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Abstract—Invented in 1922, extremum seeking (ES) is one of the 
oldest feedback methods. However, its purpose is not regulation 
but optimization. For this reason, applications of ES have often 
come from energy systems. The first noted publication on ES in 
the West is Draper and Li's application to spark timing 
optimization in internal combustion engines [1]. In the ensuing 
decades, ES has been applied to gas turbines and even nuclear 
fusion reactors. Renewable energy applications have brought a 
new focus on the capabilities of ES algorithms. In this article we 
present applications of ES in two types of energy conversion 
systems for renewable energy sources: wind and solar energy. In 
both areas the goal is maximum power point tracking (MPPT), 
i.e., the extraction of the maximum feasible energy from the 
system under uncertainty and in the absence of a priori modeling 
knowledge about the systems. For the wind energy conversion 
system (WECS) we perform MPPT by tuning the set point for the 
turbine speed using scalar ES. For the photovoltaic (PV) array 
system, we perform MPPT by tuning the duty cycles of the 
DC/DC converters employed in the system using multivariable 
ES. For the photovoltaic system we provide experimental results. 
(Abstract) 
 

Keywords—energy harvesting; wind energy; solar energy; 
nonlinear dynamical systems; adaptive control; optimization; power 
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I. INTRODUCTION 

Increasing availability of energy storage devices motivates 
the effort to harvest maximum feasible power from renewable 
sources, particularly wind turbines (WTs) and photovoltaic 
(PV) systems. Renewable sources operate under a wide range 
of uncertain environmental parameters and disturbances. For 
example, uncertain quantities such as wind speed in WT and 
solar irradiance in PV modules affect the respective power 
maps and the maximum power points (MPPs). However, the 
power map is also a function of a control input—the turbine 
speed in WT and the terminal voltage in the PV modules. The 
power map of WT has a unique MPP with respect to turbine 
speed at each level of wind speed. Likewise, the power map of 
a PV module has a unique MPP with respect to terminal 
voltage at each level of solar irradiance. 

The process of governing a WT or PV module to its MPP 
is know as maximum power point tracking (MPPT). The 
conventional perturb and observe (P&O) techniques do so by a 
combination of adding a step perturbation to the control signal 
and monitoring the direction of changes in power [2-8]. Most 
techniques derived from P&O are based on discrete analysis 
and require a delicate balance between the amplitude of the 
control input step perturbation and the possible changes in 
environmental parameters. Moreover, the sampling frequency 
needs to be carefully selected with respect to the response time 

of the system to the step perturbation. Since the system is not 
linear, the sampling frequency is also a function of the step 
size and of the magnitude of changes in environmental 
parameters [2-4, 6].  

Extremum seeking (ES) is an attractive alternative to P&O 
techniques for solving MPPT problems in wind and solar 
systems. As a model-free, real-time optimization approach, ES 
is well suited for systems with unknown dynamics or those 
that are affected by high levels of uncertainty or external 
dynamics, like WT and PV systems. Similar to P&O 
techniques, ES employs perturbations [9-21]. However, 
instead of employing a discrete step perturbation, ES uses a 
continuous oscillatory perturbation, also known as a “probing 
function.” More importantly, ES does not merely monitor the 
direction of the output response but exploits the measured 
response to estimate the gradient of the power map and update 
the control input in proportion to the gradient of the power 
map [9].  

ES has the dual benefit of rigorously provable convergence 
[9-13] and the simplicity of hardware implementation [14-21]. 
In addition to a probing signal, the ES algorithm employs only 
an integrator, as well as optional high-pass and low-pass filters. 
The amplitude and frequency of the probing function in ES 
influence the precision of the MPPT algorithm. However, the 
frequency selection is not as complicated as the selection of 
the sampling frequency in P&O technique. For dynamic 
systems, it is enough to select the ES probing frequency 
reasonably smaller than the highest frequency that can pass the 
system without significant attenuation.  

ES guides the system to its MPP regardless of the 
magnitude of changes in environmental parameters, as long as 
the changes are slow. While the power map shape defines the 
convergence rate of the conventional gradient-based ES, we 
also present in this article more sophisticated schemes like the 
Newton-based ES [13] to alleviate the issue of unsymmetrical 
transients.  

In some cases we need an inner-loop control to achieve 
desired closed-loop performance, for example, for speeding up 
the convergence rate and alleviating magnetic saturation in 
WT systems [21]. Combining a discrete MPPT method such as 
P&O with a continuous inner-loop control creates a hybrid 
system that needs careful parameter selection, particularly the 
sampling period and perturbation amplitude [22]. In contrast, 
ES can be applied without modifications to any system with a 
stabilizing inner-loop control.  

When dealing with a multivariable power map, such as a 
cascade PV configuration with one converter per module, 
using a decentralized MPPT architecture is not the most 
efficient option. For multivariable MPPT, the complexity of 
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P&O algorithms increases dramatically with the size of the 
input vector. In contrast, ES trivially extends to multivariable  
MPPT, with only a few restrictions in selecting the probing  
frequencies [20]. Furthermore, with ES we have the option of 
employing the algorithm’s Newton-based version to achieve 
transients that are symmetric relative to the peak of the MPP 
and uniform in speed for multiple modules [19]. 

The rest of this paper is organized as follows. In Section II 
we introduce ES for scalar static maps and then for dynamic 
systems with multivariable maps. We present both gradient- 
and Newton-based schemes. In Section III, we combine the 
scalar ES with a nonlinear inner-loop control developed from 
field-oriented control (FOC) to achieve power control and 
optimization in WT. We present simulation results to show the 
effectiveness of the proposed algorithm. In Section IV we 
present multivariable MPPT based on ES for PV systems. We 
verify the validity of the proposed algorithms with 
experimental results. 

II. THE BASICS OF EXTREMUM SEEKING 

Many versions of ES exist, with various approaches to the 
analysis of their stability. The most common version employs 
perturbation signals for the purpose of estimating the gradient 
of the unknown map that is being optimized [9]. To 
understand the basic idea of ES, it is best to first consider the 
case of a static single-input map of the quadratic form, as 

shown in Fig. 1, Qሺθሻ ൌ Q∗ ൅
୦

ଶ
ሺθ െ θ∗ሻଶ, where Q∗, h	, θ∗ are 

all unknown. At the optimal point we have 
డொ

డఏ
ሺߠ∗ሻ ൌ 0,				

డమொ

డఏమ
ሺߠ∗ሻ ൌ ݄.  ( 1 ) 

The user has to only know the sign of ݄, namely, whether 
the quadratic map has a maximum or a minimum, and has to 
choose the adaptation gain ݇ such that sgnሺ݇ሻ ൌ െsgnሺ݄ሻ. The 
user has to also choose the frequency ߱  as relatively large 
compared to ܽ, ݇,	and ݄. 

Three different ߠ s appear in Fig. 1: ߠ∗  is the unknown 
optimizer of the map, ߠ෠ሺݐሻ is the real-time estimate of ߠ∗, and 
 ሻ isݐሺߠ ሻ is the actual input into the map. The actual inputݐሺߠ
based on the estimate ߠ෠ሺݐሻ  but is perturbed by the signal 
ܽ sin߱ݐ for the purpose of estimating the unknown gradient 
݄ሺߠ െ  ሻ is generatedݐ෠ሺߠ ሻ. The estimateߠሻ of the map ܳሺ∗ߠ
with the integrator 1/ݏ with the adaptation gain ݇ controlling 
the speed of estimation. 

The ES algorithm is successful if the error between the 
estimate ߠ෠ሺݐሻ and the unknown ߠ∗, namely the signal 

ሻݐ෨ሺߠ ൌ ሻݐ෠ሺߠ െ  ( 2 )   ∗ߠ
converges towards zero. Based on Fig. 1, the estimate is 

governed by the differential equation ߠ෠ሶ ൌ మೖ
ೌ
sinሺ߱ݐሻܳሺߠሻ , 

which means that the estimation error is governed by  
dఏ෩

d௧
ൌ

ଶ௞

௔
sinሺ߱ݐሻ ቂܳ∗ ൅

௛

ଶ
൫ߠ෨ ൅ ܽ sinሺ߱ݐሻ൯

ଶ
ቃ.  ( 3 ) 

Expanding the right-hand side one obtains 

 
dఏ෩ሺ௧ሻ

d௧
ൌ

ଶ௞

௔
ܳ∗ sin	ሺ߱ݐሻᇣᇧᇤᇧᇥ

meanୀ଴

൅ ݄݇ܽ sinଷሺ߱ݐሻᇣᇧᇧᇤᇧᇧᇥ
meanୀ଴

൅ ݇
௛

௔
sinሺ߱ݐሻᇣᇧᇤᇧᇥ
fast,	meanୀ଴

෨ଶดߠ
slow

൅

൅2݄݇ sinଶሺ߱ݐሻᇣᇧᇧᇤᇧᇧᇥ
fast,	meanୀభమ

෨ณߠ
slow

.    (4) 

A theoretically rigorous time-averaging procedure allows 
replacing the above sinusoidal signals by their means, yielding 
the “average system” 

dఏ෩ave

d௧
ൌ ݇ฏ݄

ழ଴

 ෨ave    ( 5 )ߠ

which is exponentially stable. For a sufficiently large ω, if the 
initial estimate ߠ෠ሺ0ሻ is sufficiently close to the unknown ߠ∗, 
then the input ߠሺݐሻ exponentially converges to a small interval 
around the unknown ߠ∗ and, consequently, the output ܳሺߠሺݐሻሻ 
converges to the vicinity of the optimal output ܳ∗. 

A. ES for Multivariable Static Maps 

For static maps, ES extends in a straightforward manner 
from the single-input case shown in Fig. 1 to the multi-input 
case shown in Fig. 2. The algorithm measures the scalar signal 
ሻݐሺݕ 	ൌ 	ܳሺߠሺݐሻሻ, where ܳሺ൉ሻ is an unknown map whose input 
is the vector ߠ	 ൌ 	 ሾߠଵ	ߠଶ 	 ൉	൉	൉  ௡ሿ் . The gradient is estimatedߠ	
with the help of the signals 

ܵሺݐሻ 	ൌ 	 ሾܽଵ	sinሺ߱ଵݐሻ 	 ൉	൉	൉ 	ܽ௡	sinሺ߱௡ݐሻሿ்    ( 6 ) 

ሻݐሺܯ 	ൌ 	 ቂ
ଶ

௔భ
	sinሺ߱ଵݐሻ 	 ൉	൉	൉ 	

ଶ

௔೙
	sinሺ߱௡ݐሻቃ

்
    ( 7 ) 

with nonzero perturbation amplitudes ܽ௜  and with a gain 
matrix ܭ that is diagonal. To guarantee convergence, the user 
should choose ߱௜ ് 	 ௝߱ . This is a key condition that 
differentiates the multi-input case from the single-input case. 
In addition, for simplicity in the convergence analysis, the user 
should choose ߱௜/ ௝߱  as rational and ߱௜ 	൅	 ௝߱ 	് 	߱௞  for 
distinct ݅, ݆, and ݇. 

If the unknown map is quadratic, namely, ܳሺߠሻ ൌ ܳ∗ ൅
భ
మ
ሺߠ െ ߠሺܪሻ்∗ߠ െ  ሻ, the averaged system is∗ߠ

෨ሶߠ ൌ ,	෨ߠܪܭ	 	ܪ ൌ 	Hessian.   ( 8 )	
If, for example, the map ܳሺ൉ሻ  has a locally quadratic peak 
(which implies ܪ	 ൌ ்ܪ	 ൏ 0 ), and if the user chooses the 
elements of the diagonal gain matrix ܭ  as positive, the ES 
algorithm is guaranteed to be locally convergent. However, the 
convergence rate depends on the unknown Hessian ܪ . This 
weakness of the gradient-based ES algorithm is removed with 
the Newton-based ES algorithm. 

B. ES for Dynamic Systems 

ES extends in a relatively straightforward manner from 
static maps to dynamic systems, provided the dynamics are 
stable and the algorithm’s parameters are chosen so that the 
algorithm’s dynamics are slower than those of the plant. The 
algorithm is shown in Fig. 3. 
The technical conditions for convergence in the presence of 
dynamics are that the equilibria ݔ	 ൌ 	݈ሺߠሻ  of the system 
ሶݔ ൌ 	݂ሺݔ, ,ݔሺߙ ሻሻߠ , where ߙሺݔ, ሻߠ  is the control law of an 
internal feedback loop, are locally exponentially stable 

Fig. 1: The simplest perturbation-based ES scheme for a quadratic single-input 
map. 
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Fig. 2: The ES algorithm for a multivariable map. 
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uniformly in ߠ  and that, given the output map ݕ	 ൌ 	݄ሺݔሻ , 

there exists at least one ߠ∗ ∈ 	Թ௡  such that 	
డ

డఏ
ሺ݄ ∘ ݈ሻሺߠ∗ሻ 	ൌ

	0 and 
డమ

డఏమ
ሺ݄ ∘ ݈ሻሺߠ∗ሻ ൌ ܪ ൏ ܪ,0 ൌ ்ܪ . The aforementioned 

criteria to select the ES parameters for a static map are still 
valid. Adding the inner control affects the probing frequency 
and the band-pass of the filters. 

C. Newton ES Algorithm for Static Map 

A Newton version of the ES algorithm, shown in Fig. 4, 
ensures that the convergence rate be user-assignable, rather 
than being dependent on the unknown Hessian of the map [13]. 

The elements of the demodulating matrix ܰሺݐሻ  for 
generating the estimate of the Hessian are given by 

௜ܰ௜ሺݐሻ ൌ
ଵ଺

௔೔మ
ቀsinଶሺ߱௜ݐሻ െ

ଵ

ଶ
ቁ   

௜ܰ௝ሺݐሻ ൌ
ସ

௔೔௔ೕ
sinሺ߱௜ݐሻsin൫ ௝߱ݐ൯.  ( 9 )	

The multiplicative excitation ܰሺݐሻ  helps to generate the 

estimate of the Hessian 
డమ

డఏమ
ܳሺߠሻ as ܪ෡ሺݐሻ 	ൌ 	ܰሺݐሻݕሺݐሻ. The 

Riccati martrix differential equation ߁ሺݐሻ  generates an 
estimate of the Hessian’s inverse matrix, avoiding matrix 
inversions of Hessian estimates that may be singular during 
the transient. 

For a quadratic map, the averaged system in error variables 
෨ߠ ൌ ෠ߠ	 െ	߁ ,∗ߠ෨ ൌ ߁	 െ  is	ଵିܪ

dߠ෨ave

dݐ
ൌ 	െߠܭ෨ave 	െ 	ܭ	 ෨aveᇣᇧᇧᇤᇧᇧᇥߠܪ෨ave߁

quadratic

		 

d௰෩ave

d௧
ൌ െ߁ߩ෨ave െ െ߁ߩ෨ave߁ܪ෨aveᇣᇧᇧᇤᇧᇧᇥ

quadratic

 .  ( 10 ) 

Since the eigenvalues are determined by ܭ  and ߩ , and are 
therefore independent of the unknown ܪ , the (local) 
convergence rate is user-assignable. 

In the next section we apply the scalar gradient-based ES 
to MPPT of a WT with an inner-loop control. 

III. WIND ENERGY CONVERSION SYSTEMS 

A schematic of a wind energy conversion system (WECS) 
including wind turbine (WT), induction generator (IG), and 
matrix converter (MC) is shown in Fig. 5. Wind turbines work 
in four different regions as depicted in Fig. 6. In Region I, the 
wind speed is too low for the turbine to generate power. 
Region II, also called the sub-rated power region, lies between 
the cut-in speed and rated speed. Here the generator operates 
at below rated power. The theoretical shape of this curve 
reflects the basic law of power production, where power is 
proportional to the cube of the wind speed. In Region III, the 
turbine limits the power output; this occurs when the wind is 
sufficient for the turbine to reach its rated output power. 
Region IV is the period of stronger winds, where the power in 
the wind is so great that it could be detrimental to the turbine, 
so the turbine shuts down [22]. 

The wind power available on the blade impact area is 
defined as 

௪ܲ ൌ ܣ௔ߩ2 ௪ܸ
ଷ,							ܣ ൌ  ଶ,   ( 11 )ܴߨ

where ܴ is the blade length, ߩ௔ is air density, and ௪ܸ is wind 
speed. For Region II MPPT, assuming zero blade pitch angle, 
the turbine power is related to the wind power as 

௧ܲ 	ൌ 	߱௧ ௧ܶ 	ൌ ௣ሺܥ	 ௪ܸ, ߱௧ሻ ௪ܲ,    ( 12 ) 
where ௧ܶ is the rotor torque, ω୲ is the turbine speed, and ܥ௣ is 
the non-dimensional power coefficient, which is a measure of 
the ratio of the turbine power to the wind power. The power 
coefficient is a function of wind speed and turbine speed.  

The turbine speed can be used to change the power 
coefficient, ܥ௣ , which results in power control and 
optimization. The MPPT algorithm in sub-rated power region 
should be able to guide the WT to its MPP regardless of the 
variations of the wind speed. The power captured by the WT is  

 

Fig. 3: The ES algorithm in presence of dynamics. 
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Fig. 4: A Newton-based ES for a static map.    
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yθ

θ̂

Ĥ

 
Fig. 5: WECS including WT, gear box, IG, and MC.          
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defined by the wind speed, ௪ܸ , and the turbine speed, ߱௧ . 
However, the wind speed is a disturbance input and we can 
manipulate the turbine speed to govern the turbine power to its 
maximum power point (MPP) in sub-rated region. The  
variation of turbine power versus turbine speed is shown in 
Fig. 7 for different wind speeds. As shown in Fig. 7 under a 
constant wind speed the relevant power curve has a unique 
MPP, which is defined by a specific turbine speed. At the MPP 
the following observations are valid 

డ௉೟
డఠ೟

ሺ߱௧
∗ሻ ൌ 0,				

డమ௉೟
డఠ೟

మ ሺ߱௧
∗ሻ ൌ ݄ ൏ 0.  ( 13 ) 

As shown in Fig. 5 the WT shaft is modeled as a spring-
damper, and is connected to the electrical generator, which in 
this case is a squirrel-cage induction generator (SCIG), via a 
gearbox. Squirrel-cage IGs are relatively inexpensive, robust, 
and require little maintenance. When operated using vector 
control techniques, fast dynamic response, and accurate torque 
control is obtained. The generator is connected to the AC grid 
through a matrix converter (MC), which is a replacement for 
the conventional rectifier-inverter combination (AC-DC-AC), 
and steers the generator to its maximum power point (MPP) by 
controlling the electrical frequency of it's stator of SCIG, 
which in turn leads to a speed variation in the turbine shaft. 
Matrix converters provide bidirectional power flow, sinusoidal 
input/output currents, and controllable input power factor [7, 
24].  

The input phase voltage of MC, ݒ௜ 	ൌ 	 ሾݒ஺	ݒ஻	ݒ஼	ሿ், which 
is connected to the AC grid, is given by 

௜ݒ ൌ ௜ܸ௠ ቂcosሺߠ௜ሻ			cos ቀߠ௜ െ
ଶగ

ଷ
ቁ 				cos ቀߠ௜ ൅

ଶగ

ଷ
ቁቃ
்
, ( 14 ) 

where ௜ܸ௠ is the peak value of the input voltage amplitude and 

௜ߠ ൌ ׬	 ߱௜dݐ
௧
଴     ( 15 ) 

is the input electrical angle, where ߱௜ ൌ ߨ2 ௜݂  is the input 
electrical frequency of the MC. Output voltage is ݒ௢ 	ൌ
	ሾݒ௔	ݒ௕	ݒ௖	ሿ்.� It is the job of the MC to create local-averaged 
sinusoidal output phase voltage (the stator voltage of IG) and 
input phase current (the AC grid current) 

௢aveݒ ൌ ௢ܸ௠ ቂcosሺߠ௢ሻ			cos ቀߠ௢ െ
ଶగ

ଷ
ቁ 				cos ቀߠ௢ ൅

ଶగ

ଷ
ቁቃ
்
, ( 16 ) 

where ௢ܸ௠  is the peak value of the stator voltage amplitude 
and 

௢ߠ ൌ ׬	 ߱௢dݐ
௧
଴     ( 17 ) 

is the output electrical angle where ߱௢ ൌ ߨ2 ௢݂  is the stator 
electrical frequency. Stator electrical frequency, ߱௢ , and the 
peak value of the stator voltage amplitude, ௢ܸ௠ , are control 
inputs and can be used for power control and optimization of 
the WECS.  

A. Inner-Loop Control Design for WECS 

In many motor drive systems, it is desirable to make the 
drive act as a torque transducer wherein the electromagnetic 
torque can nearly instantaneously be made equal to a torque 
command. In such a system, speed or position control is 
dramatically simplified because the electrical dynamics of the 
drive become irrelevant to the speed or position control 
problem. In the case of induction machine drives, such 
performance can be achieved using a class of algorithms 
collectively known as field-oriented control (FOC). 

When flux amplitude is regulated to a constant reference 
value, and considering the fact that the dynamics of ߱௧  are 
considerably slower than the electrical dynamics, we can 
assume that the dynamics are linear, but during flux transient 
the system has nonlinear terms and it is coupled. This method 
can be improved by achieving exact input-output decoupling 
and linearization via a nonlinear state feedback that is not 
more complex than the conventional FOC [24].  

One can manipulate stator voltage amplitude, ௢ܸ௠, and its 
frequency, ߱௢, through the MC to obtain the desired closed-
loop performance for WECS. By employing FOC idea we 
introduce an integrator and an auxiliary input, ݑଶ, to achieve 
input-output decoupling in WECS dynamics. Using one step 
of integration in front of ௢ܸ௠ the extended equations of WECS 
are introduced as follows: 

ሶݔ ൌ ݂ሺݔሻ ൅ ଵ݃ݑଵ ൅ ݃ଶݑଶ,			ݔ ∈ Թଽ, ݑ ∈ Թଶ,  ( 18 ) 

where ݔ ൌ ൣ݅ఈ	݅ఉ	ߣఈ	ߣఉ	ߠ௢	 ௢ܸ௠	߱௥	ߠ෨	߱௧൧
்
,  where ݅ఈ  and ݅ఉ  are 

stator currents, ߣఈ  and ߣఉ  are rotor fluxes, ߠ෨ ൌ ௧ߠ െ
ఏೝ
௣௡

, 

௥ߠ ൌ ׬ ߱௥dݐ
௧
଴ , ߱௥ is the rotor electrical frequency, ݑଵ ൌ ߱௢ is 

the electrical frequency of the stator, ݑଶ	is an auxiliary input 
(voltage amplitude rate) which generates the voltage amplitude 
of the stator. 

From Fig. 7 we know that the turbine speed controls the 
power generation. Also we are interested in decoupling the 
rotor flux and electromagnetic torque to obtain the benefits of 
FOC. For these reasons, we introduce turbine speed, ݕଵ 	ൌ 	  ,ଽݔ
and flux amplitude, ߟଵ 	ൌ 	 ଷݔ

ଶ ൅ ସଶݔ , as measurable outputs. 
Based on the selected outputs, we apply feedback linearization 
which results in the regulation of turbine speed, ߱௧ 	ൌ  ଵ, toݕ	
its reference value ߱௧

ref , while the amplitude of rotor flux, 
|ߣ| 	ൌ 	ඥߟଵ, converges to its desired value, |ߣ|ref. 

B. Wind Turbine Power Optimization 

To overcome challenges associated with the conventional 
power control and optimization algorithms and to remove the 
dependence of the MPPT algorithm on the system modeling 

 
Fig. 6: Typical power curve of WT including four operating regions. 

 
Fig. 7: Variation of the turbine power versus turbine speed for different wind
speeds. The MPP moves on ܥ௣∗ ௪ܲ curve which shows the characteristic of the
sub-rated region of WECS. 
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and identification, we propose an ES algorithm for MPPT of 
WECS. First we present ES without the inner-loop control to 
clarify the advantages of the inner-loop control on the closed-
loop performance of the system. 

In this paper we assume that we have access to turbine 
power measurements and we can manipulate the turbine speed 
through the MC. Furthermore, we do not have a model of the 
power coefficient or turbine power. But, we know that the 
turbine power map has one MPP under any wind speed. 

The torque-speed characteristic of an induction machine is 
normally quite steep in the neighborhood of stator electrical 
frequency (synchronous speed), ߱௢, and so the electrical rotor 
speed, ߱௥ , will be near the synchronous speed. This means  
that changing the reference value of the turbine speed, ߱௧ , 
which translates in variation of the electrical rotor speed 
eventually, results in changing the stator electrical frequency. 
Thus, by controlling the stator electrical frequency one can 
approximately control the turbine speed or vice versa. We can 
rewrite (13) as follows 

డ௉೟
డఠ೚

ሺ߱௢∗ሻ ൌ 0,
డమ௉೟
డఠ೚

మ ሺ߱௢
∗ሻ ൌ ݄ᇱ ൏ 0.   ( 19 ) 

A schematic of MPPT for WECS with extremum seeking 
without inner-loop nonlinear control is shown in Fig. 8. As 
mentioned in the last paragraph, the power is parameterized by 
߱௢ , which is estimated by the ES loop. The other input for 
WECS which generates the voltage amplitude has been set to 
zero which means the stator voltage has a constant peak 
amplitude. The probing frequency, Ω, needs to be selected at 
least 10 times smaller than the highest frequency that can pass 
the system without significant attenuation. The band-pass of 
the filters should also be less than 10% of Ω. The ES gain, ݇, 
and also ܽ needs to be reasonably small. 

The turbine power measurement is fed into the ES scheme. 
The optimization parameter for ES without the inner-loop 
control, Fig. 8, is the electrical frequency of IG stator, ߱௢ . 
Stability of system dynamics is required for convergence of 
ES algorithm to its peak point. It is also required that the ES 
algorithm operates more slowly than the WECS system 
dynamics. As previously mentioned, since WECS in Fig. 8 
without the inner- loop controller shows a slow transient, the 
entire system has a lengthy convergence process which results 
in low power efficiency. 

We employ the proposed nonlinear control to achieve the 
desired closed-loop performance, including faster response 
time (high power efficiency), and preventing magnetic 
saturation. Our proposed ES scheme with the inner-loop 
control is shown in Fig. 9. In this case, the reference inputs of 
the inner-loop control are ߱௧

୰ୣ୤ and |ߣ|ref . We know that the 
MPP is parameterized by the optimal turbine speed at each 

wind speed which is estimated by the ES loop. The other 
control input, |ߣ|ref, defines the level of the flux linkage of the 
rotor which prevents IG from magnetic saturation. 

Combination of the Controller and WECS includes fast 
�dynamics and ES algorithm contains slow and medium 
speed �dynamics. The ES algorithm estimates the optimal 
turbine �speed, ߱௧

ref 	ൌ 	߱௧
∗  which can be considered as a 

constant value�with respect to the fast dynamics of the 
controller-system. The ES scheme estimates the gradient of the 
turbine power, ௧ܲ, by injecting a small perturbation, ܽsinሺݐߗሻ, 
which is very slow with respect to the dynamics of the 
controller-  system and its amplitude is enough small in 
comparison to ߱௧. The high-pass filter removes the DC part of 
the signal. The multiplication of the resulting signal by 
sinሺݐߗሻ creates an estimate of the gradient of the cost function, 
which is smoothed using a low-pass filter. When ߱௧ is larger 
than its optimal value the estimate of the gradient, ො݃ , is 
negative and causes ߱௧ to decrease. On the other hand, when 
߱௧  is smaller than ߱௧

∗  then ො݃ ൐ 0  which increases the ߱௧ 
toward ߱௧

∗ . It should be noted that ߗ  is small enough in 
comparison to the slowest dynamic of the controller-system, 
with an order less than 10%. 

C. Simulation Results on a Wind Turbine Model 

As we mentioned earlier response time of the ES design 
without the inner-loop is considerably slow which results in a 
very low power efficiency. However, we present one 
simulation that compares the response of the design without 
the inner-loop as shown in Fig. 8 to our proposed algorithm as 
shown in Fig. 9 which illustrates the role of the inner-loop 
control. Also, we compare the performance of our proposed 
algorithm to the conventional algorithm including FOC and 
MPPT based on perturb and observe (P&O) technique. 

We show a time frame of 30 s to visualize the differences 
between our proposed algorithm and the two other algorithms. 
Fig. 10 shows the wind regime applied to the WECS. The 
MPPT process is shown in Fig. 11. The extracted energy by 
our proposed algorithm is 2.36% higher than the extracted 
energy by the conventional MPPT and FOC. As we expected, 

Fig. 8: The ES algorithm for MPPT of the WECS without the inner-loop 
control. 
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ωref
t

|λ|ref Vom

θo

u2

ωo = u1

State feedback

Fig. 10: Variation of wind speed versus time.   

6188



the power efficiency of the ES design without the inner-loop is 
low.  

The proposed algorithm combines two well-known control 
algorithms namely, feedback linearization based on the FOC 
concept and extremum seeking, to achieve MPPT in a WECS 
operating in Region II. Our algorithm provides perfect input-
output decoupling and guarantees a larger domain of attraction, 
which increases performance robustness with respect to the 
system parameters. The improved efficiency also increases the 
competitiveness of wind energy.  

IV. PHOTOVOLTAIC SYSTEMS 

Extremum seeking has been applied to MPPT design for 
photovoltaic (PV) micro-converter systems, where each PV 
module is coupled with its own DC/DC converter. Most 
existing MPPT designs are distributed (decentralized), i.e., 
they employ one MPPT loop around each converter, and all 
designs, whether distributed or multivariable, are gradient-
based [2-4]. The convergence rate of gradient-based designs 
depends on the Hessian, which in turn is dependent on 
environmental conditions such as irradiance and temperature. 
Consequently, when applied to large PV arrays, the variability 
in environmental conditions and/or PV module degradation 
results in non-uniform transients in the convergence to the 
MPP. Using a multivariable gradient-based ES algorithm for 
the entire system instead of a scalar one for each PV module, 
while decreasing the sensitivity to the Hessian, does not 
eliminate this dependence [20]. We use the Newton-based ES 
algorithm that simultaneously employs estimates of the 
gradient and Hessian in the peak power tracking [19]. The 
convergence rate of such a design to the MPP is independent 
of the Hessian, with tunable transient performance that is 
independent of environmental conditions. We present 
experimental results that show the effectiveness of the 
proposed algorithm in comparison to existing scalar designs, 
and also to multivariable gradient-based ES. 

Using a multivariable gradient-based ES MPPT design for 
the micro-converter architecture, where each PV module is 
coupled with its own DC/DC converter, reduces the number of 
required sensors (hardware reduction), and it results in more 

uniform transients under sudden changes in solar irradiance 
and environmental temperature in comparison to a scalar 
gradient-based ES for each PV module. However, as is true of 
gradient-based designs, the convergence to MPP is dependent 
on the unknown Hessian, and varies with irradiance, 
temperature, and module degradation and mismatch. 

In comparison with the standard gradient-based 
multivariable extremum seeking, the Newton-based ES 
removes the dependence of the convergence rate on the 
unknown Hessian and makes the convergence rate of the 
parameter estimates user-assignable. In particular, all the 
parameters can be designed to converge with the same speed, 
yielding straight trajectories to the extremum even with maps 
that have highly elongated level sets. When applied to the 
MPPT problem in PV systems, the method offers the benefit 
of uniform convergence behavior under a wide range of 
working conditions that includes temperature and irradiance 
variations and the non-symmetric power generation of the 
neighboring PV modules as a result of module degradation or 
mismatch. 

A. Photovoltaic Modules and Power Extraction 

As is clear from Fig. 12, the power-voltage (ܲ െ ܸ ) 
characteristic of a typical PV module has a unique peak 
(ܸ∗, ܲ∗) which depends on temperature and irradiance ሺ࣮, ࣭ሻ. 
It is the job of the MPPT algorithm to automatically track this 
MPP. In many grid-tied PV systems (including our current 
work), this is done by means of a separate DC/DC power 
electronics stage controlled by an MPPT algorithm like ES 
that serves two functions: (i) regulating the output DC voltage 
at a (near) constant value, and (ii) extracting maximum power  
by forcing the PV module output ܸ to equal ܸ∗. Fig. 13 shows 
this setup for a DC/DC converter stage, whose output voltage 
is maintained constant as dܸc . The ratio between the input 
voltage, ܸ,  and output voltage, dܸc,  can be controlled by 
changing the duty cycle of the transistor switch in DC/DC 
converter, d, which serves as the control input. 

From Fig. 12, it follows that at the MPP (ܸ∗, ܲ∗ ), the 
power satisfies 

డ௉

డ௏
ሺܸ∗ሻ ൌ 0,	   

డమ௉

డ௏మ
ሺܸ∗ሻ ൌ ݄ ൏ 0.   ( 20 ) 

An MPPT algorithm based on ES is shown for a single PV 
module in Fig. 13. Since ݄ ൏ 0 , a positive gain, ݇ ൐ 0, 
guarantees the convergence of the ES toward the MPP, 

 
Fig. 11: MPPT, (solid red) our proposed algorithm, (dash-dot green) ES
without inner-loop, (dashed blue) conventional P&O with FOC, and (dotted
black) maximum power available to the WECS. 

Fig. 12: Characteristic ܲ െ ܸ  of a typical PV module under varying 
temperature and irradiance. Peak power and the optimal terminal voltage
varies with change of temperature and irradiance.  
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provided that the initial condition, ܸሺ0ሻ, is reasonably close to 
its optimal value, ܸ∗. 

B. Micro-Converter Architecture 

Traditionally, PV arrays have been connected to the AC 
power grid through centralized DC/AC power converters (or 
inverters). These are now giving way to distributed 
architectures that connect each module to a dedicated 
converter/inverter. The micro-converter configuration, where 
each PV module is connected to its own DC/DC converter, is  
shown schematically in Fig. 14. Conventionally, each DC/DC 
converter has a MPPT loop to extract maximum power from 
the PV system (known as power optimizer in industry). The 
output sides of the converters are connected in series. The PV 
system is connected to the power grid through a DC/AC 
inverter, which has its separate controller. It is assumed that 
the DC voltage at the input side of the inverter is held constant 
at dܸc. 

Two problems arise here. First, the scheme of Fig. 14 
requires two sensors per module, current and voltage, which 
increase the levelized energy cost. Second, the coupling effect 
between PV modules is not addressed by this distributed 
control. We present a multivariable MPPT based on ES 
scheme as shown in Fig. 15 with the following features: 
 It is applied to micro-converter systems, and hence deals 

with the case of non-unimodal power characteristics, and 
deals specifically with the issue of module mismatch (for 
example, possibly different irradiance levels as a result of 
partially shaded conditions). 

 The use of the non-model-based ES technique makes the 
design robust to partial knowledge of the system 
parameters and operating conditions.  

 As opposed to scalar designs, our multivariable design 
only requires 2 sensors in all, for the overall PV system 

current, and the DC bus voltage. This is a significant 
reduction in hardware cost.  

 Moreover, interactions between PV modules are inherently 
part of the multivariable design, and hence the transient 
performance is less sensitive to environmental variable 
variations than a corresponding scalar design. 

C. Multivariable ES for MPPT of PV Systems  

1) Gradient-Based ES 
We want to maximize the power generated by all PV 

modules which is equal 
ܲ ൌ ∑ ௜ܲ

௡
௜ୀଵ ൌ 	 dܸcܫdc.   ( 21 ) 

A typical power map of a PV system including two series 
module under standard test condition, ࣭	 ൌ 	1000 W/m2 and 
࣮	 ൌ 	25  °C, is shown in Fig. 16. Maximum power point 
happens at D∗ ൌ ሾ%57	%57ሿ୘. We can generalize the above 
observation for the micro-converter structure, i.e., there exists 
D∗ ∈ Թ୬ such that 

 
డ௉

డ஽
ሺܦ∗ሻ ൌ 0,			

డమ௉

డ஽మ
ሺܦ∗ሻ ൌ ܪ ൏ ܪ					,0 ൌ  ( 22 )  	.்ܪ

Accordingly, we can use the multivariable gradient-based 
ES design shown in Fig. 17 to MPPT of the PV system in Fig. 
15. The ES gain, ܭ,  is a positive diagonal matrix, and the 
perturbation signals are defined as (6) and (7). 

 

Fig. 13: The ES algorithm is applied to MPPT of a single PV module. 
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Fig. 14: Distributed MPPT algorithm for a PV system. Each module has a
separate MPPT. Temperature, ࣮,	 and irradiance, ࣭,  varies all over the
modules. 

 
Fig. 15: Multivariable MPPT for a PV system. One MPPT is used for the 
entire system. Temperature, ࣮, and irradiance, ࣭, varies all over the modules.

 
Fig. 16: A typical power map of two cascade PV modules versus pulse 
duration, ܦ ൌ ሾܦଵ ଶሿܦ . Level sets show the power in Watt. ଵ࣭ ൌ ࣭ଶ ൌ
1000 W/m2, and ଵ࣮ ൌ ଶ࣮ ൌ 25 °C.
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In particular, the design derives an estimate ܩ෠  of the 

gradient vector by adding the “probing signal” ܵሺݐሻ  to the 

estimate ܦ෡ ൌ	 ෡ଶܦ	෡ଵܦൣ 	 ൉൉൉ ෡௡൧ܦ	
்
 of the pulse duration vector (of 

all the DC/DC converters). With no additional information on 
the Hessian (and also for simplicity), we choose the 
amplitudes of the probing signals to all be the same value a. It 
can be shown that for a proper set of ߱௜  for ݅ ∈ ሼ1,2,⋯ , ݊ሽ, 
߱௟, ߱௛, ܽ, and with ܭ ൐ 0, the estimate ܦ෡ of the pulse duration 
vector and the output ܲ  settle in a small ball around the 
optimal pulse duration ܦ∗ ൌ ሾܦଵ∗	ܦଶ

∗ ௡∗ሿ்ܦ	…	  and the MPP 
ܲሺܦ∗ሻ, respectively. The radius of the ball is defined by the 
lowest probing frequency and its corresponding amplitude. 

The linearized update equation for the estimation error 
෩ܦ ൌ ෡ܦ െ  is ∗ܦ

෩ሶܦ ൌ ܪ							,෩ܦܪܭ ≔	 డ
మ௉

డ஽మ
ሺܦ∗ሻ,  ( 23 ) 

where ܪ  is the Hessian of ܲ ൌ ∑ ௝ܲ
௡
௝ୀଵ  with respect to the 

pulse duration vector, ܦ.  
Since the cost function ܲ  varies with irradiance, 

temperature, and degradation of the PV modules, so does H, 
and therefore a fixed adaptation gain ܭ  results in different 
(condition dependent) convergence rates for each converter. In 
order to alleviate the issue of unknown Hessian dependent 
convergence, we present in the next section a modified version 
of the multivariable Newton-based ES. In comparison with the 
gradient-based design of this section, the Newton-based 
algorithm makes the convergence rate of the parameter 
estimates user-assignable. In particular, all the parameters can 
be designed to converge with the same speed, yielding straight 
trajectories to the extremum even with maps that have highly 
elongated level sets. When applied to the MPPT problem in 
PV systems, the method offers the benefit of uniform 
convergence behavior, under a wide range of working 
conditions that include temperature and irradiance variations, 
and under the non-symmetric power generation of the 
neighboring PV modules as a result of module degradation or 
mismatch. 
2) Newton-Based ES 

The multivariable Newton-based ES that we propose is 
shown schematically in Fig. 18. As is clear from the figure, the 
proposed scheme extends the gradient-based ES with the 
estimate ܪ෡  of the Hessian. The perturbation matrix ܰሺݐሻ  is 
defined as (9). 

The goal of the Newton-based design is to replace the 

estimation-error dynamics ܦ෩ሶ ൌ ෩ܦܪܭ  with one of the form 

෩ሶܦ ൌ െܦܪ߁ܭ෩, where ߁ ൌ  ଵ, that removes the dependenceିܪ
on the Hessian ܪ . Calculating ߁  (estimate of ିܪଵ ) in an 
algebraic fashion creates difficulties when ܪ෡  is close to  
singularity or is indefinite. To deal with this problem, a 

dynamic estimator is employed to calculate the inverse of ܪ෡ 
using a Riccati equation. 

Consider the following filter 
࣢ሶ ൌ െ࣢ߩ ൅  ෡.   ( 24 )ܪߩ

Note that the state of this filter converges to ܪ෡, an estimate of 
߁ Denote .ܪ ൌ ࣢ିଵ. Since ߁ሶ 	ൌ 	െ࣢߁ሶ  then equation (24) ,߁
is transformed into the differential Riccati equation 

ሶ߁ ൌ ߁	ߩ െ  ( 25 )   .	߁෡ܪ߁ߩ
The equilibria of the Riccati equation (25) are ߁∗ ൌ

0௡ൈ௡	and ߁∗ ൌ ෡ܪ ෡ିଵ, providedܪ	  settles to a constant. Since 
	ߩ ൐ 	0 , the equilibrium ߁∗ ൌ 	0  is unstable, whereas the 
linearization of (25) around ߁∗ ൌ 	෡ିଵܪ	 has the Jacobian 
െܫߩ௡ൈ௡ , so the equilibrium at ߁∗ ൌ ෡ିଵܪ	  is locally 
exponentially stable. This shows that, after a transient, the 
Riccati equation converges to the actual value of the inverse of 
Hessian matrix if ܪ෡ is a good estimate of ܪ. 

Linearization of the update law for the error variable 
෩ܦ ൌ ෡ܦ െ  results in ∗ܦ

෩ሶܦ ൌ െ	ܦܭ෩,					ܭ ൐ 	0	,   ( 26 ) 
where elements of ܭ are sufficiently small positive numbers. 
According to (26) the convergence rate of the parameter is 
independent of the shape of the cost function, and 
consequently, after transient, when the Hessian is close 
enough to its actual value, the output power converges to the 
MPP with the same performance regardless of environmental 
or mismatch conditions. 

  

Fig. 17: Multivariable gradient-based ES for MPPT of a PV system. 
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Fig. 18: Multivariable Newton-based ES for MPPT of a PV system. The 
purple part is added to the gradient-based ES to estimate the Hessian.

+

D 1 D C / D C V 1 P V 1 P 1
D 2 D C / D C V 2 P V 2 P 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
D n D C / D C V n P V n P n

High-pass
fil

t
er

×
Low-pass

fil
t

er

M (t)S(t)

K
s

N (t)

×
Low-pass

fil
t

er
Ĥ
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controller and the ES algorithm improves the performance of 
the WECS, as shown by the simulations. 

For PVs, we consider the micro-converter architecture, 
where each module is connected to its own DC-DC converter. 
Conventional designs are scalar, they: i) ignore the interaction 
between modules, and ii) require two (sensor) measurements 
per module. We propose a multivariable design that improves 
on each of these aspects. We consider first a multivariable 
gradient-based ES algorithm, where the Hessian of the power 
map has a dominant role in the closed-loop performance. Next, 
we employ a Newton-based ES algorithm, which removes the 
performance dependence of the gradient-based design on the 
Hessian. The Newton-based design has two key/distinguishing 
components: i) a perturbation matrix that generates the 
estimate of the Hessian, and (ii) a dynamic filter to estimate 
the inverse of the Hessian. Experimental results verify the 
effectiveness of the Newton-based MPPT versus its (scalar 
and multivariable) gradient-based counterparts. 
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