem 10.6 Consider the system (10.21)-(10.26) with the control law (10.124) at
x = 0 or the control law (10.125) at x = L, where the estimated states are either
given by equations (10.66)-(10.71) or (10.99)-(10.103), depending on the available
measurements. Then, there exists 6* such that, for all (5,,,6y) € [0,6*]% the
control law Uy(t — 6y ) (or UL (t — 6y )) computed using the measurement y(t — &,,)
exponentially stabilizes the system (10.21)-(10.26), that is for any L? initial condition,
the states W and v exponentially converge to zero in the sense of Definition 10.2. This
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Fig. 10.4 Robustness of the control design to boundary disturbances from time-varying upstream
demand d_y (), to boundary disturbances from off-ramp traffic flow dy(#) at the junction and the
outlet boundary dy (t), to input delays Uy (¢t — Do) and U (¢t — D).

implies the local convergence of the initial states of p; and v; to the steady states p}
and v¥.

Proof The robustness properties of the state-feedback control law and the output-
feedback law is obtained adjusting the approach developed in [?]. It is a consequence
of the fact that the control law is strictly proper. It has been proved in [?] that a
necessary condition to guarantee the existence of robustness (delay-) margins for the
closed-loop system is that the open-loop transfer function must have a finite number
of poles on the closed right half-plane. For the considered interconnected linear
hyperbolic system, such a condition is equivalent to requiring that the open-loop
system (10.21)-(10.26) with zero in-domain couplings (i.e. ¢; = ¢, = 0) must be
exponentially stable in open-loop. Necessary and sufficient stability conditions to
guarantee such an open-loop stability can be obtained by writing the corresponding
characteristic equations. For the system (10.21)-(10.26), in the absence of in-domain
couplings and actuation, we obtain the following equation using the method of
characteristics

-L 1 1
400 =00 2] o~ - )
™V} v Y2py — V)

*
2
v —-L -L\ _ 0.1 1 1 1 1
ex ex w |0t -V -—F—F - ——5—=
T A C ot R Ty Y ]
(10.128)

Using the transport structure of the system (10.21)-(10.26) when ¢; = 0, if
Ww» (t, 0) exponentially converges to zero, then the whole state (V;, w;) exponentially
converges to zero. A simple necessary and sufficient condition to guarantee the
exponential stability of (10.128) can be found in [?]:
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It is observed that this condition is always satisfied when ¢ < 1. Then, Assump-
tion 10.3 guarantees that the proposed feedback laws have some delay-robustness
margins. O

Here we briefly discuss the boundary disturbances for practical interests. Assume
that there is traffic leaving the freeway from off-ramp located at x = 0 with a flow
rate of do(t) > 0, then the boundary condition at the junction becomes

q1(0,1) = g2(0,1) + Up(2) — do(2). (10.129)

We assume that the off-ramp flow rate dy(¢) > 0 is measured in real-time, then the
Uy (7) can be directly adjusted to reject the off-ramp boundary disturbances. For the
outlet boundary, the controller Uy () can be designed in the same fashion

gi(L,1) = q* + UL (1) — di(1). (10.130)

The time-varying upstream traffic demand results into inlet boundary disturbance
d_r(1),

g2(=L,1) = q* +d_r(1). (10.131)

In the linearized model, the disturbed boundary condition (10.25) becomes w,(—L, 1)

exp (T;‘*) 712\72(—L, 1) + d_p(t). Adjusting the techniques and methods presented
2

in [?, ?], we can show that as long as the proposed control law remains strictly
proper, the closed-loop system is Input-to-State Stable (ISS) concerning boundary
disturbances d_y (¢). The analysis can be done by expressing the system in its neutral
form. The complete robustness proof is however outside the scope of this chapter.
If off-ramp flow rate dy(t), dr (¢) and varying upstream traffic demand d_j (t) are
unknown, adaptive disturbance rejection control problem needs to be solved. The
existing adaptive design in [?] can be applied to the fully actuated system with both
controllers being employed. We do not pursue this further here. Some delay robust-
ness results will be demonstrated with numerical simulation in the next section.

10.8 Simulation results

In this section, we first validate the control design with numerical simulations and two
collocated output feedback closed-loop results are compared. Then we demonstrate
the robustness of the proposed controllers to delays in the actuation path. In the end,
our control design is compared with PI boundary controllers which fully actuate the
interconnected system. As stated in Table.1, there are four proposed output feedback
controllers but only the simulation results of the two collocated ones are conducted.
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Fig. 10.5 The closed-loop simulation of traffic flow rate and velocity, with the ramp metering
control input Uy (#) and measurement Yy (z) from the middle junction x = 0, converges to steady
states. The controlled flow rate evolution at x = 0 is highlighted in red.
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Fig. 10.6 The closed-loop simulation of traffic flow rate and velocity, with the ramp metering
control input Ur (¢) and measurement Yz (7) from the outlet boundary x = L, converges to steady
states. The controlled flow rate evolution at x = L is highlighted in red.

The collocated controllers are the most relevant in practice since the anti-collocated
sensor and actuator in the distance will have delays and errors caused by long-distance
communication.

The length of each freeway segment is chosen to be L = 0.5 km so the total
length of the two connected segments are 1 km. The simulation time is 7 = 12 min.
The maximum speed limit is v,, = 40 m/s = 144 km/h. We consider 6 lanes for the
downstream freeway segment 1. Assuming the average vehicle length is 5 m plus the
minimum safety distance of 50% vehicle length, the maximum density of the road is
obtained as p,,,1 = 6/7.5 vehicles /m = 800 vehicles /km. The upstream segment
has less functional lanes thus its maximum density is p,, 2 = 700 vehicles /km.
We take y; = 0.5. The steady states (o], v}) and (p3,v}) are chosen respectively
as (600 vehicles /km, 19.4 km/h) and (488.6 vehicles /km,23.8 km/h), both of
which are in the congested regime and satisfy (10.14) and (10.15). The constant
flow rate is g* = pTvy = pivy = 11640 vehicles /h, same for the two segments.
If we consider the segment 1 with 6 lanes, then the averaged flow rate of each lane
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is 1940 vehicles /h/lane. The equilibrium steady state of the downstream road has
higher density and lower velocity, thus is more congested than the upstream road. The
relaxation time is 7, = 90 s and 7, = 60 s. We use sinusoid initial conditions for flow
rate and velocity field which represent the stop-and-go oscillations on the connected
freeway and are highlighted in the figures with blue. The two-step Lax-wendroff
numerical scheme discussed in Chapter 1 is applied to the original plant.

Output feedback stabilization

We consider the traffic scenario that the downstream traffic in segment 1 is denser
with slower velocity, compared with the upstream traffic in segment 2, as illustrated
by the steady states. The closed-loop simulation with the collocated output feedback
control input from the middle junction shows that the exponential convergence
to the steady states is achieved simultaneously for the upstream and downstream
segments in Fig. 10.5, where the actuated junction flow rate by the on-ramp metering
is highlighted in red. Note that the steady state velocities are different for two
freeway segments and the flow rates are constant across the two segments. The output
feedback stabilization with the control input and measurement of velocity and flow
rate from the outlet boundary is shown in Fig. 10.6. The controlled flow rate at the
outlet boundary is highlighted in red. Comparing the two output feedback closed-
loop simulations in Fig. 10.5 and Fig. 10.6, we find out that the outlet controller takes
around the same convergence time but has larger transient to stabilize the system.
The controlled flow rate at the middle junction with ramp metering input Uy(?),
highlighted in red in Fig. 10.5, firstly decreases such that less traffic is allowed into
the downstream where traffic is denser. The controlled flow rate at the outlet with
UL (2), highlighted in red in Fig. 10.6, increases initially such that more traffic is
discharged from the segment.

To further compare the two collocated output feedback stabilization results, the
closed-loop performance is demonstrated with the temporal evolution of the state
variables in the spatial averaged L%-norm, defined as

1/2
1/ gi(e1) —q*\*
L Jx q*

2 1/2
1 vi(x,t) —v¥ i
L X V*

, (10.133)
where X = [-L,0] U [0, L] represents the spatial domain of the two segments. As
shown in the Fig. 10.7, the closed-loop convergence time of both output controllers
are around the same at r = 9 min, whereas the output feedback controller at the outlet
has a larger transient for all the state variables than the output feedback at the middle
junction. At around ¢ = 2 min, the blue highlighted line has a bigger overshoot than
the red one. In addition, the appearance of transient peak appears later in the blue

Sy, (1) = , (10.132)

SVi(t) =
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line than the red one. we explain these observations by the different mechanism of
the proposed two controllers.

The ramp metering control input located at the downstream outlet is carried
upstream by the propagation of velocity variations to mitigate traffic oscillations in
both segments. In contrast, the ramp metering control input located at the middle
junction works in a way that the actuated velocity variation at the junction travels
upstream and the actuated flow rate variations travel downstream with the traffic.
Therefore, it takes a longer time for the control input to take effect on the upstream
segment 2 when the output feedback is applied at the downstream outlet, whereas the
output feedback at the middle junction instantly starts stabilizing both the upstream
segment 2 and downstream segment 1. In addition, before the oscillations states are
suppressed, the overshoot develops into a larger value and appears a bit later, as
demonstrated in the Fig. 10.7.

Robustness to delays

In Section 10.7, we discuss the robustness of our control design to external bound-
ary disturbances and delays in actuation path. We conduct a simulation for the
closed-loop system with actuation constant delays D and D that are respectively
05s,305s,60 s,120 s, where O s represents no delay and 120 s is the time length for
the control input signal to traverse the two segments. Based on the definition in
(10.132)-(10.133), we define an overall closed-loop performance index

S(t) = Sy, (1) + S, (1), (10.134)

where i = 1,2. Then the temporal evolution of S(z) is plotted for the closed-loop
system with the delayed collocated output feedback in Fig. 10.8.

For the collocated controller located at the middle junction Uy, as shown in the
left figure of Fig. 10.8, we found out that the stabilization result still holds for Dy = 0
min, 0.5 min, 1 min, and 2 min but deteriorates for the case of Dy = 2 min, plotted
with dotted line. We validate that some robustness margins are conserved with
Assumption 1 being satisfied. The transient gets larger as the delay time is increased
from Do = Omin till Dy = 2 min. A similar behavior can be observed for the closed-
loop with the collocated controller at the outlet. Therefore, both control designs have
some robustness margins to delays. Besides, the delay effect is exhibited by the right
figure of Fig. 10.8. The transient peak appears later as the actuation delay is increased
from Dy = Omin till Dy = 2 min. It is also noted that the same behavior is not
observed in the case with middle actuation. This is due to the difference between the
way that two controllers work in the interconnected segments. The middle junction
controller Uy stabilizes the upstream traffic by affecting velocity variation which
propagates upstream and at the same time actuating the downstream traffic flow rate
which travels in the same direction of traffic. In contrast, the outlet controller U,
stabilizes the traffic through upstream propagation of velocity variation which only
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involves a single direction. Therefore the delayed actuation is easily manifest in the
right figure of Fig. 10.8. The last observation is that more control effort is needed
for the delayed outlet controller than that of the middle one, which agrees with the
output stabilization comparison.

Comparison with PI controllers

PI control has been applied for a wide range of engineering problems including traffic
control by ramp metering and VSL [?, ?]. The PI boundary control was developed
in [?] to stabilize the first-order density-flow hyperbolic system. For macroscopic
second-order PDE model, [?, ?] developed PI boundary feedback controllers for the
linearized ARZ model. For one-segment freeway traffic in [?], boundary values of
velocity at the inlet and density at the outlet are measured to construct a PI feedback
ramp metering controlling the inflow rate and a varying speed limit at the outlet
controlling the velocity of outgoing traffic. Besides, [?] applied the same method
for a cascaded freeway with each segment being controlled in the same fashion.
In comparison, if two cascaded freeway segments are considered, four boundary
controllers are employed by [?] including one ramp metering at inlet x = —L, one
ramp metering and one VSL at middle junction x = 0, and one VSL at outlet x = L,
as illustrated in Fig. 10.9. The controlled system is fully actuated since there are four
boundary conditions and all of them are being actuated, whereas, in our design, only
one boundary is actuated by ramp metering, either at the middle junction or at the
outlet.

We applied the PI boundary feedback laws in [?] to the control model (10.1)-(10.2)
where both segments are congested and traffic oscillations need to be suppressed.
The four PI boundary controllers R_j,, Ry, Vp, V. are defined respectively for the
controlled flow rate at inlet x = —L, the controlled flow rate at middle junction x = 0,
the controlled velocity at middle junction x = 0 and the controlled velocity at outlet
x = L. The fully actuated boundaries are defined as

g2(=L,t) =R_r(t), v2(0,1) = Vy(1), (10.135)
ql(O, t) =R0(l‘), V](L,t) = VL(I), (10136)

where the boundary feedback controllers are given by
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R_L(t) =q* + k2 (0,0) + k) /0 1;32(0, 1)ds, (10.137)
Vo(1) =v3 + kpia(~L,1) +kIV/0t§2(—L,t)ds, (10.138)
Ro(t) =¢* +lpp1(L,t) + 1 /Otpl(L, t)ds, (10.139)
V(1) :vl*+1;,v1(0,z)+l;/Otvl(o,z)ds. (10.140)

where k', k7, k}’,, k; are tuning gains for the upstream segment 2, I, [7, l;,, l}’ are

tuning gains for the downstream segment 1 and g*, v’ are the steady states. We
use the previous model parameters and conduct the simulation under the same
initial conditions such that the PI controllers can be directly compared with the
control design in this chapter. The tuning gains are chosen to be k', = =55,k} =
-0.035,ky, = —0.6,k; = —0.025 and I}, = -10,/; = -0.035,1}, = -0.5,1] =
-0.005.

Then the output feedback stabilization result is shown in Fig. 10.10 where the
temporal evolution of the four PI control inputs are highlighted including two ramp
metering in red and two VSLs with green. We then compare the closed-loop perfor-
mance of the PDE backstepping controller and the PI controllers with the evolution
of state variables in the spatial averaged L*>-norm, defined with S(z) in (10.134).
In Fig. 10.11, the closed-loop performance with the ramp metering backstepping
controller at middle junction Uy(¢) is plotted with the blue line, the one with the
ramp metering backstepping controller at outlet Uy (¢) is plotted in red dotted line
and the one with the four PI controllers is plotted with the yellow dashed line. We
can see that the convergence time and the transient is about the same for Uy(¢) and
four PI controllers. The outlet backstepping controller Uy (¢) takes a relatively longer
time and larger transient to stabilize the system.

The main differences between the PI control design and PDE backstepping design
lie in the following aspects: first, PDE backstepping control design in this chapter
utilizes the cascaded system structure and then achieves the stabilization with one
ramp metering output feedback controller, whereas the fully actuated system needs
four PI controllers implemented with both ramp metering and VSLs. Secondly, PI
controllers only employ constant control gains and therefore easy to construct. PDE
backstepping controller has spatially varying control gains that are directly solved
from the kernel equations given by the model parameters. Tuning of eight control
gains of the PI controllers could be time-consuming and is thus avoided with the PDE
backstepping control design. Besides, the collocated sensor and actuator proposed
in this chapter is easier for implementation in practice, without concerns about the
long-distance signal communication on the freeway. Finally, it should be noted that
the PI controllers can still work for partial road segment if one of the actuators fails.
PDE backstepping controllers do not have such resilience since they rely on the
freeway cascaded structure.
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10.9 Notes and References

We design stabilizing output feedback control laws that guarantee the simultaneous
stabilization of the traffic flow on two cascaded roads around given steady states. The
flow actuation is realized with the ramp metering at the junction or the downstream
outlet. The observers are designed collocated by sensing traffic velocity and flow rate
at the two locations. The proposed controllers are robust to actuation delays. A more
comprehensive robust control design to model parameters, external boundary, and
in-domain disturbances will be of future research interest. Comparing the two col-
located output feedback controllers, the middle junction one has faster convergence
and smaller transient than the outlet one. The trade-offs between the proposed PDE
backstepping controller with the PI static output feedback controllers are also dis-
cussed. This work will serve as a step forward towards the stabilization of congested
traffic on multiple cascaded freeway road networks.

Boundary control strategies for macroscopic traffic network have been studied
using other approaches [?, ?, 2, 2, ?], focused on controlling the spatially discretized
approximation of LWR model, namely cell transmission model and its derivation, but
the discretized systems sometimes exhibit discrepancies from the original continuous
traffic PDE model. Article [?] develops an optimal control framework based on
Hamilton-Jacobi formulation of the LWR model. Papers [?, ?] consider adjoint-based
optimization formulation for the control problem of a LWR-based traffic network by
regulating nodes of the network. Besides controlling from fixed-locations by ramp
metering and VSLs, the emerging Lagrangian sensing and actuation with connected
autonomous vehicles have been intensively studied in recent years for traffic freeway
management [?2,?2,2,2,2, 2,2, 2, ?].

Boundary control of the network of hyperbolic PDEs has been intensively studied
over the past years. Despite many theoretical results in the literature, boundary control
of PDE networks remains a challenging research topic. This is because these systems
are underactuated. For practical consideration, only the PDEs located at some nodes
of the network can be actuated. To tackle this problem, multiple approaches have been
proposed: PI boundary controllers for fully actuated networks [?, ?], flatness based
design of feedforward control laws for tree-like transmission networks [?, ?]. While
the backstepping approach has been successfully applied to design boundary controls
for a large class of hyperbolic PDE system as introduced in Chapter 2, the considered
system always have (at least) one boundary which is fully actuated. Recently [?]
developed backstepping-based state feedback control laws for the underactuated
network of hyperbolic PDEs. This class of system is also used to model the dynamics
of many industrial applications, including water networks in open-channels [?],
communication networks [?], and gas networks in pipelines [?, ?].
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Fig. 10.8 The temporal evolution of S(¢) of the closed-loop with delayed control inputs with delay

time to be 0 min, 0.5 min, 1 min and 2 min.
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Fig. 10.9 The fully-actuated traffic system with two ramp metering R_;, Ry and two VSL PI
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Fig. 10.10 The closed-loop simulation with two PI boundary feedback ramp metering controllers

R_1.(1), Ro(1), highlighted in red, and two VSL PI controllers V;(¢) and Vy, (), highlighted with
green.
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Fig. 10.11 The closed-loop performance with ramp metering backstepping controller Uy (#), ramp
metering backstepping controller Uy (¢) and with four PI controllers including two ramp metering
R_1.(1), Ro(t), and two VSLs Vy(z) and Vi (¢).
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Chapter 11
Estimation of Freeway Diverge Flows

In Section 10.1 we discussed at length the issues of extending the results on control of
traffic flows from a single freeway segment to more general traffic flow topologies—
to networks of segments. In the rest of Chapter 10 we developed designs for the
simplest traffic network, a cascade of two segment.

The next step in increasing the complexity of traffic networks is to go to a tree
structure with three segments. There exist two possible three-segment tree topologies:
amerge and a diverge. We assume that the reader knows what these two terms mean,
either from experience or from common sense. But we explain. A merge is where two
parallel traffic segments converge and form a single segment with traffic flowing in
the same direction. A diverge is where a single traffic segment “forks out” (bifurcates)
into two distinct segments flowing in the same direction.

Many problems can be formulated for merge and diverge configurations. For
instance, a control problem can be formulated for the merge configuration, with ramp
metering available at the inlets of the two in-flowing segments, as well as with a third
ramp metering at the outlet of the out-flowing segment. Other actuation possibilities
exist for the merge configuration and, likewise, for the diverge configuration.

Analogously to control of merge with ramp metering at the two inlets and the one
outlet, state estimation can be formulated for the diverge configuration, with sensors
at the one inlet and the two outlets.

Since, in Chapter 10, we explored the problems for a cascade of two traffic
segments as a problem of control, it is interesting to explore the three-segment
merge and diverge configurations with a focus on state estimation, instead of control.

So, in this chapter, we focus on the diverge configuration, which we shall also refer
to as a “Y” junction, and explore the estimation of the flows using measurements at
the one inlet and the two outlets.

Traffic state estimation refers to acquisition of traffic state information from par-
tially observed traffic data. The macroscopic traffic dynamics on each road segment
of the Y-junction we study in this chapter are governed by the ARZ model, consisting
of second-order nonlinear PDE:s of traffic density and velocity. Using PDE backstep-
ping method, we first construct a boundary observer from a copy of the plant and
output injections from boundary measurement errors. The exponential stability of

251
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Fig. 11.1 Traffic flow on one incoming road and two outgoing road connected with a junction.
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the estimation error system to zero in the L? norm is achieved. For robustness of the
observer design, we prove the Input-to-State Stability (ISS) of the estimation error
system with respect to in-domain spatially distributed disturbances and measurement
noise.

The Input-to-State Stability (ISS) which discusses the robustness of system with
respect to initial states and external disturbances has been studied for linear and
nonlinear PDEs in [?,?,?,?,2,2,?2, ?]. Among the two different methodologies
for deriving the ISS estimates pointed out in [?], we use ISS-Lyapunov functionals
to obtain the ISS estimates in the L norm. The ISS estimate in the sup-norm can
be derived through transformation to integral delay equations and integration on the
characteristic line as in [?, ?].

11.1 PDE model of one incoming and two outgoing roads

We describe the traffic network as shown in Fig. 11.1 based on the ARZ PDE model,
given in [?]. The evolution of traffic density p;(x,?) and velocity v;(x,?) on the
incoming road for (x,t) € [-L,0] x [0, c0) and traffic densities p,(x,1), p3(x,1)
and velocity v, (x, ), v3(x, 1) for (x,t) € [0, L] X [0, o0) is modeled by the following
ARZ model,

O pi + 0x(pivi) =0, (11.1)

O (piwi) + Ox(piviwi) = — w (11.2)
Pl(_L’ l‘)Vl(-L,t) =)’1(t), (113)
,01(0, t)vl(ov t) =P2(0, Z)VZ(Os t) +P3(O, l)V3(O, t)s (114)

w2 (0, 1) =w, (0, 1), (11.5)

w3 (0,1) =W1(0, 1), (11.6)

q2(L,t) =y2(1), (11.7)

q3(L,1) =y3(1), (11.8)
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where i = 1,2,3. The time-varying y;(¢) represent the measured boundary inputs
of traffic flow rate, among which y, (¢) represents the upstream traffic demand, and
v2(1), y2(t) represent the boundary flow rate from link 2 and link 3 respectively.

The variable w; is interpreted as traffic "friction" or drivers’ aggressiveness which
transports with vehicles in the traffic flow. The traffic flow velocity v; is related to
Wi by

vi=wi = pi(pi), (11.9)

where the traffic pressure is defined as an increasing function of the density,

pi(pi) =Vl ol (11.10)

The traffic pressure p;(p;) is interpreted as the effect that forces drivers to slow
down when there is a dense local traffic density ahead. The maximum velocity
Vi 1s assumed to be the same for the three road segments while the maximum
density p,,; and coefficient y; € R* representing drivers’ property are allowed to
vary in the different segments, due to different compositions of drivers and road
attributes. The equilibrium density-velocity relation on each road is given in the
form of Greenshield’s model

Vi(pi) = vim (1= (pi/pm.i)”") - (11.11)

We denote the traffic flow rate on each road as

qi = PiVi- (11.12)

The equilibrium flow rate and density relation, also known as the fundamental
diagram, is then given by

Yi
0:(pi) = piV(pi) = pivim (1 - (pp—) ) . (11.13)
The relaxation time 7; € R* is assumed to be constant. If we consider an empty
road so that p; = 0, then V(p;) = v,, and w; = v;. Therefore, the state variable
w; represents the heterogeneity of traffic flow, namely, the property of each vehicle,
with respect to aggregated equilibrium density-velocity relation V(p). The critical
density p. ; is given by

Pm,i

= 11.14
T+ L

Pec,i
such that Q;7(p;)|p;=p.; = 0 . The critical density segregates the free regime and
congested regime of equilibrium traffic states. The traffic flow is said to be in the free
regime when the density satisfies p; < p. ;. The traffic flow is said to be congested
when the density satisfies p; > p. ;. We are interested in a situation that the traffic
is congested for all three of the segments.
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Regarding the boundary conditions at the junction, the Rankine-Hugoniot con-
dition is satisfied. This implies the conservation of the mass and drivers’ property.
We assume that the continuity of the flux and drivers’ property across the boundary
conditions as defined in (11.4),(11.5),(11.6). The measurement of the traffic flow
rate y;(¢) defined in (11.3),(11.7),(11.8) are taken at the inlet x = —L and the outlet
x = L. The objective of the observer design is to estimate the PDE states of the traffic
flow in all of the road segments as shown in Fig. 11.1 with only boundary sensing.

11.2 Linearized model in the Riemann coordinates

The linearized model is given in the following Riemann variables defined as

Wi =w; — wh, (11.15)

\7,‘ =V; —v:-(. (1116)
where w and v} are the steady state values that are derived from the steady states
of (p’,v¥). They are chosen such that the boundary conditions (11.3) and (11.8) are

satisfied, i.e.

PYVY =p3 vy + p3vy, (11.17)

Wy =wi =Wl =V, (11.18)

where the steady state velocities satisfy the equilibrium density-velocity relation
v¥ = V;(pi). The constant flux ¢} in (11.17) satisfies ¢} = Q;(p}) according to the
density-flow relation. Since we have g7 = ¢35 + g3 in (11.17), we assume that

g5 =647, (11.19)
q5 =(1-0)q7, (11.20)

where 0 represents the splitting ratio of the traffic flux at the junction from the
incoming road to the two outgoing roads and satisfies 0 < ¢ < 1 . The constant
driver’s property in (11.18) implies that we have the same maximum velocity v, for
the three segments. Then a spatial transformation

W, (x, 1) =exp(Tx7)wi(x,t), (11.21)

L)

is applied to simplify the linearized model (#;, ¥;). The linearized system rewrites
as
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9y; + v 0, ; =0, (11.22)
O — (vip} —vi)oxbi =c;(x)w;, (11.23)
1
#1(=L,1) =exp(~L/(zyv})) (Zﬁl(—L, ) m(x)) 129
W;(0,1) =1(0,1), (11.25)
71(0,1) =r1| (1 = 6012 — (1 = 6)o13) w1 (0, 1)

0 1-96
+ m%ﬂan+ﬁ——ﬁﬁﬁmﬁw (11.26)

r r3
(L, t) =rjexp(=L/(t;v})wi(L,1) = 3, (1), (11.27)

where j = 2,3 are for traffic states and parameters on the two outgoing roads, the
spatially varying coefficients c;(x) are defined as

ci(x) = ——exp : *) . (11.28)

1 X
T TV
The varying demand and supply of the traffic flow at the inlet and outlet of the
segments is reflected by the errors between the steady traffic flow rates and the actual
measurements

yi(t) = yi(t) - g, (11.29)

as shown in (4.7),(11.27). The constant coefficients o, and o3 are defined by

o= 202 5, (11.30)
YiP,
Y3p3

o3 = ——= > 0. (11.31)
YiP,

They represent the ratios between the drivers’ aggressiveness and the traffic pres-
sure of either of the outgoing segments and the incoming segment. The constant
coefficients r; represent the ratio of characteristic speeds

v
ri =g (11.32)
" yipr-vr
and
pi=ri(p}). (11.33)
For the congested regime we have p} > a :; ’")‘1 7 so that the characteristic speed

Yip} — v} > 0. Thus the following inequalities are satisfied,
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~1<r<0. (11.34)

The smaller the absolute value of the ratio constant r; indicates a more congested
traffic.

11.3 Boundary observer design

In this section we design a boundary observer that relies on the measurement of G
and 7; at the left side of the junction x = 0. We take the measurement of

Y(t) =wi(0,1). (11.35)
where

Yip
*
1

*
1

1’T}1(07 t) =

1
G1(0,1) - r—ﬁl(O, 1), (11.36)
1

is obtained from the measurement of flow rate and velocity variations.
The observer equations read as follows, consisting of a copy of the linearized
system (11.22)-(11.27) and injection terms of output measurement errors

Wi +vIdeWi =p; (x) (Y (1) — ;i (0,1)), (11.37)
ODi — (yipf —vi)0xi =c;(xX)Wi + v (x)(Y (1) — w;(0,1)) (11.38)
1

Wi(-L,t) =exp(~L/(11v})) (Zﬁl(—L, 1) +5’1(I)), (11.39)
(0, 1) =1 (0,1), (11.40)

91(0,7) =r1| (1 = 6012 — (1 = 8)013) w1 (0, 1)
£ 3925 0.y L2975, 6 t)], (11.41)

r r3

95 (L 1) =rj exp(=L/ (x;v})W1 (L,1) = 3;(1), (11.42)

where Ww;(x, 1), D;(x, t) are the estimates of the state variables w; (x,¢) and ¥; (x, t).
The varying demand and supply j; are known due to the measurement at the bound-
aries. The steady states are also known due to prior knowledge of the averaged traffic
conditions. The terms y; and v; are output injection gains that are designed to drive
the estimation error system to zero equilibrium using backstepping method.

Define the error estimates

Wi =W — Wi, (11.43)
v =D; — ;. (11.44)

Given the relation
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w1(0,7) = w2(0,2) = w3(0,7), (11.45)

the error system is obtained by subtracting the observer equations in (11.37)-(11.42)
from (11.22)-(11.27),

Wi +v70xWwi = — p; (x)w; (0, 1), (11.46)
OV — (yip! —vF)0xvi =ci(x)W; — vi(x)w;(0,1) (11.47)
exp(—=L/(T1v¥
Wl(_La t) :Mﬁl(_Ls t)a (1148)
r
w;(0,1) =w1(0,1), (11.49)

v1(0,1) =r1| (1 = 0126 — o13(1 = 6)) w1 (0, 1)

5 -5
£ 9925 0.+ T30 =05 o0l (1150

r r3
ﬁj(L,l) =rj EXP(—L/(TJV;))\X/](L, t), (11.51)

We consider the following backstepping transformations

0
Wi (x, 1) =& (x, 1) — / NPY (x, €)d1 (€, 1)dé, (11.52)
0
Vi (x, 1) =/§’1(x,t)—/ NYY (x, &)1 (€, 1)d¢, (11.53)
W(x, 1) :a,-(x,t)—ﬂ NI (x, ) (€, 1)dE, (11.54)
00 A = [N e (11.55)

where the kernels N|"" and N}"" are L™ functions defined on a triangular domain
71 ={(x,&) € [-L,0]% & < x}, while the kernels N}**, N)’” and N}** and N}
are L™ functions defined on a triangular domain 7 = {(x,£) € [0,L]%, & < x}.
They are governed by the following set of kernel PDEs:

AN + 9N =0, (11.56)
(viPF = VI)OxN™ —v¥de NI = —c;(x)N"Y, (11.57)

along with the following six boundary conditions where i = 1,2,3 and j = 2, 3,
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exp(=L/(11v}))

N""(-L,x) = . N™(-L,x), (11.58)
N (x,x) = - Cl(x*), (11.59)
YiPy
NV (x,x) ==L (x*), (11.60)
YiP;
N;W(L,x) =r; exp(—L/(ij;))N;”W(L,x). (11.61)

The well-posedness of this kernel PDE-system is straightforward to prove using
method of characteristics and successive approximation. There exists a unique solu-
tion N, NYV in L*(73) and N}, NV in L (7). The output injection gains y;
and v; are then defined as

vi(x) =vINy™ (x,0), (11.62)
pi(x) =V N (x,0), (11.63)
vj(x) ==VIN/"(x,0), (11.64)
wj(x) =—v;‘NJ‘.”W(x,O). (11.65)

With the above output injection gains, taking the spatial and temporal differentiation
of the backstepping transformations (11.52)-(11.55) along the error system (11.46)-
(11.51), we obtain the following target system

O +vF¥0yd; =0 (11.66)

8:Bi — (vipf = vi)oxBi =0, (11.67)
d1(=L,1) =GXP(+WEI(—L, 1), (11.68)

&;(0,1) =1 (0, 1), (11.69)

(0.0 =r1 | (1= 6012 = (1 = §)oz) 1 (0,)

1) o 1-6 «
. 0’1232(0’ 0+ ( )0'13B
) r3

3(0,7) ], (11.70)
Bj(L,t) =rjexp(=L/(tjv})&;(L,1). (11.71)

This target system is exponentially stable in L2 norm if the following Assumption 11.3
is satisfied.

The spectral radius of boundary couplings of the system (11.66)-(11.71) are such
that

R =max {R,R;,R3,bp,b1} < 1, (11.72)

where
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Ry =—exp(—-L/(TivT))/r1, (11.73)
Rj=—rjexp(=L/(zjv})), j=2,3 (11.74)

and recalling -1 < r; <0,

1/2
8ol (1-6)2

bo==r1 |(1 =601 = (1= 6)o13)* + —= + —— , (11.75)
) 3
1/2
bi=—r1/bo [2(1 - (1-6012— (1 -6)o13)?)] ! (11.76)

The above assumption is usually satisfied for the type of traffic networks con-
sidered in this chapter. In a straightforward case, if we consider the steady states
of the traffic flow in the two splitting segments to be the same, in which case
0= 1/2, o1 =013 = 1,71 =y2 =y3,r1 =r2 =r3, then (11.72) becomes

2
R = max {RlsR27R3’§7_rl} <1, (1177)

which holds when exp(=L/(7v})) < —ry, recalling —1 < r; < 0in (11.34).

Theorem 11.1 Consider the estimation error system (11.46)-(11.51) under Assump-
tion 11.3. The equilibrium w; = v; = 0 of the estimation error system is exponentially
stable in the L? norm.

Proof Consider the target system (11.66)-(11.101). Theorem 3.2 in [?] proves that
the system is exponentially stable in the L> norm if Assumption 11.3 is satisfied.
Due to the invertibility of the backstepping transformation (11.52)-(11.55) and the
boundedness of the kernel variables, we obtain the exponential stability of the original
estimation error system. O

11.4 Robustness to disturbance and noise

In practice, measurements are noisy. For this reason, we design a robust observer
that relies on the measurements with an unknown noise d(t).

Yo(t) = wi(0,1) + do(2) (11.78)

In addition, there are spatially distributed disturbances d}", d} acting on the right
hand side of the equations (11.22)-(11.27) and the corresponding locations of these
distributed disturbances are m!” (x) and m; (x). We assume that the spatially dis-
tributed disturbances d}* (1), d} (1) € W?%((0, 00); R) with disturbance input lo-
cations m* (x),m! (x) € C([0,L];R*) and the noise do(t) € L*((0,0);R). The
following disturbed system with the initial condition W?, \7? € L*((0,L);R) has a
unique solution.
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The system with disturbances to be estimated is given by
Wi +videw; =m) (x)d! (1), (11.79)
0 i — (yip} = vi)0xVi =ci(x)W; + m} (x)d] (1), (11.80)
1

wi(=L,t) =exp(=L/(71v])) (Zﬁl(—L, 1) +i1(t)), (11.81)
w;(0,1) =w1(0,1), (11.82)

71(0,1) =r1| (1 = 0126 — o13(1 = 6)) w1 (0, 1)

+ 60—_12‘72(0’ 1+ M%(O’ t)], (11.83)
1y r3
Vi (L,t) =rjexp(=L/(tjv)W;(L,1) = §;(1). (11.84)

Now we move to discuss the robustness of the observer (11.37)-(11.42) by replacing
Y (t) with Yy(z) in the observer equations and modifying the boundary conditions
(11.40) as follows

W (0,2) =(1 — €)1 (0, 1) + Yy (1), (11.85)

where the coefficient € € (0, 1] represents a measure of trust in the measurement
Yo (#). When the trust coeflicient € = 1, itindicates that we fully trust our measurement
in the observer. On the contrary, € = 0 means sensing is completely unreliable and
therefore cannot be used for constructing the observer.

Subtracting the robust observer from the disturbed system (11.79)-(11.84) yields
the error system

oWy + VT@XVTH =y1(x)(w“/1(0, t) + d()(t)) + m{" ()C)d{v (l), (11.86)
O j +vi0xw; =eu;(x)(W;(0,1) +do(t)) +m} (x)d} (1),  (11.87)
V1 — (y1py — vV =c1 (X)W1 +vi(x) (Wi (0, 1) + do(1))

+m) (x)d} (1), (11.88)
(9[\7]' - (’)/jp; - v;f)@x\“/j =cj(x)vT/.,' + EVJ'(X)(W::,(O, l‘) + do(l‘))
— v ()dj (1) + m} (x)d; (1), (11.89)

Wi(=L,t) = D1(=L,1), (11.90)

exp(=L/(11v}))

ri
3;(0,1) =(1 — €)1 (0, 1) — edo(t)., (11.91)
v1(0,1) =r1 | (1 = 0126 — o13(1 = 6)) w1 (0, 1)

1 —
00125 0.0+ 28U =95 . t)], (11.92)

r
V;(L,t) =rjexp(=L/(Tjv}))W1(L,1). (11.93)
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Applying the same backstepping transformation (11.52),(11.55), the above error
system is mapped to the following target system

Gy +vidcar =£" (x)d} (1) + hY (x)do (), (11.94)
draj +vidca; =f}" (X)d} (1) + hY (x)do (1), (11.95)

81 = (1Pt = VDB =17 () (1) +m} (0} (1) + b (¥)do (), (11.96)
0B, = (vsps = VOBB; =f} (Y (1) +m} () (1) + B ()do(n),  (11.97)

o1 (=L, 1) =wﬁ1(—L,t), (11.98)
1
@;(0,1) =(1 = €)a1(0,1) — edo(2), (11.99)
B1(0,1) =ri| (1 =026 — o13(1 = 6)) a1(0,1)
+ 3725 0.0+ 22U =9 5 0 0] a1.100)
ra r3
:8]'(L’ I) =rj exp(—L/(ij}‘))cyj(L, t), (11101)

where the spatially varying functions f* (x), f{" (x), h}" (x), h} (x),x € [-L,0] and
£ @) ),

h;" (x), h}’ (x),V¥x € [0, L] are defined as the solutions of following integral equations

0
Fr ) =m0+ [N f €)de. (11.102)
0
hy’ (x) =m(x)+/ NP (x, E)RY (£)dE, (11.103)
0 X
ff(x)=/ N (x, €)Y (£)dE, (11.104)
) 0
hY (x) =v1(x)+/ NV (x,€)h (£)dE, (11.105)
7 =m0+ [ e @de, (11.106)
h;-”(x) =Euj(x)+‘/0 N}Vw(x,f)h}v(f)df, (11.107)
f,”(X)zfo NPV (x, €)1 (£)dE, (11.108)
h;(x) =6Vj(x)+[]' N;-W(x,g-")h;"(f)df. (11.109)

We now state the main result of the chapter.

Theorem 11.2 Consider the estimation error system (11.86)-(11.93) under As-
sumption 11.3. The system is ISS with respect to doy, d} and d}. There ex-
ists a KL function hy and a K function hy such that for any initial condition
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g \72 Wg, ”(3) T e L2((0, L);R), the following estimate holds for all t > 0,

(W1, ¥1, W2, V2,3, 93) T || <Ay (11089, 99,99, 59,93, v T[], 1)
+hy (Il(do,d{V,df,dzw,dzv,d3w,d3”)T||Lm(<o,z>;R7))
(11.110)
Proof We denote the right-side terms of the equations (11.94)-(11.97) as D (x, t)
and D? (x, 1) in (11.98)-(11.101),
DI (x,t) =f" (x)d} (t) + b (x)do(1), (11.111)
DP (x,1) =7 (X)) (1) + m} (x)d} (1) + hY (x)do(1). (11.112)

We construct the Lyapunov function

3
V() = Z(a;’v;l(;) + 8VE (1)), (11.113)
i=1

The component Lyapunov functions are defined as follows,

0
V(1) :2\%/ exp(—Hlx)a%(x,t)dx, (11.114)
1
Ve ——*/ exp(61x) 83 (x, )dx, (11.115)
2(y1p} )
L
V() =%; / exp(—0x)a; (x, 1)dx, (11.116)
VE (1) ——*/ exp(6,x) B2 (x, 1)dx, (11.117)
2(7’]!’ )

where the constant coefficients 6;, 47, /lf > (0 defined later. By taking differentiation
of the Lyapunov functions in time and using Cauchy-Schwarz Inequality and Young’s
Inequality, we obtain that
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r Qv 1 2 2 01 2
Vi <> (exp(@lL)al (=L.1) - @%(0, z)) - ol

- @ 2
+ Ql(vl*)zllDl (e, DI (11.118)
. 1
V<3 (80,0~ exp(-61 L)} (-L.1)
- LRI, (x4 SR

4 1(y1pT =v7)?

IDP (6,017, (11.119)

1
Ve <s (aﬁ(o, 1) - exp(-0,L)a>(L, t))

j
0 exp(—6;L) exp(6;L)

llarj (x, 1)]” +
4 J 9]'(\/;)2

1D (x, )], (11.120)

. 1 6;
VP <3 (exp(0,L)BAL. 1) = B3(0.0)) = 2118, (. )|
+

JNTTE § J

Applying Cauchy-Schwarz Inequality to the boundary conditions (11.99),(11.100)
yields the following inequalities,

30,0 < (1= 02+ €] (23 (0.0) + ldo(s))
< a@i(0,1) + |do (1) (11.122)
BE(0,1) < b3(ag(0,1) +B2(0,1) + B3(0,1)) (11.123)

Combining the above inequalities and substituting the following 17, /lf3 into V (1),

12

Ay =1, (11.124)
A7 =exp(261L) 01, (11.125)
¢ =exp(20,L) A7 b7, (11.126)
A =25 = g, (11.127)

we obtain that for all ¢ > 0,
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220, exp(-6,L)
Bl

3 (409 ;exp(=6;L) pLl’y

V() <= Hion (s 01P -

-3 llerj (e, DI =

Jj=2

B
1 | exp(61L)

+ —=|IDF (DI ————5

o1(v)2 ! 01(y1pT —v})?

(A% exp(6L) 2
DY (x,0)|* + == |do()*
ZQ( e 125 C0IP + S 1doto)
3 bl
J B 2
+ ) 1D (x|
00TV
1
-5 (1= pg - a5 = ag) at0,0). (11.128)

j(x, t)llz)

1D% (x, 1)1

We choose 6; such that the followings inequalities are satisfied

1-p?b2 )

(11.129)
105003 + 3

1
0<6,=06 In
< 0> 3<2L (

1
0<6<-7 In(1 + exp(2L6,)p3 +exp(2L63)p3). (11.130)

Given 0 < p;, bg < 1 in Assumption 11.3, it follows that
1= b -2 —ag > 0. (11.131)
Therefore, we obtain for all r > 0,

V() < - 0o exp(—6yL)

3
V0 + 6 (IDF (el + (105 1) + xldo (o)

i=1

where the positive constant coefficients ¢, 6y, y > 0 are defined as

B a . B
1 Aexp(6,L) A exp(6;L) -
¢ =ma S 10 e i b (11132
91(‘)]) 91(7]1’] _V]) ej(Vj) Gj(yjp] _Vj)
9() :max{01, 92,93}, (] 1.]33)
AT + A
X = 2 > (11.134)

2

Integrating the linear differential inequality (11.132), we get for all > 0,
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—00 exp(=6oL)
4

4y maxo<s < (|do(1)[*)
0o exp(—6pL)

Mz( x (11Df (e, 0)2) + max (11Df 1)l ))

V(t) <exp ( t) V(0) +

(11.135)
The definition of the Lyapunov function V(z) implies that
UlizlP < V() < yllzll, (11.136)
where
2= (a1, 1@, B2, 03, 83)" (11.137)

and the positive constants ¢, ¥ are given by

W =min{A{/(2v}), exp(=61 L)} /(271 pT = v})), exp(=0, L)% /(2v%), A5 [2(y;p% = v¥)},
(11.138)

and

¥ = max{exp(61 L)AT [ (2v}), A [(2(y1pT = vD)), A9/ (2vF),exp(8;L) 47/ 2(yp% = v})).
(11.139)

Therefore, we obtain that the following estimate is satisfied for the target sys-
tem (11.94)-(11.101) with the initial condition zg = (a?,5% 09,8, a3, 897 «
L*((0,L); RS),

1/2
— / _
Il < (Fw) " exp (—Mr) 2011 +2(W

/
: o ) g, (146(0D)

J(Tesp@uiiy)”
Ooy

i( max (|IDf(r.1)] )+0r2g§t(||Df”(x,r>||2)).

(11.140)

The above inequality gives ISS estimate in LZ2-norm of the target system. Due to the
invertibility of the backstepping transformation and the boundedness of the kernel
equations, we obtain the ISS estimate in L?-norm of the estimation error system
(11.86)-(11.93) to measurement noise and in-domain disturbances, which completes
our proof. O
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11.5 Notes and References

In this chapter, we develop a boundary observer for a traffic network PDE system
of one incoming and two outgoing roads. The measurements of flow rates are taken
at the inlet, the middle junction and the outlet boundary and the measurement of
velocity is taken at the middle junction. Using backstepping transformation and
Lyapunov analysis, the estimate of the L?-norm in the sense of ISS with respect to
the spatially distributed disturbances and the measurement noise is derived for the
estimation error system. Developing robust output feedback stabilization problem of
such a traffic network structure is of future research interest.



Chapter 12
Control under Routing-induced Instability

As drivers, we have come to rely heavily on routing apps like Google Maps, Apple
maps, and Waze. We use their recommendations both to navigate to locations to
which we are going for the first time, as well as to pick one among several possible
routes known to us when traffic is heavy and getting to our destination on time is
critical.

By following the recommendations from the routing apps, we let them become
joint operators, along with us, of our vehicles. As the apps assume that role, the model
of traffic flow fundamentally changes. While the classical ARZ model incorporates
the behavioral characteristics of the drivers in response to their local environment,
i.e., the density and speed very near to them, the routing apps introduce the infor-
mation from much ahead of the driver’s position and, in fact, from a much broader
traffic network, regionally and even beyond.

We focus on a single freeway segment and on the fact that routing apps use a
preview of the whole freeway segment to direct traffic into that segment. This has a
major consequence on the ARZ model—from having a local boundary condition at
the inlet to the segment, the ARZ model has a non-local (spatial integral) boundary
condition at the inlet.

Such a non-local boundary condition introduces a “recirculation” of the density
and velocity state back to the inlet into the domain. Such a recirculation can be
destabilizing. In heuristic terms, sparse traffic may result in routing apps directing a
large amount of additional traffic into that segment, causing congestion and, hence,
stop-and-go motion. While it is conceivable that routing apps could anticipate this
outcome and direct only a moderate amount of traffic to that segment, it is up to
the driver whether they use the recommendations, or even consult the apps, so the
destabilizing effect of the apps is possible, in principle.

In this chapter we postulate a “recirculatory” boundary condition at the freeway’s
inlet, resulting from the routing apps, and design a controller that prevents the
possible destabilizing effect of the apps.

We first study small-time H' solutions of the linearized model with the addition
of the app-routing for sufficiently small initial data. We introduce an extended, multi-
tiered boundary control design based on the backstepping method introduced in the

267
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previous chapters. Using an intermediate decoupling transformation, we account for
the non-local boundary condition arising from routing app feedback. It is shown that
for sufficiently small H'! data, the equilibrium congestion solution is exponentially
stable and guarantees the existence of closed-loop solutions on the infinite time
interval.

Routing apps generally route in a ‘greedy’ manner. Their impact on traffic has
been studied in [?]. The dynamic traffic routing problem is usually formulated as
a feedback control problem to reach user-equilibrium system-wise under different
control objectives in [?]. It is indicated in [?] that the interaction between traffic
routing and the control of traffic by traffic signals, including by ramp metering,
needs to be taken into consideration in developing traffic control strategies. This is
what we do in this chapter, by developing a boundary feedback control for preventing
apossible instability resulting from non-local feedback introduced by routing apps. A
control design for hyperbolic balance laws with non-local behavior has been studied
in the underactuated case in [?] and with non-local integral terms in [?].

12.1 ARZ Model with Routing Feedback

In this section we introduce a linearized ARZ model in which the routing feedback
enters the inlet boundary condition, whereas the outlet boundary condition is set by
ramp metering control.

Around the steady-state (¢*, v*), the linearized ARZ model is given by the
following (g, #)-system for x € [0, L], t € [0, o0),

* * _ ok * (1 1
8,4 e, 1) + v e - LTV g 5 iy = - (— - ) ;
T Yp

v* p*

(12.1)
*
07 (x,1) = (yp* = v¥)0xV(x,1) = ”(x 1) - —CI(X 1),
(12.2)
with the actuated boundary conditions

q(0,1) = Urou (1), (12.3)
q(L’ 1) = Uramp(t)» (12.4)

where the inputs Uyoy and Uramp are the routing and ramp metering inputs, respec-
tively. The inputs Urout, Uramp arise as perturbations to the equilibrium traffic flow
rate ¢* and play the following roles:

e Uou(t) represents the influence that the routing app has on the influx of cars at
the inlet boundary. It is reasonable to expect that if the road is more congested,
Uvout () should decrease, and conversely, the opposite should be true if the road
exhibits more free-flow characteristics.
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Uramp (¢) represents on-ramp metering control of flow rate at the outlet boundary.

Following the spatial transformation in Section 3.3, the linearized ARZ model is
rewritten as the (v, w)-system:

Ow(x, 1) = —v o,w(x,t), (12.5)
Ov(x, 1) = (yp* —=v*)0xv(x, 1) + c(x)w(x, 1), (12.6)

with the boundary conditions

w(0,1) = k1v(0,1) + Urouc(2), (12.7)
V(L, 1) = kow(L, 1) + Uramp (7). (12.8)

The spatial coefficient is given by

exp (-
c(x) __owlar) ), (12.9)
T
and the boundary coefficients are
* % L
=22 k=exp (— ) , (12.10)
v TV

We consider the congested regime, in which v* > 0 and yp* —v* > 0.

We postulate that the app-routing feedback has a strict-feedback form in the
Riemann variables. In general, the routing feedback may include feedforward as
well as feedback components in the Riemann variable, even if it is only of the
strict-feedback nature in the original density variable. However, as traffic congestion
propagates in the direction opposite to the direction of the flow of traffic, we focus
on the feedback routing information that affects the incoming traffic according to
downstream traffic condition. We assume (heuristically) the following destabilizing
app-routing feedback that preserves the strict-feedback character of the overall two-
PDE model with non-local interconnections:

L
Usouc(1) = /0 a(y)w(y. 1)dy. (12.11)

One can interpret the routing app to be an adversarial feedback controller that
potentially destabilizes the system. The kernel ¢ € L*(0, L) represents a spatial
weighting of traffic feedback information for the routing app over the road.

12.2 Feedback design for the linearized system

In this section, we develop a backstepping transformation-based control design to
establish an H'! equivalence relation between (12.5)-(12.8) to the following target
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Fig. 12.1 Schematic representation of the linearized ARZ model. Potentially destabilizing coupling
appears in two ways: via the internal coupling ¢, and/or via the routing feedback a.

system:
Ow(x,t) = v o, w(x,1), (12.12)
fl(-x’ t) = (yp* - V*)fx(x’ t)’ (1213)
w(0,1) = £(0,1), (12.14)
&(L,1) =0. (12.15)

We will use a tiered-backstepping design with a decoupling transformation imposed
in the middle. In general, one can compose these transformations into a single trans-
formation, but doing so obfuscates the purpose of each individual transformation —
thus, we use consecutive transformations to make clear the method of transformation.

We first utilize the following backstepping transformation to shift the interior
term c(x)w(x,t) in (12.5)-(12.8) to the x = L boundary, where it can be neutralized
with the boundary controller

z(x,1) =v(x,t)—/0 k(x,y)v(y,t)dy
X L
- /0 1, y)w(y. t)dy - / m(x,y)w(y. 1)dy. (12.16)

The kernels of transformation k, [ € C'(7;), m € C(7,) are to be determined, where
T ={(x,y) € R0 <y <x<Lyand 7, = {(x,y) € R*)|0 < x < y < L}. This
transformation is an extension to the backstepping technique introduced and applied
in the previous chapters. The Volterra integral operator characterized by the kernel
m contains so called forwarding transformation. The transformation (12.16) leads to
the following intermediate target system,
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Ow(x,t) = —v*o,w(x,t) (12.17)
0rz(x,1) = (yp* = v*)dxz(x,1) (12.18)
L
w(0,1) = k12(0,1) +/ a(x)w(x, t)dx (12.19)
0
Z(L, 1) = Viamp(1), (12.20)

where Viamp(r) 18 defined to be
L
Viamp () :=Uramp(t) + kow (L, t) — / k(L,y)v(y,t)dy
0

L
—/ I(L,y)w(y,t)dy. (12.21)
0

The kernels of transformation k, [, m satisfy the following hyperbolic PDE system:

Oxk +dyk =0 (12.22)
(yp* =v") ol —v oyl = c(y)k +v*I(x,0)a(y) (12.23)
(yp* —v")0xm —v*dy,0ym = v*I(x,0)a(y) (12.24)
k(x,0) = %l(x, 0), (12.25)
yp*-v
[(x,x) =m(x,x) — @ (12.26)
m(x,L) =0, (12.27)
m(0,y) =0 (12.28)

The wellposedness of this PDE system will be studied in a later section.

The target system (12.17)-(12.20) still contains feedback. However, due to the
first transformation (12.16), the recirculatory non-local feedback now appears only
at the inlet boundary. We apply a series of two more invertible transformations to
eliminate this recirculation in the target system. We define the following parameter

*

_ 1%
ypT—vt

*

u (12.29)
which is the ratio of characteristic speeds between states v, w in (12.5),(12.6).

The app routing feedback, a nonstandard recirculation behavior, motivates the
use of a new, “two-piece” (or ‘piecewise’) transformation that converts the non-local
boundary coupling to a trace term coupling appearing in PDE in the interior of the
freeway segment. We define the following piecewise transformation,

(12.31)
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L

n(x,t) = kiz(x,t) +/

L
a(y)w(y — u"x,t)dyx € [O, —*] kiz(x,1)
Hx M

The piecewise transformation (12.2), as well as the bounded spatial domain x €
[0, L] prescribes only the first case if u* < 1. That is, x € [O, ;zA] N [0, L] will
necessarily restrict the cases when appropriate.

The transformation (12.2) is continuous. Taking the temporal and spatial deriva-
tives of (12.2) and substituting into (12.18), the following equation is obtained for

n(x,1),
om(x,t) = (yp* = v")oxn(x,1) = d(x)w(0,1), (12.32)
where the parameter d(x) is defined as the piecewise function:
(12.34)

d(x) == (yp* =v9a(u'x)x,€ [0,L/u"]0

The (w, ) system is then expressed as

Ow(x,t) = =v oyw(x,t), (12.35)
T]t(x7 t) = (VP* - V*)nx(x’ t) +d(x)n(0’ t)’ (1236)
w(0,7) =n(0,1), (12.37)
(L, 1) = Wramp(1). (12.38)

where Wramp(t) is obtained from evaluating the transform (12.2) atx = L, compactly
formulated as:

L
Wramp (2) := k1 Vramp () +/ a(Y)w(y — u*x,1)dy (12.39)
min{u*L,L}

The final step involves a single backstepping transformation from n(x, ) to £(x,1).
The target system is obtained as

ft(x’t) = (yp* - V*)nx(x’ t)gx(x’t)’ (1240)
&(L,1) =0, (12.41)

which is achieved by the backstepping transformation

£0et) = n(x) - /0 n(x = y)(y. 1)dy. (12.42)
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This leads us to our final target system (w, £), which is trivially finite-time stable.
The kernel of transformation (12.42) must satisfy the following Volterra integral
equation of the second kind:

n(x)= (" -yp"H™! [d(x)+£ d(y)n(x—y)dy} (12.43)

The controller Wramp(t) can be found by evaluating transform (12.42) at x = L:

L
Wramp(t) = ‘/0 n(L = y)n(y,t)dy. (12.44)

By combining (12.21),(12.39),(12.44), the feedback controller Uamp () is obtained:
L
Uy (1) =a(t) = kow(L.0)+ [ Fu (.0
0

L L
+/ Fy ()w(y, t)dy —/ kla(y)w(y — u*x, 1)dy,
0 min{u*L,L}
(12.45)

where the control gains F, (y), F,, (y) are given by the following relations:

1
Fu(y) = k(L.y) +n(L — y) - / n(L - k(€. y)de, (12.46)
y

Fu(y) = I(Loy) + /O k(L - Ealy + 1 E)dE
1 y
- / n(L - E)I(E,y)dé - / n(L - Om(E,y)de, (12.47)
y 0

and a(¢) is defined as
a(t) = —kza(r), (12.48)

where k3 > 0, and the initial condition @ (0) is chosen to fulfill compatibility
conditions between the initial control value U(0) and the initial condition vg. It is
important to note that the dynamically extended state is trivially exponentially stable,
and therefore does not compromise the (exponential) stability of the system. We then
state the main theorem of the chapter.

Theorem 12.1 The boundary controller (12.45) guarantees exponential stability, in
the sense of the spatial H' norm, of the zero solution of the linearized ARZ model
(12.5), (12.6). That is, there exist M,y € R, such that

[[v,w||g1 < M exp(—yt)||vo, woll g1 vt > 0. (12.49)
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Moreover, (12.45) ensures the global (in time) existence of solutions for sufficiently
small initial conditions ||vo, wol|g1 < M~'e, where (12.49) generates a priori H'
energy estimates for the solution (v, w).

The proof is obtained using an H' stability estimate of the target system (12.12)-
(12.15) coupled with invertible and regularity-preserving backstepping transforma-
tions (12.16),(12.2),(12.42) to derive H' stability for (v, w). These properties are
studied briefly in Section 12.3.

12.3 Closed-loop stability

We use the the Lyapunov stability analysis to prove that the closed-loop system
with the feedback controller (12.45) is exponentially stabilized at the equilibrium
(v*, ¢*). It is not only necessary to prove convergence, but also to prove pointwise
boundedness in our stability estimate. To ensure existence of solutions to the closed-
loop system, the states can neither exceed the limits arising due to the linear model
approximation failing beyond the domain of attraction nor exceed physical flow
rate/velocity constraints (positivity, maximum capacity, speed limits).

We give a series of lemmas that establish H' stability in the target system and
establish equivalence in H' norm between all transformed states. The combination
of the following lemmas establishes the result of Theorem 12.1.

Lemma 12.1 The zero solution of the target system (12.12)-(12.15) is exponentially
stable in the sense of H U that is, there exist M, v € Ry such that

17, wllg1 < Myexp(=yt)lino, woll g (12.50)
forallt € [0, ).

Lemma 12.1 is straightforward to prove using the standard Lyapunov function for w
and v in the H' sense. One can utilize the following Lyapunov function

L
V(t) = / [eé”‘w(x, 02 +de® v(x,1)?
0
+e %9, w(x, t)2 + d2€54x¢9xv(x, t)2 dx, (12.51)

where the coefficients are chosen ¢; > 0,i € {1, ...,4},and d| > u*,d> > 1/u*. The
coefficients My, y are then given by

max{e%L, %L}

L= min{e~91L, ¢-%L}

(12.52)

1 . * * * * * *
y = me{élv',&v ,d162(yp* =), drbs(yp* —v*)}. (12.53)
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Lemma 12.2 The transformation (12.42) and its associated inverse transform estab-
lishes H' equivalence in norm between (&€, w) and (17, w), i.e. there exist C1,Cy > 0
such that

Cillg wllgr < llnwllgr < Gll&, wllpgn (12.54)

with C1 = (143||n]|;2)7", C2 = (143||#]|2) ", where it is the inverse kernel related
to n.

The reason why the H' equivalence between system norms is nontrivial is because
of the regularity of the kernel n. In general, n is only L?, which makes establishing
H! more difficult. However, due to the convolution structure of the kernel, H' equiv-
alence can be derived by exploiting integration by parts and the Sobolev embedding
theorem.

Lemma 12.3 The transformation (12.2) and its associated inverse transform estab-
lishes H! equivalence in norm between (1, w) and (z, w), i.e., there exist C3,C4 > 0
such that

Galln. wllg < llz. wllgr < Calln, wll g (12.55)

For (12.2), the equivalence is straightforward to obtain as (12.2) is just a piecewise
affine transformation.

Lemma 12.4 The transformation (12.16) and its associated inverse transform estab-
lishes H' equivalence in norm between (z,w) and (v, w), i.e., there exist Cs, Cg > 0
such that

Csllz,wllgr < |lv, wllg < Cellz, wll g (12.56)

The norm equivalence property is standard as(12.16) is an extensively studied back-
stepping transformation.

12.4 Existence of solutions to kernel equations

For the backstepping transformations (12.16) and (12.42) to exist, both the com-
panion boundary value problem given by (12.22)-(12.24) with boundary conditions
(12.25)-(12.28) and the integral equation (12.43) must have solutions. We will begin
by studying the existence of solutions to (12.22)-(12.24).

Lemma 12.5 Consider the boundary value problem given by the system of hyperbolic
equations (12.22)-(12.24) with boundary conditions (12.25)-(12.28). Assume that
a,c € C([0, L]). Then there exist unique solutions k,1 € C(7;) and m € C(7,).
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l(z,0) r =1

Fig. 12.2 Characteristic lines for (I, m) companion kernel PDE. A transmission condition between
the two kernels appears at y = x. The boundary value /(x, 0) introduces feedback via trace terms
in the evolution equation for both I, m.

Proof The proof follows from finding a solution via the method of characteristics.
Since there is non-local behavior arising in the plant, the companion kernel PDEs
will exhibit non-local coupling as well, which must be treated using the method of
characteristics.

We begin by inspecting the k-PDE. By directly applying the characteristics
method, it is not hard to see that k has the following representation for a solution in
/R

k(x,y) =k(x-y,0) = kju*l(x = y,0). (12.57)

By using (12.57) as a representation for k in (12.23), one can find the self-contained
system (I, m). The (I,m) characteristics are sketched in Figure 12.2. In particular,
note how boundary conditions between [/, m are coupled at y = x and y = 0.

By a direct application of the method of characteristics to (12.23), one can recover
an integral equation for /

1
vp*

l(-x’y) =m(0'1(x,y),0'1(x,y)) - C(O-l(xsy))

X

+ / " [kl,u*c(—v*s + o1 (x, y)(yp*s,0) +via(=v's + o1 (x,y)) X I((yp" =v7)s + o1(x,y),0) |ds
0
(12.58)

where
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Vi + (yp* = vy

. (12.59)
P

oi(x,y) =

Similarly, a direct application of the method of characteristics to (12.24) will yield
the following piecewise defined integral relation for m:

, < —u* L
mix,y) = {1 @)y S mpas (12.60)
mo(x,y) y>—-u'x+L
my(x,y) = / T e (v s+ aa(x,y)) X L((yp” = vY)s, 0)ds
0
L-y
may(x,y) = / ' via(=v's+ L) X I((yp* = v")s + o3(x,y),0)ds
0
where 07, 03 are
oa(x,y) = u'x+y. (12.61)
1
o3(x,y) =x — E(L_y). (12.62)

By substituting (12.60) into (12.58) and evaluating it at y = 0, one generates the
following integral equation that is defined piecewise:

lux) x< L
[(x,0) = | h (12.63)
W) x> i
la(x) = ———=c —x | +1(x) + via(=vis + ' x)I((yp* —v*)s,0)ds
Yp Yp 0
(12.64)
L 1
1 : T L
L(x) =——c ( d *x) +1(x) +/ " via(-v's+ L)l ((yp* -v)s+x—-—,0]ds
yp* \vp 0 p

(12.65)

where

*

I(x) = / ” kiu*c (—v*s 4 *x) I(yp*s,0)
0 Yp

* P

+via (—v*s 42 *x) X [ ((yp* -v)s+ —x, O) ds. (12.66)
Yp Yp

The separate cases of u* > 1, and u* < 1 are self contained in the definition (12.63):
for u* < 1, only the condition corresponding to /4(x) is activated since x € (0, L),
while for u* > 1, both cases must be considered.

Using the method of successive approximations, we establish an iteration
{ln};.y — 1(x,0), which can be shown to converge uniformly since the integral
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equations admitted are affine. This establishes the existence of a solution which
can be shown to be unique due to the linearity. The regularity is recovered by
noting that the pieces of the solution /(x,0) are C([0, L]) compatible. Then the
C (7)) solutions k, ! and C(7,) solution m can be directly generated by evaluating
(12.57), (12.58), (12.60), respectively. m]

Lemma 12.6 Consider the integral equation given by (12.43), and the definition of
din(12.2). If & € L*(0, L), then there exists a unique L*(0, L) solution n.

Proof The proof is relatively straightforward, and one may employ standard linear
integral equation techniques to recover n. Since d is assumed piecewise continuous,
then one such potential method is utilizing the Laplace transform on (12.43): 7i(s) =
(yp* —=vH)! [ﬁ(s) + ﬁ(s)ﬁ(s)] The solution n € L? is found applying the inverse

Laplace transform: n(x) = £~ {(yp* —v)7Hd(s) +Aa(s)d(s)| } o

12.5 Notes and References

The present chapter is based on an early and abbreviated publication [?]. In this chap-
ter, we present a ramp metering control design for damping app-routing instabilities
in a linearized ARZ traffic model. The full state feedback design is an extension
to the classical backstepping control, allowing for the additional component in the
control law to account for the non-local boundary condition arising from the routing
feedback. One limitation to be addressed in future is the assumption that the app
routing flow is known as a priori.



Chapter 13
Bilateral Regulation of Moving Shock Position

13.1 Delay-Compensating Predictors for PDE-ODE Models of
Traffic Shock Movement

Stop-and-go oscillations are not the only annoyance to the drivers on a freeway.
Even in the absence of oscillations, congestion alone, with its increased density and
reduced velocity, frustrates drivers and results in wasted fuel.

Congestion is often experienced by driving on the freeway in relatively sparse
traffic and all of a sudden reaching a point where the traffic is denser and slower—a
congestion. This point on the freeway, which is not in a fixed place but moves, is a
point of sharp change in traffic density. As such, it is referred to as a “‘shock.” Since
the shock moves, often in the upstream direction of traffic, the shock’s motion is
often referred to as a “shock wave.” At the beginning of a rush hour, traffic typically
transitions from free on the entire freeway to congested by the shock wave traveling
in the upstream direction.

Completely preventing congestion on the freeway entails a high price—keeping
vehicles in queues to enter the freeway and congesting the streets. If freeway conges-
tion is, therefore, accepted as an inevitable consequence of traffic demand, the next
best objective is to keep the congestion from consuming it entirely, namely, keeping
the shock from progressing all the way upstream.

Managing the progression of a shock between the sparse and dense traffic is the
objective of this chapter. We wish to design controllers that exert control over the
motion of the shock—for example, controllers that regulate the position of the shock
to a desired location on the freeway. Of course, one can also formulate a goal of
regulating the shock to follow a certain trajectory (to move up and down the freeway
in accordance with a desired waveform). This is a pretty routine extension of the
setpoint regulation problem, so we restrict our attention to setpoint regulation for a
moving shock.

Once we shift our attention from suppressing oscillations to regulating the move-
ment of a shock, there is no longer a reason to employ a model of stop-and-go
oscillations, the ARZ model. The shock motion being of interest, we can restric

279
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our study to the LWR model whose key function is the modeling of spatiotemporal
evolution of density.

If the goal is to regulate the shock’s position to a setpoint, what kind of input,
or inputs, can we employ towards that goal? In order to answer this question, let
us recall that the variations of density in the LWR model travel in the downstream
direction in free traffic and in the upstream direction in the congested traffic. So, on
a freeway segment with ramps at both of the segment’s boundaries, and with a shock
somewhere in the domain, with free traffic upstream of the shock and congested
traffic downstream of the shock, both ramps can be employed to propagate a control
action towards the shock. From the upstream ramp in the downstream direction
towards the shock, and from the downstream ramp in the upstream direction towards
the shock.

So this is the problem we pursue in this chapter: consider a freeway segment
modeled by the LWR model, with ramp metering inputs at both of the segment’s
boundaries, and design controllers for the two inputs to regulate the shock’s position
to the setpoint, somewhere in between the two ramps.

Because of the availability of two boundary inputs, at the opposite ends of the
freeway segment, we refer to this problem as “bilateral regulation.”

The model that we use to study this problem is not a simple LWR model but a pair
of LWR models, on domains that vary with time, as the shock moves, and connected
using a scalar ODE that models the position of the shock (the Rankine-Hugoniot
condition). So, the position of the shock is both an ODE state of the PDE-ODE-PDE
system and a position of the boundary for both of the LWR PDEs.

The two LWR models, modeling traffic upstream and downstream of the shock,
are nonlinear. However, the control objective of regulating the position of the shock,
translates into the objective of regulating the density upstream of the shock to a lower
value (corresponding to free traffic) and of regulating the density downstream of the
shock to a higher value (corresponding to congested traffic). So, the objective of the
two ramp metering inputs is to regulate the density on their respective sides of the
shock to the respective free/congested density setpoints.

Since the regulation of the LWR models to their equilibria is the control objec-
tive, it makes sense to pursue this objective by performing a control design on the
linearized version of the LWR model, around the respective equilibrium. When the
LWR model is linearized, its linearization is the linear transport PDE, namely, the
pure delay. This is a crucial observation—ramp metering inputs are faced with the
task of controlling the shock position through input delays.

When input delays are present in control systems, if not accounted for in the design,
and if either the delay values are large or the control gains are large, instability not only
may arise but it will certainly arise for long enough delays. Accounting for the input
delay in the design means applying “predictor feedback™ [?], which compensates for
the presence of the delay and prevents the control input from getting too large, out
of impatience of its effect not being instantly reflected at the system’s output, and
destabilizing the system due to aggressive action. So, predictor feedback imposes
restraint on the control input and ensures stability. Predictor feedback is just a form
of PDE backstepping, specialized to cascades of a transport PDE into an ODE.
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Fig. 13.1 Traffic moving shockwave front on freeway, the arrows represent propagation directions
of density variations. In LWR model, the propagation directions are given by the characteristic
speeds of density Q' (o).

The availability of predictor feedback, for the purpose of compensating the delay
in propagating the ramp metering inputs to the current shock location, is good news.
However, conventional predictor feedback is for constant delays, whereas, when the
shock is moving, the delay from the ramp metering input varies with time. In fact,
the delay does not vary in time in a fashion that is a priori set but depends on the
current shock location, which will change in the future. To send a good control signal
from the ramp metering input one has to be able to predict where the shock will be
once this input reaches the shock, i.e., how long it will take the input signal to reach
the location of the shock, which is not known at the time of selecting the input. If
this task of compensating the delays that depend on the current and future shock
positions appears as a nightmare it is. But it is possible to get through it using the
technique developed in [?]. Compensation techniques for delays that depend on the
state—both the current state and a value of the state in the past (which is a problem
that arises in internet traffic)—are available in that 2013 book.

So, in this chapter we employ the techniques for compensating state-dependent
(shock-dependent) delays for regulating the shock position through the (linearized)
LWR PDE dynamics over varying domain lengths.

Using Lyapunov stability analysis, we show local stability of the closed-loop
system, with the fully nonlinear LWR model, in the H; norm with an arbitrarily fast
convergence rate. The shock regulation and overall PDE-ODE-PDE stabilization
result is demonstrated by a numerical simulation on the fully nonlinear LWR model.

Let us close this section by noting that traffic discontinuities can be caused by
various inhomogeneities of freeway or vehicles. Some studies consider a shock front
as a moving traffic flow constraint [?, ?] due to a reduction of road capacity. Slow
moving vehicles, also known as moving bottlenecks, are represented in [?, ?, ?] with
ODEs governing the velocity of slow vehicles. These are out of the scope of this
chapter and relevant to the controllability problem with boundary actuation.
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13.2 Moving Shockwave Model

The moving shockwave front is the head of a shockwave, segregating traffic on a
segment of freeway into two different traffic conditions. The upstream traffic of the
shockwave front is free and the downstream is congested, as shown in Fig. 13.1. The
traffic densities are described with the LWR model.
Recall the first-order LWR PDE that governs traffic density p(x, 1),
0ip+ Q' (p)dxp =0, (13.1)
where x € [0,L], t € [0,00), Q(p) is a fundamental diagram which shows the
equilibrium relation of density and traffic flow. The fundamental diagram Q(p) is
defined as
Q(p) =pV(p). (13.2)
The equilibrium velocity V(p) is an affine decreasing function of density which we
choose the following Greenshield’s model,

V(p) = vm (1 - ﬁ), (13.3)

m
where v, is the maximum speed, py, is the maximum density. The Greenshield’s
model V(p) yields a strictly concave fundamental diagram Q (p), shown in Fig. 13.2.
The jump density pjump segregates densities into two sections, free regime on the
left and congested regime on the right.

Q'(p)=0
Q(p) g | .
free | congested
pf p?‘U'WLP p\:, pT’L

Fig. 13.2 Fundamental diagram of traffic density and traffic flow relation.
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In the LWR PDE (13.1), density variations propagate with the characteristic speed
Q’(p). The free regime with light traffic, equivalently, pf < pjump, has its density
variations transported downstream with

Q' (p)lp=p; = V(pt) + psV'(ps) > 0, (13.4)

while the congested regime with denser traffic, namely, p. > pjump has its density
variations transported upstream with

Q/(p)lp:pc =V(pc) +pV'(pe) <O. (13.5)

As shown in Fig. 13.1, the moving shockwave considered here is the shock of a traffic
wave, physically representing the discontinuity of density. The congested traffic
density propagates upstream while the light traffic density propagates downstream.
Therefore, the upstream front of the shockwave becomes steeper in propagation
and eventually, the gradient d,p tends to be infinity [?]. In this scenario, drivers
located in the upstream front of the shock will experience transition from the free
to congested traffic. The position of the shockwave front is later defined by an
ODE according to Rankine-Hugoniot condition. The dynamics of the upstream free
traffic, the downstream congested traffic and the position of the moving interface are
presented below.

Define the traffic density of the free regime as pf(x,t) for x € [0,1(¢)], t €
[0, +00), and the congested regime as p.(x, 1), for x € [I(¢),L], t € [0, +c0), the
LWR model that describes the traffic is given by

Oipr+ Ox(ppve) =0, x € [0,1(1)], (13.6)
al‘pC + ax(pCVC) :0» X € [l(t)’ L]’ (137)

where /(1) € [0, L] is the location of the moving interface. The density and velocity
relation is given by the Greenshield’s model (13.3), (i =f, ¢),

_ Pi(xJ))_

vi(x,1) =Vi(pi(x,1)) = v (1
Pm

(13.8)
Due to the flow discontinuity at the moving boundary, a traveling vehicle leaves the
free regime to enter the congested regime. Dynamics of moving interface [(f) is
derived under the Rankine-Hugoniot condition which guarantees that the mass of
traffic flow is conserved at the moving interface. The upstream propagation of the
shockwave front is driven by the flow discontinuity,

i) _pell(®), e (1), 1) = pi(1(0), Ve (1), 1) (13.9)

pe(l(t),1) = pe(L(2), 1)

where the initial position of the shockwave front 0 < [(0) < L. The following
inequalities for initial conditions of PDEs (13.6), (13.7) are assumed:
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pe(1(0),0)vc(1(0),0) < pr(1(0), 0)v(1(0), 0), (13.10)
pc(1(0),0) > pt(1(0),0). (13.11)

Initially, the traffic downstream the interface is denser but with a smaller flow
which lets less vehicles to pass through while the traffic upstream is light and let
more vehicles to come in the segment. With the above assumptions to hold, we obtain
from (13.9) that /(0) < 0. The moving interface travels upstream, driven by a flow
difference induced by the density discontinuity.

Substituting density-velocity relation (13.8) into (13.6), (13.7), and (13.9), we
have two nonlinear PDEs and an ODE coupled system that governs the dynamics of
ps(x,1), pc(x,t) and I(t), given by

2
Bepr(x,1) = = Vyndy (pfoc, o A ”), (13.12)
2
Bupe(6,1) = — Vs (pc<x, ) - M) (13.13)
[(£) =vin — ;—‘“(pc(m),r) + pe(U(1), 1)), (13.14)

We consider the following controlled boundary condition for the nonlinear cou-
pled PDE-ODE system consisting of (13.12), (13.13), and (13.14)

pi(0,1) = Uin (1) + pf, (13.15)
pe(L,1) = Uout(t)+p:’ (13.16)

where we control the incoming and outgoing density variations of the freeway
segment Ui, (1) and Uy (¢). The well-posedness of the coupled PDE-ODE system can
be proved following [?] by defining a shock free solution to the quasilinear hyperbolic
system (7)-(9) with compatibility condition verified by the initial conditions, which
establish an equivalence relation with the shockwave solutions of the scalar Burgers
equation. Our control objective is to stabilize both free and congested regime traffic
pi(x,t) to uniform steady-states p and at the same time, the moving interface /(t)
to a desirable static setpoint /*. Therefore, the shockwave becomes standstill within
the freeway segment instead of moving upstream.

The incoming traffic flow is assumed to be in the free regime and the downstream
of the outlet is assumed to be congested . The bilateral control of density can be
realized with ramp metering actuating the flow at both boundaries: we have at inlet
qin(t) = O(p¢(0,1)), and at outlet gou (t) = Q(pc (L, t)). In practical implementation
of the bilateral controllers, the flow variations of

{qramp,in =qin(t) - Q(,OF)a (13.17)
ramp,out :CIout(t) - Q(P:)» (13.18)

are regulated with traffic lights on ramp.
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13.3 State-dependent PDE-ODE Model

We linearize the original coupled PDE-ODE model (p¢(x, ), pc(x, ), ())-system
defined in (13.12), (13.13), (13.14) around steady-states (p}‘,pz‘, [*). The constant
equilibrium setpoint values are chosen so that the following conditions that ensure
the model validity hold

0 < pf < Pjump < P < Pm, (13.19)
0<I*<L. (13.20)

At steady-state, the flow equilibrium needs to be achieved for both sides of the
moving interface,

p;V(pf) = pZV(ps). (13.21)
Using condition (13.21), the quadratic fundamental diagram yields that
Pf + P& = pm. (13.22)
Define the state deviations from the system reference as

pi(x,1) =pi(x,1) - pf, (13.23)
X(t) =l(t) -I*, (13.24)

where X (1) = I(¢) is satisfied. Thus, the linearized PDE-ODE model (13.12)—
(13.14) with the boundary conditions (13.15) and (13.16) around the system reference
(pf, pZ,1*) is defined as the following (p¢(x, 1), pe(x, 1), X (1))-system

0 pr(x,t) = —udyps(x,t), xe€[0,1(r)], (13.25)
O01pc(x,t) =udypec(x,1), x € [l(1), L], (13.26)
p£(0,1) =Uin (1), (13.27)
Pe(L, 1) =Uou (1), (13.28)
X(t) == b (pe(L(1), 1) + pe(l(1), 1)), (13.29)

where the transport speed is defined as

2 *
u:vm(l—ﬁ), (13.30)
Pm

and satisfy O < u < v,. The constant coefficient b in ODE is defined as b = :)—'r: > 0.
The model after linearization in (13.25)—(13.29) is a state-dependent coupled PDE-
ODE system with bilateral boundary control inputs from inlet and outlet. Notice that
the PDE states are linearized around the steady-states, but the ODE is dependent on
PDE states and PDE states evolve in ODE-dependent space domain. Therefore the
PDE-ODE coupled system (13.25)—(13.30) is a quasilinear system. The nonlinearity
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is geometrical and induced by the phase change between the free and congested
regimes.

Remark 13.1 For model validity, we assume that there exists a constant L > 0 such
that the ODE state /(¢) satisfies

0<li(r) <L, (13.31)

so that (13.12), (13.13), and (13.14) are well-defined for x € [0, L], ¢t € [0, +c0). We
emphasize that the proposed control law needs to guarantee the above condition.

13.4 Predictor-based Control Design

In this section, we first introduce the equivalent delay system representation to the
system (13.25)—(13.29). Then, a backstepping transformation is applied to obtain
predictor-based state feedback controls to compensate the PDE state-dependent de-
lays to the ODE.

From coupled PDE-ODE to delay system representation

The system (13.25)—(13.29) can be represented by an unstable ODE with two distinct
state-dependent input delays. Introduce the following state-dependent delays for the
two transport PDEs

pin="D  p.y=EtO (13.32)
u u
where
1(t) = X(2) +I*. (13.33)
The PDE states at x = [(¢) are represented by
pe(l(1),1) =Uin (t — D¢(2)) (13.34)
Pe(l(2),1) =Uou (t = Dc(1)) (13.35)

where Ui, () and Uy () are the boundary control inputs defined in (13.27) and
(13.28) and the representations are valid when Remark 13.1 and Remark 13.2 hold
and initial conditions are bounded as introduced in Theorem 13.1 later. The assump-
tions guarantee that the corresponding solution is defined for all # > 0, which implies
that the moving interface /(z) stays in the spatial domain before the control inputs
reach it.
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Substituting (13.34) and (13.35) into the ODE (13.29), the following state-
dependent input delay system representation is derived

X(1) = = b (Uin(t = Ds(X(1))) + Uou(t = De(X(1))) . (13.36)

If the position of the moving shock front is close to the inlet half segment such
that I(#) € [0, %], it holds that Y7 € [0, o),

D(1) < De(1). (13.37)

As a result, delayed inlet control input Uy, (t — D¢(¢)) reaches the moving shock
front faster than delayed outlet control input Ugy (t — D¢(2)). If I(2) € [% L] ,Vt e
[0, 00), it holds that

Di(t) = Dc(1), (13.38)

Then Uy (f — D(2)) reaches the moving shock front faster than Ui, (t — D¢(¢)).
We introduce a new coordinate z defined as

(13.41)

() —x x —1(1)
7= — I
u

u

. x €[0,1(n)],

and new variables g¢(z, 7) and J.(z, t) defined in z-coordinate. The transformations
between pg(x, 1), oc(x,t) and 6(z,1), 0.(z,t) are given by

@f(zs t) :ﬁf(l(t) —uz, t)’ zZ€ [O’ Df(t)]’ (134‘2)
Oc(z,1) =pc(I(1) +uz, 1), z€[0,Dc(1)], (13.43)

and the associated inverse transformations of (13.42) and (13.43) are given by

I(t) —x

Por(x, 1) :gf( ,t), x € [0,1(1)], (13.44)

x=1(t)

Pe(x,1) =0¢ ( ,t), x € [I(r), L]. (13.45)

Using (13.42) and (13.43), the original system (13.25)—(13.29) is rewritten in the
new z-coordinate as



288 13 Bilateral Regulation of Moving Shock Position

0, 0¢(z,1) = (1 - %) 0,01(z,1), z € [0, D¢(1)], (13.46)
0:0c(z,1) = (1 + %) 0,0:(z,1), z € [0,Dc(1)], (13.47)
01(Ds(1), 1) =Uin (1), (13.48)
0c(De(t),1) =Uou (1), (13.49)

with the ODE state (1) = X(¢) + [* given by
X(t) = —b (3:(0,1) + 6.(0,1)) . (13.50)

Remark 13.2 The proposed control laws Uj, and U,y need to designed such that the
following condition for the ODE state I(¢) is guaranteed

—u<I(t) <u, (13.51)

so that well-posedness of the system (13.46)—(13.50) for x € [0, L], ¢ € [0, +c0) is
guaranteed.

Based on the above system in a delay representation, we construct the following
predictor-based backstepping transformation so that the delays are compensated with
the control design.

Predictor-based backstepping transformation

We consider the following backstepping transformation, motivated by the predictor-
based transformation for delay representation p¢(z, t) and oc(z, t) defined in (13.46)—
(13.49),

wi(e,1) =81(z 1) — Ke| X (1) = b /0 o de

min{D¢(7),z}
_b/ 0c(é, f)df) , z€1[0,D¢(t)], (13.52)
0

wC(Z» t) :éC(Z9 t) - KC

X(1) = b A 5e(é.1)de

min{D(t),z}
_b/ or(&, T)df) ,  2€[0,Dc(1)], (13.53)
0

where K¢, K. > 0 are positive constant gain kernels. The above transformation in the
original PDE state variables p¢(x,?) for x € [0,(¢)] and p.(x,?) for x € [I(¢), L],
is given by
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b Lo
witet) =pr(e0) - Ki| X0 - 7 [ pule.nde

b min{L,2[(t)-x}
——/ P&, t)dg), x € [0,1(1)], (13.54)

U Jiw

Wc(xs t) :ﬁC(-xa t) - KC

X0 -2 /I e e

(1

1(1)
—é/ ﬁf(g,t)df), x € [I(r), L]. (13.55)

U Jmax{0,21(t)-x}
* For the case D¢(t) < D.(?), it follows that [(¢) € [O, %] and the following holds
x €[0,1(#)] = min{L,2I(r) —x} = 2I(t) — x. (13.56)
* For the case D¢(t) > D.(?), it follows that [(¢) € [%, L] and the following holds
x € [l(t),L] = max{0,2[(t) —x} =2I(¢) — x. (13.57)

Later on, two pairs of state feedback controllers are obtained respectively for
I(t) € |0,%] and I(r) € [%,L]. The inverse transformation of (13.54), (13.55) is
given by

b 1(1)
X0 -2 / Wi, 1)dé

pr(x, 1) =we(x, 1) + K¢

b min{L,2I(t)-x}
——/ we(&, t)d{f) , x € [0,1(p)], (13.58)

U Ji)

p~C(x, t) :WC(xs t) + KC

b X
X -7 [ wiende

(1

1(1)
—é/ Wf(f,t)df), x € [I(r),L]. (13.59)

U Jmax{0,21(t)-x}

The derivation of the inverse transformation is straightforward following [?] and [?]
and thus omitted here. Let us denote the above transformations as

pr = Te[ws, wel, (13.60)
Pe = Te[we, wel. (13.61)

At the moving interface, we have
we(l(t),1) =pe(1(1), 1) — KeX (1), (13.62)

we(l(1),1) =p(1(2), 1) — KX (1). (13.63)
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We take temporal and spatial derivative on both sides of (13.54), (13.55) and substi-
tute into the PDE-ODE original system (13.25)—(13.29). With the designed bilateral
boundary controllers Uy, and Uy, introduced later, we obtain the target system
satisfied by we(x, 1) and wc(x, 1),

O Wi + ud,wy =K7fbf(t)(g(t) +2€.(x,1)), x € [0,1(1)], (13.64)
Oy We — UdxWe =K;bi(t)(g(t) — 2€i(x, 1)), x € [1(1), L], (13.65)
we(0,1) =0, (13.66)
we(L, 1) =0, (13.67)

X(1) == aX(t) = b (we(l(r), 1) + wi(1(2), 1)), (13.68)

where (13.66), (13.67) are the controlled boundaries and the constant coefficient
a=b(Ki+K.) >0, (13.69)

is obtained by substituting (13.62), (13.63) into (13.29), given b, K¢, K. > 0. The
time-varying term g(¢) is defined as

g(1) =(Kr — Ko) X (1) + we(1(2), 1) = we(I(1), 1), (13.70)
and the space and time-varying terms € (x, ) and €(x, t) are given by

e(x, 1) =pc(21(t) — x,t) = T [wg, we] (2L(2) = x, 1), (13.71)
er(x, 1) =pr(2L(t) — x,t) = Tr[wg, we] (21(F) — x, 1). (13.72)

We assume that densities outside freeway segment [0, L] are at steady-states, there-
fore p.(21(t) — x,t) = 0 when 2I(¢) —x > L, and p¢(2I(t) — x,t) = 0 when
21(t) — x < 0. Hence, the followings hold for &¢(x, t) and €. (x, 1),

(13.74)

€(x,t) =0, [(t) € (0,L/2) and x € [2I(¢t),L],ec(x,7) =0, I(t) € (L/2,

Otherwise, €(x, 1) and €.(x, t) are given by expressions in (13.71) and (13.72). The
bilateral state feedback boundary actuations for inlet and outlet of the segment are
derived from (13.54), (13.55) and (13.66), (13.67) as

min{L,2[(t)}

b (10 b
Uin(t) =Kt (X(f) - ;/0 pe(é,1)dé — ;/

1(1)

pe(é, f)ds‘?), (13.75)

b L b 1(1)
Vo (1) =K. (X(t)—; /I( eende - / pre. r)d-f). (13.76)

U Jmax{0,21(z)-L}



13.4 Predictor-based Control Design 291

We obtain two pairs of controller designs for /(r) € [0,%] and /(1) € [4.L].
respectively. When [(z) € [0, %] it holds that

min{L, 2[(t)} = 2I(t), max{0,2[(¢) - L} = 0, 13.77)
and when [(¢) € [%, L] one gets

min{L,2[(#)} = L, max{0,2/(¢) — x} = 2I(z). (13.78)
In addition, when [(1) = %, controller integral forms become identical for [(¢) €

[0, %] and [(¢) € [%,L]:

Uin (1) =K

b % b L
X(f)—;/() ﬁf(f,l)df—;L ﬁc(f’t)df) (13.79)

2

Uout(t) =K.

b % b L
X(t)_;/o ﬁf(f»t)df_;L ﬁc(f»l)d§)~ (13.80)

The bilateral control input continuously switches between the above control laws
when the moving interface position passes through the middle of the freeway seg-
ment.

Due to the invertibility of the transformation in (13.54), (13.55), stability of the
target system (w¢(x, 1), we(x, t), X (¢)) and stability the plant (p¢(x, 1), pc(x, 1), X (2))
are equivalent. In the next section, we apply Lyapunov analysis to prove the stability
of the target system. Define the H'-norm || £ (-, 1)|| H,, 2

b
||f(-’t)||H(la,b) = \/(/ fz(x’t) +fx2(x’ t)dx . (1381)

We now state the main result of the chapter.

Theorem 13.1 Consider a closed-loop system consisting of the PDE-ODE system
(13.25)—(13.29) and the bilateral full-state feedback control laws for the inlet and
the outlet (13.75), (13.76). For any system reference (pf, p¥,1*) € H'((0,1*);R) x
H'((I*, L);R)) x (0, L) which satisfies conditions (13.19), (13.20) and (13.22), and
for any given L > 0, there exist ¢ > 0, y > 0, { > 0 such that if the initial conditions
of the system (ps(x,0), pc(x,0),1(0)) satisfy Z(0) < ¢, local exponential stability
with an arbitrary fast convergence rate of the closed-loop system with bilateral
control laws holds ¥t € [0, o), namely,

Z(t) < ce™Z(0), (13.82)
where Z(t) is defined as

20 = s 0) = pillgy el = pllly, |+ U@ =1 (1383)
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and conditions (13.31), (13.51) are satisfied for model validity.

13.5 Lyapunov Analysis

In the proof, local stability of the closed-loop system in the H! sense is shown with
Lyapunov analysis and the conditions (13.31), (13.51) are guaranteed by our control
design. The proof of Theorem 13.1 is established through following steps: we first
prove the local stability of the target system (13.64)—(13.68) given time interval
Vt € [0,7*) under the assumption that conditions (13.31), (13.51) are satisfied.
Then we prove that with the initial conditions of states variables bounded, the local
exponential stability of the above target system holds for V¢ € [0, +co) with the
assumption removed. This is achieved by comparison principle and contradiction
proof in a lemma. In the end, the stability analysis of the target system yields the
stability of original PDE-ODE system in (13.12)—(13.14).
Let us define the Lyapunov functional

V(l) =V (l) + Vz(l‘) + V3(l‘) + V4(t) + CsVs(l‘), (13.84)

where A > 0 with the component Lyapunov functions

1(7)

Vi(t) = /O e w2 (x, 1)dx, (13.85)
L

V(1) = D) wg (x, 1)dx, (13.86)
1(1)
1(1)

Vs(t) = A e~ 9 wi(x, 1)dx, (13.87)
L

Vi) = [ e Dy w?(x,1)dx, (13.88)
1(1)

Vs (1) =X (1) (13.89)

Lemma 13.1 Assume 3t* > 0 such that for all t € [0,t*] the conditions (13.31),
(13.51) are satisfied, then there exists o > O such that the following holds V't € [0, t*),

V(t) < —oV+1V% + 0V (13.90)

Proof Taking time derivative of the Lyapunov function (13.84) along the solution
of the target system (13.64)—(13.68) and using the inequality (13.51), we have
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_ 1)
Vi(t) =- C‘lu/ e w (x t)dx
0
2Kih ; 1
—fl(t)g(t) / e~ yp(x, £)dx
| AKib 1@
f l(t)/ e~ e (x, H)we(x, 1)dx, (13.91)

L
Vo(t) =— czu/ eCZ(X_L)wg(x, t)dx
1(1)

L
ey (x,1)dx
1(1)

ecz (x—L)

er(x, )we(x, t)dx, (13.92)
. 1(1)
Vs3(t) = — C3u/ _‘3x8xw§c (x,t)dx + uéxw%(O, 1)
1(1)
4be1( )/ e dec (x, 1) Oywi(x, 1) dx, (13.93)

Vi(t) = - C4u/ e”(x_L)@xwg(x, t)dx + u@xwg(L, 1)
1(2)

L
- 4K°b1'(t) e g e (x, 1) Dxwe (x, 1) dx, (13.94)
u 1(r)
Vs(t) = — 2aX(£)> = 2b (we(1(2), 1) + wi(1(1), 1)) X (7). (13.95)

Using the boundary conditions (13.66)(13.67), Agmon’s inequality, Young’s in-
equality and Poincaré inequality, we obtain the following

wi(l(1), 1) < |lwill, < 4]10cwell3 < 4eEv3, (13.96)
w2(1(1), 1) < |lwell% < 4|0wel? < 4eLvy. (13.97)

Plugging the above inequalities into the ODE (13.68) yields that there exists 6 > 0
such that

i(£)] < a\JVs +2b(\JeLVs + \eesLy,)
<oV (13.98)

Using Young’s inequality, Cauchy-Schwarz inequality for (13.70) and (13.96),
(13.97), there exists u > 0,

g(t)2 < 2((Kf - Kc)2V5 +4€C3LV3 +4eC4LV4)
< v, (13.99)

By definition of €. (x, ¢) in (13.71), there exist > 0, such that
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I(r)
/ €(x,1)dx < V. (13.100)
0

It follows that

. 2K:b . 1)
Vi(t) £ = cjuVy + ut [L(2)] (gz(t)+/ wi (x, t)dX)
0

4Ksb . (1) 1)
+—fb|l(t)| (/ ef(x,t)dx+/ w%(x,t)dx). (13.101)
0 0

u
Plugging (13.99) and (13.100) into the above inequality, there exists x; > 0 such that
Vi(t) < —cuVy + k1 V32, (13.102)

Taking total time derivative of boundary condition (13.66) yields,
Kb .
Bxwi(0,1) == 1(1) (8(1) +26(0.1)), (13.103)
u

where it holds that €. (0, f) = 0, according to the definition (13.4). Given the definition
of €.(x,t) in (13.71), there exists v > 0 such that

1(1)
/ D€ (x,1)dx < VV. (13.104)
0

Using Young’s inequality and plugging (13.98), (13.99) into (13.103), we obtain that
there exists 8; > 0 such that

K2b? .
03 (0.0) < =Sl Pg(0)

<6,V (13.105)

Plugging (13.96), (13.98), (13.104) and (13.105) into (13.93), we obtain that there
exists k3 > 0 such that

V(1) < —uVs + k3V32 + 6, V2. (13.106)
In the same fashion, we could obtain that there exist k», k4 > 0 and 6, > 0 such that

Va(t) < —uVsy + k232, (13.107)
Via(t) < — uVs + kaV3/? + 0,V2. (13.108)

For the last Lyapunov component, the following holds

. 8 quZ 8 quZ
Vs(t) < — (2a 4 g) s+l Ty a2 2y, (13.109)
2 2 a a

Substituting inequalities (13.102) and (13.106)—(13.109) into (13.84), it follows that
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. 8 C3Lb2
V(t) £ —ciuVy — couVp — (C3M—C5 ¢ )V3

8ecsLlp?

- (C4M—C5 )V4 —csaVs + V32 + gV2. (13.110)

where 7 = k| + k2 + k3 + k4 > 0 and 6 = 01 + 6,. We choose

¢s = min {%e—m, %e—%} , (13.111)

such that
V(1) < —oV+1V3% 40V (13.112)

holds for

cau cau } (13.113)

o = min {clu, cou, - T,a

Lemma 13.2 For any function V that satisfies (13.90) and V(0) < 6o, where 6y =
=oNTH200 it holds that

V(1) < —%v. (13.114)

By comparison principle, the following estimate holds for all ¢ € [0, 7*):
V() <V(0)e 7! < 8. (13.115)

Recalling that @ = b(K; + K.), the control gains Ky and K. and the coefficients
c¢i,i =1,2,3,4 canbe chosen arbitrarily large such that an arbitrarily fast convergence
rate 5 could be achieved, namely, rapid stabilization is achieved for the closed-loop
system.

Lemma 13.3 If the initial conditions of the target system (w¢(x,0), we(x,0), X(0))
satisfy

V(0) < min{So, 61,52}, (13.116)

where the positive constant 6| and 6, are defined as

u?

6y =min {(L-1*)>,(I")*}, 6= =

(13.117)
the Lyapunov inequality (13.114) and conditions (13.31), (13.51) hold for all t €
[0, ).

Proof We assume that there exists t* > 0 such that condition (13.31) is satisfied for
t € [0,¢*) but is violated at ¢ = ¢*. Given (13.116) and by comparison principle, the
following inequality holds
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V(*) < V(0) < 6. (13.118)

According to the definition of V() in (13.84), we obtain that X2(t*) < V(*).
Combining (13.117) and (13.118), we have

X2(1*) < 61 =min {(L - I*)%, (I*)*}. (13.119)
Since [(t*) = X(*) +[* and 0 < [* < L, we obtain from (13.119) that
0<I(*) < L. (13.120)

We conclude that (13.120) contradicts the assumption that (13.31) is violated at
t = r*. Therefore, the condition (13.31) is guaranteed for z € [0, co) when the initial
condition V(0) satisfies (13.116). By inequality (13.98), we have

[[(*)* < 62V (1*). (13.121)
Given (13.116), it holds that
U2
V(*) < Vv(0) < - (13.122)
Thus we have
()P < u?, (13.123)
and it follows that
—u < I(t) < u. (13.124)
This completes the proof Lemma 13.3. O

Due to invertibility of the transformation in (13.54), (13.55), we conclude that the
system (13.25)—(13.29) with control laws (13.75), (13.76) is locally exponentially
stable in the H' norm, which completes the proof of Theorem 13.1.

13.6 Numerical Simulation

We simulate the proposed control design considering a moving traffic shockwave
in a 500-meter freeway segment. The maximum velocity is vy, = 144 km/hr and
maximum density is py, = 160 vehs/km. The initial traffic profile and the desirable
target traffic profile pf = 32 vehs/km, pZ = 128 vehs/km,* = 0.2 km, pjump =
80 vehs/km are shown in Fig. 13.4, where the position of the shockwave front is
initially located at 330-meter and the final setpoint location is at 200-meter, as shown
in Fig. 13.3. The initial position of the shockwave front is in the right-half plane of the
segment while its final position is located at the left-half plane. The control objective
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Fig. 13.3 Evolution of the moving interface position /() for open-loop system and for closed-loop
system with bilateral boundary control.
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Fig. 13.4 Evolution of traffic density PDE states for the open-loop system on left and for the
closed-loop system on right. Traffic density profile for initial condition with a soft shockwave is
highlighted with color red and the target profile is that there is a shock steady-state located at
x =200 m where its upstream is free and its downstream congested, shown on the right after 50s.

is to regulate PDE states and ODE state from the initial profile to the reference
profile, as shown in Fig. 13.4. After around 50s, the moving interface position stops
at the setpoint location / = 200 m with bilateral control while in open-loop system
it propagates upstream and travels out of the freeway segment before 1 min in Fig.
13.3. In Fig. 13.4, PDE density states of the whole segment becomes congested in
the open-loop system while the upstream traffic remains to be free in the closed-loop
system. In Fig. 13.5, one can observe that the bilateral control signals also converge
to zeros after around 50s. In addition, total travel time (TTT) is defined in [?] as

tsim L
TTT :/ / p(x,t)dxdt, (13.125)
0 0

where ti, = 80 s. The closed-loop system reduces the total travel time by 12%,
compared with the open-loop.
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Fig. 13.5 Evolution of bilateral control inputs over time.

13.7 Notes and References

This chapter addresses boundary feedback control problem of moving shockwave
in congested traffic described by a PDE-ODE-PDE system. To stabilize the coupled
system to a desired setpoint, we use the predictor-based backstepping method to
transform the state-dependent PDE-ODE-PDE coupled system to a target system,
where the PDE state-dependent input delays to ODE are compensated by the bilateral
boundary control inputs to PDEs. Actuation of traffic densities at both boundaries
is considered. The local exponential stability in H' norm with an arbitrarily fast
converegence rate is achieved.

Boundary control of PDE with state-dependent boundary locations governed
by ODE systems has been intensively studied over the past few years. Backstepping
control design method is used in solving these problems. In parabolic PDE system, the
problem is known as the Stefan problem with application to control of screw extruders
for 3D printing, laser sintering, and arctic sea ice temperature estimation [?]. For
hyperbolic PDE systems, theoretical results and general designs are available in
[2,2,2,?,?]. On the side of applications, [?] develops a boundary control law for the
piston position in inviscid gas, vibration suppression of mining cable elevators [?],
control of Saint-Venant equation with hydraulic jumps [?].

Using Lyapunov analysis, [?] achieves exponential stability in the H? norm of a
shock steady-state for the inviscid Burgers equation by choosing appropriate feed-
back boundary conditions. However, the proposed method in [?] cannot be directly
applied to the traffic shockwave problem due to the constraint on boundary feedback
coeflicients.



Chapter 14
Extremum Seeking of Downstream Bottleneck

14.1 Bottleneck: Unknown Fundamental Diagram and
Maximizing the Flow

Up to this point, this book has been entirely dedicated to PDE backstepping-based
control and estimation of traffic flows. Even Chapter 7, which deals with the use of
reinforcement learning for control of traffic, was focused essentially on learning the
PDE backstepping algorithm through hundreds of simulation training tests on the
ARZ PDE model.

This chapter is different. It differs from the rest of the book both in terms of the
objective and in terms of the method. This chapter’s goal is not stabilization, i.e.,
suppression of stop-and-go oscillations. The goal of the chapter is optimization—the
maximization of the traffic flow through a bottleneck.

More importantly, the chapter differs from the rest of the book methodologically.
Rather than being an application of PDE backstepping, this is the book’s sole chapter
that employs the method of extremum seeking (ES). More about ES in Section 14.6.

In terms of modeling, the chapter differs from most of the book’s other chapters,
which employ the ARZ second-order model and is comparable with the previous
chapter, Chapter 13, where the traffic is modeled using the LWR first-order model.

This chapter deals with traffic through a bottleneck. We discuss the bottleneck
phenomenon in more precise terms shortly but it is worth recalling, even if one has
no background in traffic dynamics or modeling, of some examples of bottlenecks:
segments of the freeway that are constricted either due to road work, a traffic accident,
or for other reasons.

When a bottleneck forms, obviously the flow passing through the bottleneck
gets reduced and congestion may form upstream of the bottleneck. The stop-and-go
dynamics that may ensue due to congestion are not our focus. Our focus is on the fact
that the traffic through a bottleneck operates in accordance with its own fundamental
diagram, distinct from the unconstricted road.

It is clear that drivers are more risk averse through a segment of the road that has
narrowed and that their speed-versus-density relationship will be different (the speed
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will be lower, for a given density, though a bottleneck than on the unconstricted road).
To see this clearly it is worth recalling that a bottleneck forms as a result of capacity
drop which, in turn, can be caused by lane-drop, hills, tunnel, bridge or curvature on
the road—resulting in a wide variety of speed-versus-density dependencies.

The fundamental diagram of the bottleneck has its own peak flow, distinct from
the rest of the road, and this peak flow is the desirable, optimal flow on the entire
road upstream of the bottleneck.

The peak flow through the bottleneck is achieved for a particular maximizing
value of traffic density through the bottleneck. Higher or lower density than the
maximizing density will result in suboptimal flow through the bottleneck. If the
incoming density into the bottleneck is not reduced, inundating the bottleneck with
vehicles will result in the flow being lower than if some of the vehicles are held back
from arriving at the bottleneck.

While a model of traffic on a given road can be obtained and calibrated after
enough observation, a bottleneck cannot be modeled a priori. Neither its width nor
length are known, much less its location. Hence, control of traffic through a bottleneck
has to be performed for a highly uncertain, or completely unknown, fundamental
diagram.

This makes the control of traffic through a bottleneck an optimization problem
that needs to be performed online, in a model-free fashion. And it is for this reason
that we employ extremum seeking for this problem.

But how can flow through a bottleneck be actuated? To answer this question, let
us first imagine that a bottleneck has formed immediately downstream of a ramp,
i.e., that the bottleneck is collocated with a ramp actuated with ramp metering. The
probability of this happening is zero. But let us first entertain the possibility that the
traffic engineer is lucky enough that the bottleneck takes place immediately after the
ramp. The problem of maximizing the flow would through the bottleneck is then
just a static problem. One simply needs to search in real time, by modulation of
the incoming flow using ramp metering, for the optimal density at the entry to the
bottleneck.

In most situations, however, the bottleneck is some distance downstream from
ramp metering. It is such a ramp metering input that we employ for maximizing the
flow through a bottleneck that is located downstream of the actuated ramp.

Once the ramp metering input and the bottleneck are separated by a stretch of
freeway, especially a stretch of freeway of significant length (on the order or hundreds
of meters or more), the problem of flow maximization through the bottleneck turns
from a static optimization problem to a problem of optimization for a dynamical
system (the traffic flow) with an unknown output map (the bottleneck fundamental
diagram).

As we recall, particularly from Chapter 13, the dynamics of traffic density on the
freeway segment can be described with the LWR macroscopic PDE model. This is
the model of the traffic dynamics that we adopt for the freeway stretch between the
actuated ramp and the bottleneck.

Our goal is both to maximize the flow through the bottleneck and to keep the
flow upstream of the bottleneck from getting congested. Assuming we are successful
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with the latter goal, the wave of the LWR model will be flowing in the downstream
direction. Hence, the fluctuations that we apply at the ramp metering input will be
reaching the bottleneck after some time.

As we have already learned in Chapter 13, the linearized LWR model acts as
the linear transport PDE, i.e., as a pure delay. So, for small variations around the
traffic flow equilibrium, the problem at hand is the problem of seeking the extremum
(maximum) of the fundamental diagram in the presence of an input delay (the
linearized LWR dynamics in the free regime).

This is a realization of great significance since, while performing ES in the
presence of a large delay at the unknown map is difficult, this problem is actually
tractable using an approach that the second author and his collaborators developed
in [?].

We apply ES control, a non-model based real-time adaptive control technique, in
order to find the unknown optimal density at the bottleneck. The delay effect of the
upstream traffic needs to be compensated in designing ES control. The input delay is
normally compensated using the predictor approach [?]. The predictor approach is
a model-based approach in which the future state of the system is represented, using
the past inputs, as a solution map with the current state as the initial condition. Then
this predicted future state can be employed in a control design for the delay-free case
since the predicted state, applied through the delay-free control law, will reach the
plant as the current state, at the time the input reaches the plant, and the delay will
be compensated. For linear systems, the representation of the future state using the
current state can be done explicitly, using the variation of constants formula. The
predictor-based approach is based on PDE backstepping, with which the first proof
of stability of predictor feedback was provided.

Due to its model-based nature of the predictor feedback, this approach is not
immediately compatible with extremum seeking, in which a part of the model—the
fundamental diagram in the case of traffic—is unknown. Special modifications of
the ES algorithm are invented in [?] to perform a perturbation-based estimation of
the gradient and the Hessian of the unknown map so that predictor feedback can
be employed. It is those tools that we employ here, to estimate the gradient of the
fundamental diagram and to drive to zero, thereby achieving maximum flow.

Before we begin our presentation, it is important to develop an appreciation for the
effect that the difference between the fundamental diagrams between the bottleneck
and the freeway have on the problem of delay-compensated online optimization by
ES. The fundamental diagram through the bottleneck has a lower peak flow and
the peak flow occurs for a lower density through the bottleneck than the density
that maximizes the flow through the freeway. This relationship between the two
maximizing densities—for the bottleneck flow and for the freeway flows—are crucial.
Since, at the maximizing density for the bottleneck flow, the freeway density is below
its critical value, the flow through the freeway is in the downstream direction, at
positive speed. If the maximizing/critical densities of the bottleneck and freeway
were the same, if we were to want to maximize the flow through the bottleneck,
we would need to have the freeway operate at the ciritical density. At the critical
density, where the fundamental diagram is at its peak, and the slope of the diagram
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is zero, the wave speed of the linearized LWR model would be zero. As a result, the
delay from the ramp to the bottleneck would be infinite and we would not be able
to compensate the delay or even to perturb the density at the bottleneck for the sake
of ES-based optimization. Hence, it is fortunate that, at the maximal flow through
the bottleneck, the density dynamics leading to the bottleneck are controllable and,
thus, the maximal flow through the bottleneck is attainable by feedback.

14.2 Lane-Drop Bottleneck Control Problem

We consider a traffic congestion problem on a freeway-segment with lane drop bot-
tleneck downstream of the segment. The freeway segment upstream of the bottleneck
and the lane-drop area are shown in Fig. 14.1 which illustrates the clear “Zone C"
and the bottleneck “Zone B", respectively. The flow is conserved through the clear
Zone C to the bottleneck Zone B. The local road capacity is changed due to the
lane-drop in Zone B which could be caused by road work, accidents, or lane closure.
Due to the reduction of lanes in Zone B, the fundamental diagram for the flow and
density relation usually changes, which leads to a capacity drop in Zone B. To pre-
vent the traffic in Zone B from overflowing its capacity and then causing congestion
in the freeway segment, we aim to find the optimal density ahead of Zone C which
maximizes the outgoing flow of Zone B given unknown density-flow relation.

The traffic dynamics in Zone C upstream of Zone B is described with the first-
order, hyperbolic LWR model. Traffic density p(x,t) in Zone C is governed by the
following nonlinear hyperbolic PDE, where x € [0, L], t € [0, o),

9ip +0x(Qc(p)) =0. (14.1)

The fundamental diagram of traffic flow and density function Q¢ (p) is given by

Qc(p) =pV(p), (14.2)

where traffic velocity follows an equilibrium velocity-density relation V(p) of the
Greenshield’s model, given by
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Fig. 14.2 Quadratic fundamental diagram for the clear Zone C and the bottleneck Zone B

V(p) = vm (1 - ﬁ), (14.3)
0

m
where vy, € R* is defined as maximum velocity and p,, € R* is maximum density
for Zone C. Then the fundamental diagram of flow and density function Q¢ (p) is in
a quadratic form of density,

Vm
Oc(p) = —p—p2 +Vip. (14.4)

A critical value of density segregates the traffic into the free flow regime whose
density is smaller than the critical value and the congested regime whose density is
greater than the critical value. The critical density is

Pe = Pm/2. (14.5)

for the fundamental diagram in (14.4).

In practice, the quadratic fundamental diagram sometimes does not fit well with
traffic density-flow field data. The critical density usually appears at 20% of the max-
imum value of the density [?]. The following assumption is made for the nonlinear
fundamental diagram. According to Taylor expansion, second-order differentiable
nonlinear function can be approximated as a quadratic function in the neighborhood
of its extremum. The stability results derived in this chapter holds locally for the
general form of fundamental diagram Q(p) that satisfies the following assumption.
Here we can adopt other density-flow relations for the fundamental diagram Q(p)
but require Assumption 14.2 to be satisfied.

The fundamental diagram Q(p) is a smooth function, and it holds that Q" (p.) =
0, Q"(pc) < 0.

Under Assumption 14.2, the fundamental diagram can be approximated around
the critical density p. as follows:

Q" (pe)

Qlp(1)) = ge + = (p(1) - pe)’ (14.6)

where g. = Q(p.) is defined as the road capacity or maximum flow, with Q" (p.) <
0.
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Lane-drop bottleneck model

Due to the reduction of the number of the lanes from Zone C to Zone B, we consider
the equilibrium density-flow relation of Zone B as shown in Fig. 14.2, as pointed
out in [?]. There is a capacity drop AC of Qp in Zone B compared to Q¢ in Zone C
after the congestion has formed upstream of the lane-drop area. The capacity drop
caused by a sudden lane-drop is hard to measure in real-time and the traffic dynamics
of Zone B are affected by the lane-changing and merging activities. Therefore we
assume that the fundamental diagram Qg (p) of Zone B is unknown. In Fig. 14.2,
the capacity is

AC =Qc(pe) — 0p((1+6)p™), (14.7)
q* = Q0c(p™) =0r((1+6)p™), (14.8)

where AC is unknown. The quantity p* € R* represents the optimal density that
keeps Zone C in the free regime while (1 + &) p™* reaches the critical density of Zone
B so that the discharging flow rate reaches its maximum value ¢* € R*. The ratio §
accounts for the density discontinuity before the outlet in Zone C and after the outlet
in Zone B. We assume that AC and ¢ are unknown and therefore the optimal density
and flow rate (p*, ¢g*) are unknown.

When a lane-drop bottleneck occurs downstream, the density at the outlet of
Zone Cis p(L,t) governed by the PDE in (14.1) forx € [0, L], ¢ € [0, c0). The inlet
boundary flow is,

qin(t) = Qc(p(0,1)). (14.9)

The output measurement of traffic flow in Zone B, g (¢) is given by Q(p) with
outlet density p(L, 1),

Gout(t) = Q(p(L,1)). (14.10)

where the function Q(p) of outlet boundary x = L connecting Zone C and Zone B
is defined as follows

QC(P(L’ t))s p(L»t) < P*,
Q(p(L,1)) =10c(p*) =q* =0p((1 +6)p*), p(L,1) =p*, (14.11)
0p((1+6)p(L,1)), p(L,t) > p*,

so that the flow is conserved through the boundary, entering from Zone C to Zone
B. When the optimal density p* is reached, the flow rate at the outlet of Zone C and
the input of Zone C reaches the equilibrium and its maximum value g*.

The control objective is to design the traffic flow input gi, () so that the outgoing
flow in lane-drop area Zone B qou(#) is maximized. We aim to find the optimal
outlet density p(L,t) = p* that maximizes gou(#) of Zone B and then, using the
PDE that describes the dynamics of traffic in the Zone C, to obtain the desirable flow



14.2 Lane-Drop Bottleneck Control Problem 305

input gi, (t) from the inlet of Zone C. Here we assume that we approximate ¢qy(?)
with a function that satisfies Assumption 1 and gqu(?) can be written as

H
Gou(r) = g%+ 5 (p(L,1) = p*)?, (14.12)

where H < 0 is the unknown Hessian of the approximated static map gou(#).

We use a static fundamental diagram to model the traffic in the bottleneck Zone
B. Therefore, the upstream propagating traffic waves from Zone B to Zone C cannot
be captured by our model if Zone B is very congested. This result is focused on
maximizing the discharging flow rate at the bottleneck area and the ES control seeks
the optimal traffic density value in its neighborhood. In bottleneck Zone B, the
closer the outlet traffic density o (L, t) to the optimal value p* where Q’(p*) = 0 is
satisfied, the lower the propagating characteristic speed of the traffic waves Q’(p).
Therefore, the spill-back traffic from Zone B to Zone C is negligible in our model.

In order to find the unknown optimal density at the bottleneck area, we design
ES control for the unknown static map Q(p) with actuation dynamics governed by
a nonlinear hyperbolic PDE in (14.1). In the following section, we linearize the
nonlinear PDE and the traffic dynamics are represented by the delay effect for the
control input signal.

Linearized Reference Error System

We linearize the nonlinear LWR model around a constant reference density p, € R*,
which is assumed to be close to the optimal density p*. The reference density p, is
in the free regime of Q(p) of Zone C thus is smaller than the critical density p. and
therefore the following is satisfied p, < p.. Define the reference error density as

ﬁ(x’t):p(x’t)_pra (14’13)

and reference flow ¢, is ¢, = Q(p,) > 0. By the governing equation (14.1) together
with (14.4), the linearized reference error model is derived as

0P (x,1) + udp(x,1) =0, (14.14)
ﬁ(()’ t) 2,0(0, t) — Prs (1415)

where the constant transport speed u is given by

u= Q/(p)|p:pr =V(p,) + prvl(p)|p=pr- (14.16)

The equilibrium velocity-density relation V (p) is a strictly decreasing function. The
reference density p, is in the left-half plane of the fundamental diagram Q.(p)
which yields the following inequality for the propagation speed u, u > 0. We define
the input density as
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o(t) = p(0,1), (14.17)

and the input variation at the inlet is

o(t) =o(t) = pr. (14.18)

The linearized error dynamics in (14.14), (14.15) is a transport PDE with an explicit
solution for # > 2 and thus is represented with input density

F(x,1) = @(r— ;—C) (14.19)

The density variation at outlet is

p(L,t)=0(t-D). (14.20)
where the time delay
L
D=— (14.21)
u

depends both on the transport speed u and on the distance L of the bottleneck from
the ramp. Therefore, the density at the outlet is given by the delayed input density
variation and the reference, namely, by

o(L,t) =pr + p(L, 1). (14.22)

Finally, substituting (14.20), (14.22) into the static map (14.12), we arrive at the
following

H
Gou(r) =q* + (8 (1 = D) + pr = p*)?

:q*+§(@(l‘—D)—p*)2.

(14.23)
The control objective is to regulate the input gi,(¢) so that o (t — D) reaches the
unknown optimal p*. In this fashion, the maximum of the uncertain quadratic flow-
density map gou(?) is achieved. We can, therefore, apply the method of extremum
seeking for static maps with delays, which was developed in [?], to find the maximum
of the unknown fundamental diagram.

In practice, control of density at the inlet can be realized with a coordinated
operation of ramp metering and a VSL at inlet [?]. The controlled density at inlet is
implemented as

o() = 1), (14.24)

c
where v, is the speed limit implemented by VSL and g, (?) is actuated by on-ramp
metering upstream of the inlet. The linearized model is valid at the optimal density
p* since the reference density is assumed to be chosen near the optimal value.
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Fig. 14.3 Block diagram for implementation of ES control design for nonlinear LWR PDE model

14.3 Online Optimization by Extremum Seeking Control

In this section, we present the design of extremum seeking control with delay by
following the procedure in [?]. The block diagram of the delay-compensated ES
algorithm applied to LWR PDE model is depicted in Fig. 14.3. Let §(¢) be the
estimate of p*, and e(¢) be the estimation error defined as

e(t) = 6(t) — p*. (14.25)

where §(t) is an integrator of the predictor-based feedback signal U(t) as (1) =
U(t). From Fig. 14.3, the error dynamics can be written as

é(t—D)=U(t - D), (14.26)

given the delayed estimation error dynamics modeled by €(x,?) = U(t - 7). We
introduce the dither signals (M (), N(t)) given by

M(t) :z sin (wt) , (14.27)

a

N(t) =- 5—2 cos (2wt), (14.28)

where a and w are amplitude and frequency of a slow periodic perturbation signal
asin(wt) introduced later. Using the dither signals, we calculate the estimates of
the gradient and Hessian of the cost function, denoted as (G (r), H(r)), using the
“demodulation” given by

G(t) =M (t)qou(t), (14.29)
H(t) =N(t)qou (1), (14.30)

where A (1) is to estimate the unknown Hessian H. The averaging of G(¢) and H(r)
yields



308 14 Extremum Seeking of Downstream Bottleneck
Gu(t) = Hew (1 = D),  Hay = (Nqow)ay = H. (14.31)

Taking the average of (14.26), we have
éw(t — D) = Uy(t — D), (14.32)

where Uy, (¢) is the averaged value for U(¢) designed later. Substituting the above
equation into (14.31) gives

Gay(t) = HUy (1t — D). (14.33)

The motivation for predictor feedback design is to compensate for the delay by
feeding back future states in the equivalent averaged system Giexsrmav (t + D).
Given an arbitrary control gain k > 0, we aim to design

Uw(t) = kG (1 + D), Vi >0. (14.34)

which requires knowledge of future states. Therefore we have the following by
plugging (14.34) into (14.32),

Eav(t) = Uy (t) = kHeay(t), VYt =D. (14.35)

Recalling that £ > 0, H < 0, the equilibrium of the average system e, (f) = 0 is
exponentially stable. Applying the variation of constants formula

t
Gay(t+D) =Go(t) + Hy (1) / Uy (7)dT (14.36)
t—D

and, from (14.34), one has:

Uy (t) = k (Gav(t) +ﬁav(t) /t Uav(T)dT) > (14.37)
t—-D

which involves G,y (f + D), the future version of the state governed by the system
(14.33) in terms of the average control signal U,y (7) for 7 € [t — D, t]. The control
input is infinite-dimensional due to its use of history over the past D time units.

For the stability analysis in which the averaging theorem for infinite-dimensional
systems is used, we employ a low-pass filter for the above basic predictor feedback
controller and then derive an infinite-dimensional and averaging-based predictor
feedback given by

U(t) =9‘{k (G(t)+ﬁ(z)/t U(r)dr)}, (14.38)
t—-D

where k > 0 is an arbitrary control gain and the Hessian estimate H () is updated
according to (14.30), satisfying average property in (14.31). The operator 7 {-} is a
low-pass filter defined by
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T ()} =2~ { } * (1), (14.39)

s+c

where —c < 0 is the filter’s pole, Z~! is the inverse Laplace transformation, and =
is the convolution in time.

Theorem 14.1 Consider the closed-loop system in Fig. 14.3. There exits ¢y > 0 such
that Yc > ¢y, there exists wy(co) > 0 such that Yw > wy, the closed-loop system
has a unique exponentially stable periodic solution of period T = %’r, denoted by
el (t = D), U (1),V1 € [t = D, 1], satisfying Vt > 0

1

D 2
le” (r = D))* + |UT (1)) +/ lut (T)|2dT) <0(1/w). (14.40)
0
Furthermore,
tlil}l sup [o(?) — p*| =0(a + 1/ w), (14.41)
Jim_sup |gou (1) = g*| =0(a® + 1/w?). (14.42)

The detailed proof of Theorem 14.1 is carried out in the next section.

14.4 Stability Analysis (Averaging, Backstepping, and Lyapunov)

First, we show the exponential stability of the average error-dynamics system using
a backstepping transformation. Then the averaging theorem for infinite-dimensional
systems [?] is invoked to show the exponential stability of the original error-dynamics
system (14.48)—(14.50). Using Lyapunov analysis, we show the convergence of
(0(1), gour (1)) to a neighborhood of the extremum (p*, g*). The proof of Theo-
rem 14.1 is carried out through the following steps.

Closed-Loop System

The estimate §(¢z) of the unknown optimal outgoing p* is an integrator of the
predictor-based feedback signal U(t), as represented by

o) =U(n). (14.43)
It then follows that
é(t—D)=U(t- D). (14.44)

The input o(7) to LWR PDE model is given by
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o(t) = 6(1) +8(1), (14.45)

where the dither signal S(7) is the “predicted” (or time-advanced) version of the
perturbation signal a sin(wt), which the input delay retards by D, and is therefore
given by

S(t) = asin (w(t+ D)). (14.46)
Substituting S(¢) into (14.45), we have
o(t) = 6(t) + asin (w(t + D)) . (14.47)

The delayed estimation error dynamics can be written as transport PDE system,
x € [0,L]

é(t—D) =e(L,t), (14.48)
Ore(x,t) = — udye(x,t), (14.49)
€(0,1) =U(1). (14.50)

where it is straightforward to obtain that
X
e(x, 1) =U(t——). (14.51)
u

Combining (14.23), (14.25), the relation among the estimation error e(¢), the input
density o(t), and optimal outlet density p* is given by

e(t) +asin(wt) = o(t) — p*, (14.52)

Substituting the above relation into the output map in (14.23), we obtain the following
equation

Gout(1) =¢* + g (e (t = D) + asin(wr))?. (14.53)

Plugging M (t) and G (¢) into (14.30) and representing the delayed input with PDE
state €(x, t), we have

L
U(t) =9 {k (G(t) +H(1) / e(r, t)dr)} , (14.54)
0
G(1) =§ sin (wt) gout (1), (14.55)
H(t) =- a% cos (2wt) gout (). (14.56)

This is then written out explicity as
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L
U(t) =9 {kqout(t) (2 sin (wt) — %cos (2wt) / e(r, t)dr)} , (14.57)
0

and, by substituting g,y with (14.53) and combining with transport PDE in (14.48)—
(14.50), we write the closed-loop system as

é(t— D) =€(L,1), (14.58)
Ore(x,t) = —udyce(x,t), (14.59)

€(0,1) =F]{k(q* + g (e (t = D) + a sin(wr))? )

2 . 8 L
X | = sin (wt) — — cos (2wt) / e(t,t)dr| ;. (14.60)
a a 0

Average System

Expanding (14.60) and taking average of the closed-loop system, we obtain the
average model by recallign that the average of sine and cosine functions of nw, (n =
1,2,3,4) is zero. The averaged controller satisfies

L
U (1) + cUy (t) = ck (Gav(t) + H/ €y (T, t)dT) , (14.61)
0

where ¢ > 0 is the corner frequency of the low pass filter and £ > 0 is the control
gain. Denoting

0(t) =e(t — D), (14.62)

the average system of (14.58)—(14.60) is rewritten by

Oav (1) =€ay(L, 1), (14.63)
Or€ay(x,1) = — udx€ay(x,1), (14.64)
L
Oreq(0,1) = — ceyy(0,8) + ckH (Hav (1) + / € (T, t)d‘r) . (14.65)
0

Backstepping Transformation

We apply backstepping transformation for the averaged delay state

L
w(x,t) = €a(x,t) —kH [Hav(t) +/ € (T, t)dT] . (14.66)
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where k > 0 and H < 0. The average system is mapped into the target system:

Oay (1) = kHO, (1) + w(L,1), (14.67)
ow(x,t) = —udyw(x,t), (14.68)
ow(0,1) = —(c + kH)w(0,1)

_(kH)? [ekf’feav(t) + /OL M w(nndr| . (14.69)
Combining (14.65) and (14.66), we have
w(0,1) = —%6,63\,(0, t). (14.70)
Taking time derivative on (14.66) for w(0, t), we obtain

3, w(0,1) =8, €a(0,1) — kHen (0,1). (14.71)

The inverse transformation of (14.66) is given by

kH (L-x) L kH (L-x+7)
€w(x, 1) =w(x,t) +kH|e « Qav(t)+/ e v ey(r,ndr|. (14.72)
X

Plugging (14.72) and (14.65) into (14.71), we obtain (14.69) in the target system.

Lyapunov Functional

Now consider the following Lyapunov functional for the target system,

62, (t L
V() = adT() + / e *w(x, 1)dx + %WZ(O, 1), (14.73)
0

where the parameter @ > 0 is chosen later. Taking a time derivative of the Lyapunov
function, we have

. b—uel
V(r) <akHe + %9; + (%) w2(L,1)

u L _ 2 u
- —/ w2 (x, 1)dx + w(0, 1) (w,(O,t)+—w(O,t)), (14.74)
2 Jo 2

where the positive constant b is defined as

b= , (14.75)

so that
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ab—ue " =0. (14.76)
The positive constant a is chosen as
a=-ukHe . (14.77)

Substituting w, (0, ¢) by (14.69) and using Young’s, Cauchy-Schwarz inequalities,
the last term in (14.74) is bounded by

w(0, 1) (w,(o, 0+ ;W(O, z))

L 2 -L 2
<- (c iy kH) w20, + L2 (1) + X )(kH)ze% w(0,1)2
2 4u a?
-L L ’ o 12
+ %uw(r)u%e— H(kH)Ze””u' >“ w(0,1)2. (14.78)
u
Plugging (14.78) into (14.74), one arrives at
. ela? ue L L
V(t) - — 02, (1) - 1 /O w?(x, 1)dx
— (¢ = co)w?(0, 1), (14.79)
where ¢ is defined as
-L X 2 L Y
co = g —kH+ "5 ((kH)Ze%) + 67 H(kH)Zek”‘f ’“ , (14.80)
a

where 7 € [0, L]. An upper bound for ¢y can be obtained from lower and upper
bounds of the unknown Hessian H. Therefore, by choosing ¢ such that ¢ > c¢g, we
obtain

V(t) < —uV(t), (14.81)

for some p > 0. Thus, the closed-loop system is exponentially stable in the sense of
the L? norm.

By the invertibility of the transformation, there exist constants @; and a; such
that the following inequality is obtained

a¥(t) V(1) < ap¥(1), (14.82)

where .
W(r) 2 |00 (D) + / €2, (x, t)dx + €2,(L, 1), (14.83)
0

or equivalently,

t
W(r) £ |0, (t = D> + / U2, (t)dt + U2, (1). (14.84)
t—-D



314 14 Extremum Seeking of Downstream Bottleneck

Hence, with (14.81), we get
(1) < Lerry(0), (14.85)
ay

which completes the proof of exponential stability of the averaged system.

Averaging Theorem

The closed-loop system is written as

é(t-=D)=U(t- D), (14.86)
t
U(t)=-cU(t) +c¢ {k (G(t) +H(1) / U(T)dT)} . (14.87)
t-D
Defining the state vector z(t) as
2(1) = [e(t = D), U(D)]". (14.88)
Substituting
t 0
/ U(t)dr = / U(t+1)dr, (14.89)
t-D -D

into (14.87), we can write the dynamics of z as a functional differential equation
described by

2(t) = f(wt, z¢), (14.90)

where z,(7) = z(t + 7) for =D < 7 < 0. According to (14.85), the origin of the
average closed-loop system with transport PDE is exponentially stable. Applying the
averaging theorem for infinite dimensional systems developed in [ ?], for w sufficiently
large, (14.58)—(14.60) has a unique exponentially stable periodic solution around its
equilibrium satisfying (14.40).

Asymptotic Convergence to a Neighborhood of the Extremum (p*, ¢*)

By using the change of variables (14.62) and then integrating both sides of (14.58)
within the interval [z, o + D], we have:

o+D
0(c+D)=0(1) + / €(L,s)ds. (14.91)
t
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From (14.51), we can rewrite (14.91) in terms of U, namely

o

0(o+ D) =0(r) +/ U(t)dr. (14.92)
D

i
Define
I o)=0(c+D), Vo e][t-D,t]. (14.93)

Applying (14.92) to the above equation, we get

o

Io)=9(t-D)+ / U(t)dr, VYo € [t—D,t]. (14.94)
D

—

By applying the supremum norm on both sides of (14.94) and using Cauchy-Schwarz

inequality, we have
o
sup |#(o)|= sup |P#(t-D)|+ sup / U(r)dr
t-D

t-D<o<t t-D<o<t t-D<o<t

t 1/2
<|9(t-D)|+VD (/ UZ(T)dT)
t-D
t 1/2
<(1+VD) (|ﬁ(; -D)|*+ / UZ(T)dT) . (14.95)
t-D
From (14.95), it is straightforward to conclude that
t 1/2
sup  |[9(o)| < (1+VD) (m(t -D)*+ / UQ(T)dT) , (14.96)
t-D<o<t t—-D
and thus
t 1/2
[9(t)] <(1+VD) (\é(r -D)[+ / UZ(T)dT) : (14.97)
t—-D

The above inequality (14.97) can be given in terms of the periodic solution 97 (1— D),
UT (0), Vo € [t — D, 1] as follows

9] <(1+ VD) (|8 = D) = 9" (t = D) + 97 (: - D)’
t 1/2
+ / [U() - U (1) + U (1)) d‘r) : (14.98)

Applying Young’s inequality, the right-hand side of (14.98) and | ()| becomes
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9] <V2 (14VD) (|8(: = D) = 07 (¢ = D) + |97 (: - D)’

t t 1/2
+ / [Uz) - U" (1) dr + / [U" (1)) dT) . (14.99)
t-D t-D
From the averaging theorem, we have the exponential convergence

9t -D) -9 (t—D) — 0, (14.100)

t
/ [U()-UT ()] dr — 0. (14.101)
t—-D
Hence we obtain

t 1/2
limsup [#(1)| =V2 (1 + VD) (|19T(t—D)|2 +/ [UT(T)]sz) . (14.102)
t-D

t—+00

From (14.40) and (14.102), we can write

limsup |8(1)| = O(1/w). (14.103)

t—+00

From (14.25) and recalling that o(z) = p(t) + a sin(w(¢ + D)) and 6(t) = e(t — D),
one has that

o(t) — p* = 9(t) + asin(w(t + D)). (14.104)

Since the first term on the right-hand side of (14.104) is ultimately of order O(1/w)
and the second term is of order O(a), then

limsup |o(¢) — p*| = O(a + 1]/ w). (14.105)
t—+00
Finally, from (14.23), we get (14.42) and the proof is complete. O

14.5 Numerical Simulation

For our simulation, we choose the model parameters based on the data fitted for the
LWR model in [?]. The maximum density is chosen to be p,, = 6 lanes/7.5 m =
0.8 veh/m = 800 veh/km, where 7.5 m is the sum of the average vehicle length of 5 m
and a 50% safety distance. The maximum velocity is vy, = 16.7 m/s = 60 km/h. The
fundamental diagram Q (p) which results from these choices is used in the nonlinear
LWR PDE model simulation which describes the traffic dynamics upstream of the
bottleneck area. The maximum output flow, also known as road capacity of Zone C,
is
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gc = max Q(p) = 3.2 veh/s = 1920 veh/h/lane. (14.106)

0<p<pm

The length of the freeway segment is L = 100 m. If we consider a linearized LWR
for Zone C, the characteristic speed is

1= QL(P)|pmpy=0.2 vetym = 8.4 mis. (14.107)

The time delay for the input to reach the bottleneck area is

D = % =12s. (14.108)
The fundamental diagram in the bottleneck area Qpg(p), the optimal/critical
density p*, and the maximum output flow ¢* are assumed to be unknown when
there is a sudden lane-closure due to an accident or a lane closure. The following
function and parameters are chosen for simulation purpose. For the bottleneck section
Zone B, we consider the situation that only 4 out of 6 lanes still function. As a result,
the road capacity reduces and we define the capacity reduction rate as C4; = 40%
compared with Zone C. The outgoing flow g (2) = Q(p(L,t)) of the bottleneck
area is approximated with

H 2
Gour(t) =¢* + 5 (o (t=D)-p*)", (14.109)
where o, = 0.48 veh/m is the maximum density for reduced lanes in the bottleneck
area and the same maximum velocity vy, is considered. The optimal/critical density
p* and maximum output flow ¢g* are

1
p* = 30m = 0.24 veh/m, (14.110)
¢* = (1 = AC)q. = 1.92 vehrs. (14.111)

Compared with the capacity of Zone C q., there is a capacity drop AC for optimal
flow rate g* of the bottleneck area. The Hessian is obtained by taking second
derivative of gy ()

2Vf
H=-"1 =_695. (14.112)
Om

The Godunov scheme is employed for simulation of nonlinear LWR PDE model,
as introduced in Chapter 1. The road segment is divided into spatial cell Ax and
the solution is advanced in time step A¢, which satisfy the following CFL condition
umax% < 1, where up,y is the maximum characteristic speed. We choose the spatial
cell Ax = 0.05 m sufficiently small so that numerical errors are negligibly small
relative to the errors of the model.

The simulation result of the closed-loop system with ES control is shown in
Fig. 14.4-14.7. The parameters of the sinusoidal input and the designed controller
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Fig. 14.5 Traffic density p(L, t) at the outlet of Zone C by nonlinear LWR model which is the

input density for bottleneck area

are chosen to be w = 2.75m,a = 0.05,¢ = 50, K = 0.005. The adaptation gain is
k, while a and w are used in the computation of the frequencies and amplitudes
for the perturbation signals M (t), N(t) in (14.28) and S(z) in (14.46). The speed of
convergence and the ultimate residual sets of the ES algorithm are influenced by the

values of k, a and w.

The evolution of the density PDE state p(x, ) modeled by the LWR model (14.1)
is shown in Fig. 14.4. The inlet density boundary input and outlet boundary value
are highlighted with color red and the initial condition is highlighted with color blue.
One can observe that density value p(L, t) in Fig. 14.5 converges to a neighborhood
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Fig. 14.6 Outgoing traffic flow of the bottleneck area gqu(#) which is also the output flow for
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Fig. 14.7 Hessian estimate H () of the ES control and prescribed Hessian value H

of the optimal value p* = 0.24 veh/m and the output flow of the bottleneck in
Fig. 14.6 converges to a neighborhood of the extremum point ¢* = 1.92 veh/s.
The Hessian estimate converges to the prescribed value —69.5 in Fig. 14.7. The
convergence to optimal values is achieved in 40 s. In contrast, if we do not employ
ES control for input density and the incoming flow depends only on upstream traffic.
The open-loop system is shown in Fig. 14.8. The evolution of outgoing flow at the
bottleneck area is run for 150 s. The outgoing flow of the bottleneck area keeps
decreasing and, therefore, congestion at the bottleneck area is getting worse, until a
bumper-to-bumper jam results.
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Fig. 14.8 Output traffic flow of the bottleneck area without ES Control

14.6 Notes and References

When there are uphills, curvatures, or lane-drops further downstream on freeway, a
bottleneck with capacity drop appears, leading to a reduction of the total discharging
flow rate from the bottleneck area and delay of travel time for the upstream traffic.
Traffic congestion then forms upstream of the bottleneck as the upstream demand
increases during the peak hour [?, ?, ?, ?]. Various models have been proposed to
describe the capacity drop phenomenon of the bottleneck including the first-order
traffic flow models [?], discontinuous fundamental diagram in [?] and kinematic wave
model in [?], which usually assume some prior knowledge of the traffic condition at
the bottleneck area. The fundamental diagram of the bottleneck area is incorporated
with the upstream traffic dynamics which has been modeled with the LWR model,
a first-order macroscopic PDE in [?], the cell transmission model (CTM) in [?] and
the link queue model [?]. The traffic flow is conserved through the bottleneck. We
adopt the LWR-based model proposed in [?] due to its simplicity and conciseness
in capturing the capacity drop mechanism.

The traffic bottleneck congestion problem has been tackled by various traffic con-
trol approaches in recent years. Many studies focus on developing control strategies
for ramp metering and VSL to avoid the capacity drop and to maximize the dis-
charging flow rate at the bottleneck. For distant downstream bottleneck problem,
Proportional-Integral (PI) local ramp metering strategy was developed by [?] to
improve performance of downstream mainline traffic flow. A Proportional-Integral-
Derivative (PID) controller was proposed in [?] for VSL control of lane-drop bottle-
neck. In [?], the VSL control design was proposed to maximize the traffic flow at an
active bottleneck using model predictive control approach. The density dynamics is
described with the CTM. The PDE boundary control of traffic with lane-drop prob-
lem was investigated by [?]. The traffic dynamics on a stretch of freeway upstream of
the bottleneck area is governed by the LWR model. The predictor feedback control
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law is designed for the ramp metering at the inlet of the freeway so that the density
at bottleneck area is regulated to a desired equilibrium.

ES control has been a major segment of the field of control engineering over
the past two decades, since the proof of the algorithm’s stability in [?], where
the convergence of the cost function to a neighborhood of the optimal value was
established by means of averaging analysis and singular perturbation. About ten
thousand papers on this topic have been published since, among which we can
mention but a few on methodological advances [?,?,?,?,?,?, 2,2, ?]. ES approach
relies on a small periodic excitation, usually sinusoidal, to perturb the parameters
being tuned and deduce an estimate of the gradient of the nonlinear map using this
perturbation.

The result of this chapter is the first where ES is applied to a macroscopic traffic
model. Besides traffic applications, the ES control algorithms has been successfully
applied to many other applications including electromechanical valve actuators [?],
in fuel-cell power maximization [?] and in trajectory optimization of high-degree-
of-freedom robot [?].

The problem of ES control in the presence of delays is solved in [?]. Employing
this methodology, we develop an ES controller with predictor-based feedback for
delay compensation, which is applied to the bottleneck problem in this chapter
to find an optimal density input for freeway traffic when there is a downstream
bottleneck.

To prevent traffic flow in bottleneck area overflowing the road capacity and
furthermore causing congestion upstream in the freeway segment, the incoming
traffic density at inlet of the freeway segment is regulated. The control design is
achieved with delay compensation for ES control considering the upstream traffic is
governed by the linearized LWR model. The optimal density and flow are achieved in
the bottleneck area. The theoretical result is validated in simulation with the control
design being applied to the nonlinear LWR PDE model along with an unknown
fundamental diagram.

There is one subtle issue regarding the delay-compensated ES for flow maxi-
mization through a bottleneck. The maximizing flow through the bottleneck p* is
unknown. This density determines the actual delay D (p*) through the freeway, which
is determined by linearizing the LWR nonlinear PDE around the density p*, com-
puting the wave speed in the downstream direction of the resulting free flow regime,
and computing the resulting delay for the given length L of the distance between
the ramp and the bottleneck. However, the reader will have noticed that in our LWR
linearization, as well as in the implementation of our delay-compensated ES scheme,
we had used a density p, for the freeway. This density p, may be either larger or
smaller than p*. It is virtually impossible for p,, employed in the ES scheme, to be
accidentally equal to the unknown p*. To put it another way, there is a mismatch
between the actual delay D (p*) of the freeway and the delay D(p,) used in the ES
scheme. What is the consequence of this delay mismatch for the operation of the
predictor part of the ES scheme? This is a classical question of robustness to delay
mismatch for predictor feedback. This question was positively resolved in [?], estab-
lishing robustness to delay mismatch. More specifically, whether the assumed delay
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exceeds the actual delay a bit or is a bit smaller than the actual delay, the predictor is
stabilizing. This robustness result holds in both spatial/temporal L? norm and the H'
norm. In the context of our ES scheme for the bottleneck, whether p, exceeds p* a bit
or is a bit smaller than p*, the ES scheme is guaranteed to regulate the flow through
the bottleneck to its maximum value. This robustness analysis would be performed
on the averaged version of the system, using backstepping and a Lyapunov functional.
The fact that the mismatch between p, and p* does not destroy the predictor-based
ES algorithm is evident from Figures 14.4 and 14.5. In our simulation, p* = 0.24
and p, = 0.2, quite a significant difference. In spite of the resulting delay mismatch,
where the actual delay D (p*) is underestimated by using the shorter delay D (p,) in
the ES scheme, we can see that the density has been regulated to the optimal value
for the bottleneck, p* = 0.24, through both the bottleneck, as shown in Figures 14.5,
and through the main freeway, as shown in Figures 14.4.

The result in this chapter can be extended to multi-lane bottleneck problem with
multiple distinct delays. It is also of research interest to develop ES control with
bounded update rates [?] under input delays exhibited through the LWR model and
to develop a stochastic version of the algorithm presented in the chapter by applying
the results from [?] and [?]. To further demonstrate the impact of this work for traffic
application and understand how the proposed extremum seeking controller works in
practice, it is of research interest to validate this result with traffic field data and test
it with microscopic simulator.
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