Shenyang, China, June 29 - July 4 2014

Proceeding of the 11th World Congress on Intelligent Control and Automation

Extremum Seeking
for Wind and Solar Energy Applications

Miroslav Krstic and Azad Ghaffari
Department of Mechanical and Aerospace Engineering
University of California, San Diego
La Jolla, CA 92093-0411
{krstic and aghaffari}@ucsd.edu

Abstract—Invented in 1922, extremum seeking (ES) is one of the
oldest feedback methods. However, its purpose is not regulation
but optimization. For this reason, applications of ES have often
come from energy systems. The first noted publication on ES in
the West is Draper and Li's application to spark timing
optimization in internal combustion engines [1]. In the ensuing
decades, ES has been applied to gas turbines and even nuclear
fusion reactors. Renewable energy applications have brought a
new focus on the capabilities of ES algorithms. In this article we
present applications of ES in two types of energy conversion
systems for renewable energy sources: wind and solar energy. In
both areas the goal is maximum power point tracking (MPPT),
i.e., the extraction of the maximum feasible energy from the
system under uncertainty and in the absence of a priori modeling
knowledge about the systems. For the wind energy conversion
system (WECS) we perform MPPT by tuning the set point for the
turbine speed using scalar ES. For the photovoltaic (PV) array
system, we perform MPPT by tuning the duty cycles of the
DC/DC converters employed in the system using multivariable
ES. For the photovoltaic system we provide experimental results.
(Abstract)

Keywords—energy harvesting; wind energy; solar energy;
nonlinear dynamical systems; adaptive control; optimization; power
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Increasing availability of energy storage devices motivates
the effort to harvest maximum feasible power from renewable
sources, particularly wind turbines (WTs) and photovoltaic
(PV) systems. Renewable sources operate under a wide range
of uncertain environmental parameters and disturbances. For
example, uncertain quantities such as wind speed in WT and
solar irradiance in PV modules affect the respective power
maps and the maximum power points (MPPs). However, the
power map is also a function of a control input—the turbine
speed in WT and the terminal voltage in the PV modules. The
power map of WT has a unique MPP with respect to turbine
speed at each level of wind speed. Likewise, the power map of
a PV module has a unique MPP with respect to terminal
voltage at each level of solar irradiance.

The process of governing a WT or PV module to its MPP
is know as maximum power point tracking (MPPT). The
conventional perturb and observe (P&O) techniques do so by a
combination of adding a step perturbation to the control signal
and monitoring the direction of changes in power [2-8]. Most
techniques derived from P&O are based on discrete analysis
and require a delicate balance between the amplitude of the
control input step perturbation and the possible changes in
environmental parameters. Moreover, the sampling frequency
needs to be carefully selected with respect to the response time
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of the system to the step perturbation. Since the system is not
linear, the sampling frequency is also a function of the step
size and of the magnitude of changes in environmental
parameters [2-4, 6].

Extremum seeking (ES) is an attractive alternative to P&O
techniques for solving MPPT problems in wind and solar
systems. As a model-free, real-time optimization approach, ES
is well suited for systems with unknown dynamics or those
that are affected by high levels of uncertainty or external
dynamics, like WT and PV systems. Similar to P&O
techniques, ES employs perturbations [9-21]. However,
instead of employing a discrete step perturbation, ES uses a
continuous oscillatory perturbation, also known as a “probing
function.” More importantly, ES does not merely monitor the
direction of the output response but exploits the measured
response to estimate the gradient of the power map and update
the control input in proportion to the gradient of the power
map [9].

ES has the dual benefit of rigorously provable convergence
[9-13] and the simplicity of hardware implementation [14-21].
In addition to a probing signal, the ES algorithm employs only
an integrator, as well as optional high-pass and low-pass filters.
The amplitude and frequency of the probing function in ES
influence the precision of the MPPT algorithm. However, the
frequency selection is not as complicated as the selection of
the sampling frequency in P&O technique. For dynamic
systems, it is enough to select the ES probing frequency
reasonably smaller than the highest frequency that can pass the
system without significant attenuation.

ES guides the system to its MPP regardless of the
magnitude of changes in environmental parameters, as long as
the changes are slow. While the power map shape defines the
convergence rate of the conventional gradient-based ES, we
also present in this article more sophisticated schemes like the
Newton-based ES [13] to alleviate the issue of unsymmetrical
transients.

In some cases we need an inner-loop control to achieve
desired closed-loop performance, for example, for speeding up
the convergence rate and alleviating magnetic saturation in
WT systems [21]. Combining a discrete MPPT method such as
P&O with a continuous inner-loop control creates a hybrid
system that needs careful parameter selection, particularly the
sampling period and perturbation amplitude [22]. In contrast,
ES can be applied without modifications to any system with a
stabilizing inner-loop control.

When dealing with a multivariable power map, such as a
cascade PV configuration with one converter per module,
using a decentralized MPPT architecture is not the most
efficient option. For multivariable MPPT, the complexity of
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Fig. 1: The simplest perturbation-based ES scheme for a quadratic single-input
map.

P&O algorithms increases dramatically with the size of the
input vector. In contrast, ES trivially extends to multivariable
MPPT, with only a few restrictions in selecting the probing
frequencies [20]. Furthermore, with ES we have the option of
employing the algorithm’s Newton-based version to achieve
transients that are symmetric relative to the peak of the MPP
and uniform in speed for multiple modules [19].

The rest of this paper is organized as follows. In Section II
we introduce ES for scalar static maps and then for dynamic
systems with multivariable maps. We present both gradient-
and Newton-based schemes. In Section III, we combine the
scalar ES with a nonlinear inner-loop control developed from
field-oriented control (FOC) to achieve power control and
optimization in WT. We present simulation results to show the
effectiveness of the proposed algorithm. In Section IV we
present multivariable MPPT based on ES for PV systems. We
verify the validity of the proposed algorithms with
experimental results.

IL.

Many versions of ES exist, with various approaches to the
analysis of their stability. The most common version employs
perturbation signals for the purpose of estimating the gradient
of the unknown map that is being optimized [9]. To
understand the basic idea of ES, it is best to first consider the
case of a static single-input map of the quadratic form, as

shown in Fig. 1, Q(8) = Q* + 2(9 —0%)2, where Q*,h, 0" are

all unknown. At the optimal point we have
2

2(9=0, J2@E)=h (1)

The user has to only know the sign of h, namely, whether
the quadratic map has a maximum or a minimum, and has to
choose the adaptation gain k such that sgn(k) = —sgn(h). The
user has to also choose the frequency w as relatively large
compared to a, k, and h.

Three different 8s appear in Fig. 1: 8" is the unknown
optimizer of the map, (t) is the real-time estimate of 8*, and
6(t) is the actual input into the map. The actual input 6(t) is
based on the estimate A(t) but is perturbed by the signal
a sin wt for the purpose of estimating the unknown gradient
h(6 — 6*) of the map Q(8). The estimate (t) is generated
with the integrator 1/s with the adaptation gain k controlling
the speed of estimation.

The ES algorithm is successful if the error between the
estimate @(t) and the unknown 6*, namely the signal

6 =06() -0 (2)
converges towards zero. Based on Fig. 1, the estimate is
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governed by the differential equation 6 = % sin(wt)Q(0),

which means that the estimation error is governed by
9 _ %sin(wt) [Q* + g (O+a sin(a)t))z].

Expanding the right-hand side one obtains

(3)

dt
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Fig. 2: The ES algorithm for a multivariable map.
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A theoretically rigorous time-averaging procedure allows
replacing the above sinusoidal signals by their means, yielding
the “average system”
pave :.2 -

= =kngoe (5)
which is exponentially stable. For a sufficiently large w, if the
initial estimate 6(0) is sufficiently close to the unknown 6*,
then the input 6(t) exponentially converges to a small interval
around the unknown 6* and, consequently, the output Q(6(t))
converges to the vicinity of the optimal output Q™.

A. ES for Multivariable Static Maps

For static maps, ES extends in a straightforward manner
from the single-input case shown in Fig. 1 to the multi-input
case shown in Fig. 2. The algorithm measures the scalar signal
y(t) = Q(6(t)), where Q(-) is an unknown map whose input
is the vector 8 = [0, 0, --- 6,]7 . The gradient is estimated
with the help of the signals

S(t) la; sin(w,t) --- (6)

2 . 2 . T
M(t) [a— sin(wqt) --- - sm((unt)] (7)
1 n

with nonzero perturbation amplitudes a; and with a gain
matrix K that is diagonal. To guarantee convergence, the user
should choose w; # w; . This is a key condition that
differentiates the multi-input case from the single-input case.
In addition, for simplicity in the convergence analysis, the user
should choose w;/w; as rational and w; + w; # wy for
distinct i, j, and k.

If the unknown map is quadratic, namely, Q(8) = Q" +
20 —6)TH(O — 9*),.the averaged system is

6 = KHO, H = Hessian. (8)

If, for example, the map Q(-) has a locally quadratic peak
(which implies H = HT < 0), and if the user chooses the
elements of the diagonal gain matrix K as positive, the ES
algorithm is guaranteed to be locally convergent. However, the
convergence rate depends on the unknown Hessian H. This
weakness of the gradient-based ES algorithm is removed with
the Newton-based ES algorithm.

a, sin(w,t)]"

B. ES for Dynamic Systems

ES extends in a relatively straightforward manner from
static maps to dynamic systems, provided the dynamics are
stable and the algorithm’s parameters are chosen so that the
algorithm’s dynamics are slower than those of the plant. The
algorithm is shown in Fig. 3.

The technical conditions for convergence in the presence of
dynamics are that the equilibria x = [(6) of the system
x = f(x,a(x,0)), where a(x,8) is the control law of an
internal feedback loop, are locally exponentially stable
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Fig. 3: The ES algorithm in presence of dynamics.
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Fig. 4: A Newton-based ES for a static map.

uniformly in 6 and that, given the output map y = h(x),
there exists at least one 8* € R™ such that %(h o )(6") =

2
0 and aa?(h o)(8*) = H < 0,H = HT. The aforementioned
criteria to select the ES parameters for a static map are still
valid. Adding the inner control affects the probing frequency
and the band-pass of the filters.

C. Newton ES Algorithm for Static Map

A Newton version of the ES algorithm, shown in Fig. 4,
ensures that the convergence rate be user-assignable, rather
than being dependent on the unknown Hessian of the map [13].

The elements of the demodulating matrix N(t) for

generating the estimate of the Hessian are given by

Ni(t) = 75 (sin® (@it) =)

a;?

(9)
The multiplicative excitation N(t) helps to generate the
estimate of the Hessian %Q(G) as H(t) = N(t)y(t). The

Riccati martrix differential equation I'(t) generates an
estimate of the Hessian’s inverse matrix, avoiding matrix
inversions of Hessian estimates that may be singular during
the transient.

N;(t) = %ajsin(wit)sin(wjt).

For a quadratic map, the averaged system in error variables
6=0-06",T=T—H"is

df;Ve — _Kéave - K faveHéave
t quadratic
ﬁdi"e:_pfave__pfavel_[fave' (10)
quadratic

Since the eigenvalues are determined by K and p, and are
therefore independent of the unknown H , the (local)
convergence rate is user-assignable.

In the next section we apply the scalar gradient-based ES
to MPPT of a WT with an inner-loop control.

III.

A schematic of a wind energy conversion system (WECS)
including wind turbine (WT), induction generator (IG), and
matrix converter (MC) is shown in Fig. 5. Wind turbines work
in four different regions as depicted in Fig. 6. In Region I, the
wind speed is too low for the turbine to generate power.
Region 11, also called the sub-rated power region, lies between
the cut-in speed and rated speed. Here the generator operates
at below rated power. The theoretical shape of this curve
reflects the basic law of power production, where power is
proportional to the cube of the wind speed. In Region III, the
turbine limits the power output; this occurs when the wind is
sufficient for the turbine to reach its rated output power.
Region IV is the period of stronger winds, where the power in
the wind is so great that it could be detrimental to the turbine,
so the turbine shuts down [22].

The wind power available on the blade impact area is
defined as

WIND ENERGY CONVERSION SYSTEMS

P, = 2p,AV;3, A =mR? (11)
where R is the blade length, p, is air density, and V,, is wind
speed. For Region II MPPT, assuming zero blade pitch angle,
the turbine power is related to the wind power as

P = wT; = Cp(VW'wt)PW’ (12)
where T is the rotor torque, wy is the turbine speed, and C,, is
the non-dimensional power coefficient, which is a measure of
the ratio of the turbine power to the wind power. The power
coefficient is a function of wind speed and turbine speed.

The turbine speed can be used to change the power
coefficient, C, , which results in power control and
optimization. The MPPT algorithm in sub-rated power region
should be able to guide the WT to its MPP regardless of the
variations of the wind speed. The power captured by the WT is
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Fig. 5: WECS including WT, gear box, IG, and MC.
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Fig. 6: Typical power curve of WT including four operating regions.
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Fig. 7: Variation of the turbine power versus turbine speed for different wind
speeds. The MPP moves on C; B, curve which shows the characteristic of the
sub-rated region of WECS.

defined by the wind speed, V,,, and the turbine speed, w;.
However, the wind speed is a disturbance input and we can
manipulate the turbine speed to govern the turbine power to its
maximum power point (MPP) in sub-rated region. The
variation of turbine power versus turbine speed is shown in
Fig. 7 for different wind speeds. As shown in Fig. 7 under a
constant wind speed the relevant power curve has a unique
MPP, which is defined by a specific turbine speed. At the MPP
the following observations are valid

oP N a%p .
a—aéwt)=0, Wg(wt)=h<0. (13)

As shown in Fig. 5 the WT shaft is modeled as a spring-
damper, and is connected to the electrical generator, which in
this case is a squirrel-cage induction generator (SCIG), via a
gearbox. Squirrel-cage 1Gs are relatively inexpensive, robust,
and require little maintenance. When operated using vector
control techniques, fast dynamic response, and accurate torque
control is obtained. The generator is connected to the AC grid
through a matrix converter (MC), which is a replacement for
the conventional rectifier-inverter combination (AC-DC-AC),
and steers the generator to its maximum power point (MPP) by
controlling the electrical frequency of it's stator of SCIG,
which in turn leads to a speed variation in the turbine shatft.
Matrix converters provide bidirectional power flow, sinusoidal
input/output currents, and controllable input power factor [7,
24].

The input phase voltage of MC, v; = [v, vy v |7, which
is connected to the AC grid, is given by

T
v = Vi [cos(@i) cos (Gi - 2{) cos (Hi + 2{)] ,(14)
where V;,, is the peak value of the input voltage amplitude and
6, = [, wat (15)
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is the input electrical angle, where w; = 2mf; is the input
electrical frequency of the MC. Output voltage is v, =
[ve vp v ]T.00 It is the job of the MC to create local-averaged
sinusoidal output phase voltage (the stator voltage of IG) and
input phase current (the AC grid current)

T
Vom [cos(@o) cos (90 - 2?") cos (90 + 2?”)] ,(16)
where V,,, is the peak value of the stator voltage amplitude
and

ave
vO

0, = [, wodt (17)
is the output electrical angle where w, = 2rf, is the stator
electrical frequency. Stator electrical frequency, w,, and the
peak value of the stator voltage amplitude, V,,,, are control

inputs and can be used for power control and optimization of
the WECS.

A. Inner-Loop Control Design for WECS

In many motor drive systems, it is desirable to make the
drive act as a torque transducer wherein the electromagnetic
torque can nearly instantaneously be made equal to a torque
command. In such a system, speed or position control is
dramatically simplified because the electrical dynamics of the
drive become irrelevant to the speed or position control
problem. In the case of induction machine drives, such
performance can be achieved using a class of algorithms
collectively known as field-oriented control (FOC).

When flux amplitude is regulated to a constant reference
value, and considering the fact that the dynamics of w, are
considerably slower than the electrical dynamics, we can
assume that the dynamics are linear, but during flux transient
the system has nonlinear terms and it is coupled. This method
can be improved by achieving exact input-output decoupling
and linearization via a nonlinear state feedback that is not
more complex than the conventional FOC [24].

One can manipulate stator voltage amplitude, V,,,, and its
frequency, w,, through the MC to obtain the desired closed-
loop performance for WECS. By employing FOC idea we
introduce an integrator and an auxiliary input, u,, to achieve
input-output decoupling in WECS dynamics. Using one step
of integration in front of V,,, the extended equations of WECS
are introduced as follows:

%= f(x) + guy + gouz, x ERY, u € R?, (18)
where x = [ia ig Aa Ag 0 Vom @y ] wt]T, where i, and ig are
oy
on?
0, = fot w,dt, w, is the rotor electrical frequency, u; = w, is

stator currents, 4, and Ag are rotor fluxes, 0=6,—

the electrical frequency of the stator, u, is an auxiliary input
(voltage amplitude rate) which generates the voltage amplitude
of the stator.

From Fig. 7 we know that the turbine speed controls the
power generation. Also we are interested in decoupling the
rotor flux and electromagnetic torque to obtain the benefits of
FOC. For these reasons, we introduce turbine speed, y; = xo,
and flux amplitude, 7, = x% + x2, as measurable outputs.
Based on the selected outputs, we apply feedback linearization
which results in the regulation of turbine speed, w; = y,, to
its reference value wif, while the amplitude of rotor flux,

|A] = /01, converges to its desired value, ||,

B. Wind Turbine Power Optimization

To overcome challenges associated with the conventional
power control and optimization algorithms and to remove the
dependence of the MPPT algorithm on the system modeling
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Fig. 8: The ES algorithm for MPPT of the WECS without the inner-loop
control.

and identification, we propose an ES algorithm for MPPT of
WECS. First we present ES without the inner-loop control to
clarify the advantages of the inner-loop control on the closed-
loop performance of the system.

In this paper we assume that we have access to turbine
power measurements and we can manipulate the turbine speed
through the MC. Furthermore, we do not have a model of the
power coefficient or turbine power. But, we know that the
turbine power map has one MPP under any wind speed.

The torque-speed characteristic of an induction machine is
normally quite steep in the neighborhood of stator electrical
frequency (synchronous speed), w,, and so the electrical rotor
speed, w,, will be near the synchronous speed. This means
that changing the reference value of the turbine speed, wy,
which translates in variation of the electrical rotor speed
eventually, results in changing the stator electrical frequency.
Thus, by controlling the stator electrical frequency one can
approximately control the turbine speed or vice versa. We can
rewrite (13) as follows

L (w5) = 0, S (w3) = ' <0, (19)

A schematic of MPPT for WECS with extremum seeking
without inner-loop nonlinear control is shown in Fig. 8. As
mentioned in the last paragraph, the power is parameterized by
w,, which is estimated by the ES loop. The other input for
WECS which generates the voltage amplitude has been set to
zero which means the stator voltage has a constant peak
amplitude. The probing frequency, ), needs to be selected at
least 10 times smaller than the highest frequency that can pass
the system without significant attenuation. The band-pass of
the filters should also be less than 10% of 1. The ES gain, k,
and also a needs to be reasonably small.

The turbine power measurement is fed into the ES scheme.
The optimization parameter for ES without the inner-loop
control, Fig. 8, is the electrical frequency of IG stator, w,.
Stability of system dynamics is required for convergence of
ES algorithm to its peak point. It is also required that the ES
algorithm operates more slowly than the WECS system
dynamics. As previously mentioned, since WECS in Fig. 8
without the inner- loop controller shows a slow transient, the
entire system has a lengthy convergence process which results
in low power efficiency.

We employ the proposed nonlinear control to achieve the
desired closed-loop performance, including faster response
time (high power efficiency), and preventing magnetic
saturation. Our proposed ES scheme with the inner-loop
control is shown in Fig. 9. In this case, the reference inputs of
the 1nner—100p control are wf® and |A|™f. We know that the
MPP is parameterized by the optimal turbine speed at each
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Fig. 9: The ES algorithm for MPPT of the WECS with the 1nner—100p control.

wind speed which is estimated by the ES loop. The other
control input, |A|"f, defines the level of the flux linkage of the
rotor which prevents IG from magnetic saturation.

Combination of the Controller and WECS includes fast
[dynamics and ES algorithm contains slow and medium
speed [Idynamics. The ES algorithm estimates the optimal
turbine [Ispeed, wi = w; which can be considered as a
constant value[Jwith respect to the fast dynamics of the
controller-system. The ES scheme estimates the gradient of the
turbine power, P;, by injecting a small perturbation, asin(t),
which is very slow with respect to the dynamics of the
controller- system and its amplitude is enough small in
comparison to w;. The high-pass filter removes the DC part of
the signal. The multiplication of the resulting signal by
sin(£2t) creates an estimate of the gradient of the cost function,
which is smoothed using a low-pass filter. When w, is larger
than its optimal value the estimate of the gradient, g, is
negative and causes w; to decrease. On the other hand, when
w; is smaller than w; then § > 0 which increases the w;
toward w¢ . It should be noted that 2 is small enough in
comparison to the slowest dynamic of the controller-system,
with an order less than 10%.

C. Simulation Results on a Wind Turbine Model

As we mentioned earlier response time of the ES design
without the inner-loop is considerably slow which results in a
very low power efficiency. However, we present one
simulation that compares the response of the design without
the inner-loop as shown in Fig. 8 to our proposed algorithm as
shown in Fig. 9 which illustrates the role of the inner-loop
control. Also, we compare the performance of our proposed
algorithm to the conventional algorithm including FOC and
MPPT based on perturb and observe (P&O) technique.

We show a time frame of 30 s to visualize the differences
between our proposed algorithm and the two other algorithms.
Fig. 10 shows the wind regime applied to the WECS. The
MPPT process is shown in Fig. 11. The extracted energy by
our proposed algorithm is 2.36% higher than the extracted
energy by the conventional MPPT and FOC. As we expected,

Vi (m/s)

Time (s)

Fig. 10: Variation of wind speed versus time.
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Fig. 11: MPPT, (solid red) our proposed algorithm, (dash-dot green) ES
without inner-loop, (dashed blue) conventional P&O with FOC, and (dotted
black) maximum power available to the WECS.
the power efficiency of the ES design without the inner-loop is
low.

The proposed algorithm combines two well-known control
algorithms namely, feedback linearization based on the FOC
concept and extremum seeking, to achieve MPPT in a WECS
operating in Region II. Our algorithm provides perfect input-
output decoupling and guarantees a larger domain of attraction,
which increases performance robustness with respect to the
system parameters. The improved efficiency also increases the
competitiveness of wind energy.

IV. PHOTOVOLTAIC SYSTEMS

Extremum seeking has been applied to MPPT design for
photovoltaic (PV) micro-converter systems, where each PV
module is coupled with its own DC/DC converter. Most
existing MPPT designs are distributed (decentralized), i.e.,
they employ one MPPT loop around each converter, and all
designs, whether distributed or multivariable, are gradient-
based [2-4]. The convergence rate of gradient-based designs
depends on the Hessian, which in turn is dependent on
environmental conditions such as irradiance and temperature.
Consequently, when applied to large PV arrays, the variability
in environmental conditions and/or PV module degradation
results in non-uniform transients in the convergence to the
MPP. Using a multivariable gradient-based ES algorithm for
the entire system instead of a scalar one for each PV module,
while decreasing the sensitivity to the Hessian, does not
eliminate this dependence [20]. We use the Newton-based ES
algorithm that simultancously employs estimates of the
gradient and Hessian in the peak power tracking [19]. The
convergence rate of such a design to the MPP is independent
of the Hessian, with tunable transient performance that is
independent of environmental conditions. We present
experimental results that show the effectiveness of the
proposed algorithm in comparison to existing scalar designs,
and also to multivariable gradient-based ES.

Using a multivariable gradient-based ES MPPT design for
the micro-converter architecture, where each PV module is
coupled with its own DC/DC converter, reduces the number of
required sensors (hardware reduction), and it results in more
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Fig. 12: Characteristic P —V of a typical PV module under varying
temperature and irradiance. Peak power and the optimal terminal voltage
varies with change of temperature and irradiance.

uniform transients under sudden changes in solar irradiance
and environmental temperature in comparison to a scalar
gradient-based ES for each PV module. However, as is true of
gradient-based designs, the convergence to MPP is dependent
on the unknown Hessian, and varies with irradiance,
temperature, and module degradation and mismatch.

In comparison with the standard gradient-based
multivariable extremum seeking, the Newton-based ES
removes the dependence of the convergence rate on the
unknown Hessian and makes the convergence rate of the
parameter estimates user-assignable. In particular, all the
parameters can be designed to converge with the same speed,
yielding straight trajectories to the extremum even with maps
that have highly elongated level sets. When applied to the
MPPT problem in PV systems, the method offers the benefit
of uniform convergence behavior under a wide range of
working conditions that includes temperature and irradiance
variations and the non-symmetric power generation of the
neighboring PV modules as a result of module degradation or
mismatch.

A.  Photovoltaic Modules and Power Extraction

As is clear from Fig. 12, the power-voltage (P —V)
characteristic of a typical PV module has a unique peak
(V*, P*) which depends on temperature and irradiance (7', S).
It is the job of the MPPT algorithm to automatically track this
MPP. In many grid-tied PV systems (including our current
work), this is done by means of a separate DC/DC power
electronics stage controlled by an MPPT algorithm like ES
that serves two functions: (i) regulating the output DC voltage
at a (near) constant value, and (ii) extracting maximum power
by forcing the PV module output V to equal V*. Fig. 13 shows
this setup for a DC/DC converter stage, whose output voltage
is maintained constant as V,.. The ratio between the input
voltage, V, and output voltage, V,, can be controlled by
changing the duty cycle of the transistor switch in DC/DC
converter, d, which serves as the control input.

From Fig. 12, it follows that at the MPP (V*, P*), the
power satisfies

a%p

%(V*)ZO' W) =h<o. (20)
An MPPT algorithm based on ES is shown for a single PV

module in Fig. 13. Since h < 0, a positive gain, k > 0,
guarantees the convergence of the ES toward the MPP,
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Fig. 13: The ES algorithm is applied to MPPT of a single PV module.
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Fig. 14: Distributed MPPT algorithm for a PV system. Each module has a
separate MPPT. Temperature, T, and irradiance, S, varies all over the
modules.

provided that the initial condition, V7 (0), is reasonably close to
its optimal value, V*.

B. Micro-Converter Architecture

Traditionally, PV arrays have been connected to the AC
power grid through centralized DC/AC power converters (or
inverters). These are now giving way to distributed
architectures that connect each module to a dedicated
converter/inverter. The micro-converter configuration, where
each PV module is connected to its own DC/DC converter, is
shown schematically in Fig. 14. Conventionally, each DC/DC
converter has a MPPT loop to extract maximum power from
the PV system (known as power optimizer in industry). The
output sides of the converters are connected in series. The PV
system is connected to the power grid through a DC/AC
inverter, which has its separate controller. It is assumed that
the DC voltage at the input side of the inverter is held constant
at VdC'

Two problems arise here. First, the scheme of Fig. 14
requires two sensors per module, current and voltage, which
increase the levelized energy cost. Second, the coupling effect
between PV modules is not addressed by this distributed
control. We present a multivariable MPPT based on ES
scheme as shown in Fig. 15 with the following features:

e It is applied to micro-converter systems, and hence deals
with the case of non-unimodal power characteristics, and
deals specifically with the issue of module mismatch (for
example, possibly different irradiance levels as a result of
partially shaded conditions).

The use of the non-model-based ES technique makes the
design robust to partial knowledge of the system
parameters and operating conditions.

As opposed to scalar designs, our multivariable design
only requires 2 sensors in all, for the overall PV system
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current, and the DC bus voltage. This is a significant
reduction in hardware cost.

Moreover, interactions between PV modules are inherently
part of the multivariable design, and hence the transient
performance is less sensitive to environmental variable
variations than a corresponding scalar design.

C. Multivariable ES for MPPT of PV Systems

1) Gradient-Based ES
We want to maximize the power generated by all PV
modules which is equal
P =% 1P = Vaelye (21)
A typical power map of a PV system including two series
module under standard test condition, § = 1000 W/m? and
T = 25 °C, is shown in Fig. 16. Maximum power point
happens at D* = [%57 %57]T. We can generalize the above
observation for the micro-converter structure, i.e., there exists
D* € R" such that
a2p

2D =0, SL(D)=H<0, H=H" (22)
Accordingly, we can use the multivariable gradient-based
ES design shown in Fig. 17 to MPPT of the PV system in Fig.

15. The ES gain, K, is a positive diagonal matrix, and the
perturbation signals are defined as (6) and (7).

Converter
I I
(1. s oL — ol
PV V1 Vo1
b - -
T b1 >
Converter & Inverter
. . o
E (a8 L2 Ioz | — grid
[al PVa| Vo Vo2 Vac —@
2 - ~
© L AC grid
: R
o= Converter
= I I T
g (T Sn) G g de
5 = -
= PV, Vi Von
= —
= -
=1
Dn

Fig. 15: Multivariable MPPT for a PV system. One MPPT is used for the
entire system. Temperature, T, and irradiance, S, varies all over the modules.
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Fig. 16: A typical power map of two cascade PV modules versus pulse
duration, D = [D; D,] . Level sets show the power in Watt. §; =8, =
1000 W/m?, and 75 = 7, = 25 °C.
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Fig. 17: Multivariable gradient-based ES for MPPT of a PV system.

In particular, the design derives an estimate G of the
gradient vector by adding the “probing signal” S(t) to the

estimate D = [D; D, - ﬁn]T of the pulse duration vector (of
all the DC/DC converters). With no additional information on
the Hessian (and also for simplicity), we choose the
amplitudes of the probing signals to all be the same value a. It
can be shown that for a proper set of w; fori € {1,2,---,n},
w;, Wy, a, and with K > 0, the estimate D of the pulse duration
vector and the output P settle in a small ball around the
optimal pulse duration D* = [Dj D; ... D;]7 and the MPP
P(D™), respectively. The radius of the ball is defined by the
lowest probing frequency and its corresponding amplitude.
The linearized update equation for the estimation error

D=D-D"is

< ~ azp .,

D =KHD, H:= E(D ), (23)
where H is the Hessian of P = }7_; P; with respect to the

pulse duration vector, D.

Since the cost function P varies with irradiance,
temperature, and degradation of the PV modules, so does H,
and therefore a fixed adaptation gain K results in different
(condition dependent) convergence rates for each converter. In
order to alleviate the issue of unknown Hessian dependent
convergence, we present in the next section a modified version
of the multivariable Newton-based ES. In comparison with the
gradient-based design of this section, the Newton-based
algorithm makes the convergence rate of the parameter
estimates user-assignable. In particular, all the parameters can
be designed to converge with the same speed, yielding straight
trajectories to the extremum even with maps that have highly
elongated level sets. When applied to the MPPT problem in
PV systems, the method offers the benefit of uniform
convergence behavior, under a wide range of working
conditions that include temperature and irradiance variations,
and under the non-symmetric power generation of the
neighboring PV modules as a result of module degradation or
mismatch.

2) Newton-Based ES

The multivariable Newton-based ES that we propose is
shown schematically in Fig. 18. As is clear from the figure, the
proposed scheme extends the gradient-based ES with the
estimate A of the Hessian. The perturbation matrix N(t) is
defined as (9).

The goal of the Newton-based design is to replace the

estimation-error dynamics D = KHD with one of the form
D = —KTHD, where I' = H™!, that removes the dependence
on the Hessian H. Calculating I' (estimate of H™!) in an

algebraic fashion creates difficulties when H is close to
singularity or is indefinite. To deal with this problem, a
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Fig. 18: Multivariable Newton-based ES for MPPT of a PV system. The
purple part is added to the gradient-based ES to estimate the Hessian.

dynamic estimator is employed to calculate the inverse of H
using a Riccati equation.
Consider the following filter
H =—pH + pH. (24)
Note that the state of this filter converges to H, an estimate of
H. Denote I' = H~'. Since I' = —I'HT, then equation (24)
is transformed into the differential Riccati equation
I'=pl—plAr. (25)
The equilibria of the Riccati equation (25) are I'*
Opxn and I'* = H™1, provided H settles to a constant. Since
p > 0, the equilibrium I'* = 0 is unstable, whereas the
linearization of (25) around I'* = H~'! has the Jacobian
—plyyn » so the equilibrium at I'* = H™! is locally
exponentially stable. This shows that, after a transient, the
Riccati equation converges to the actual value of the inverse of
Hessian matrix if H is a good estimate of H.
Linearization of the update law for the error variable
D = D — D* results in
D=-KD, K> 0, (26)
where elements of K are sufficiently small positive numbers.
According to (26) the convergence rate of the parameter is
independent of the shape of the cost function, and
consequently, after transient, when the Hessian is close
enough to its actual value, the output power converges to the
MPP with the same performance regardless of environmental
or mismatch conditions.
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D. Experimental Results

To show the effectiveness of the proposed Newton-based
design in Fig. 18, and compare its performance with that of the
gradient-based design in Fig. 17, we present experimental
results for a PV system with n = 2 cascade modules.

Our hardware setup consists of 2 cascade PV modules
connected to an active load which plays the role of the DC bus
with V;. = 5V, and is schematically shown in Fig. 19. The
physical hardware setup is shown in Fig. 20, and comprises of
(a) custom-made PV modules constructed using 12 PV cells,
(b) “Power-Pole Boards” developed by the University of
Minnesota configured as DC/DC buck converters, and (c)
DS1104 R&D Controller Board to implement our MPPT
algorithms inside Simulink and interact with the DC/DC
converters, and generate external PWM signals used by the
DC/DC converters. Each Power-pole board has a current
sensor LA 25-NP to measure the inductor current which we
use along with the capacitor ripple current measurement to
calculate the DC bus current. We employ the DC bus current
and DC bus voltage to measure the power supplied to the DC
bus. The selection of dSPACE hardware is intentional and it
has been used as our basic experimental setup to remove the
difficulties attached with hardware prototyping. As we
mentioned in Introduction, the implementation of the ES
algorithm is not complicated. Common electronic parts, like
operational amplifiers, resistors and capacitors can be used to
build an ES algorithm.

The temperature of PV modules is 25 °C and the modules
are fully exposed to the sun between 0-60 s and 120-180 s. To
simulate the effect of partial shading, PV, is covered with a
plastic mat from time 60-120 s. When one module is partially
shaded, the overall power level decreases. We not only
compare the multivariable gradient-based and Newton-based
designs, but also the traditional scalar gradient-based design,
that has one MPPT loop for each converter.

Fig. 21 shows the performance of the 3 designs, and it is
clear that the Newton algorithm recovers from this power level
change faster than the other 2 algorithms. While the Newton
method has the least steady-state error and uniform response
under step down and step up power scenarios, the scalar
design has the highest steady-state error and large response
time in face of power decrease. The multivariable gradient-
based ES performs better than the scalar MPPT under partial
shading conditions.

The irradiance level of the partially shaded module is
returned to normal level at # = 120 s. At this point the Newton
scheme shows faster transient in comparison to the similar
transient of the multivariable gradient-based ES and the
distributed ES. The results demonstrate that the convergence
rate of the Newton scheme does not vary largely from step up
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Fig. 21: Variation of power versus time. The Newton algorithm shows
uniform and fast transient with low steady-state error.

Fig. 22: Phase portrait of the MPPT for the multivariable Newton,
multivariable gradient, and scalar gradient algorithms. Region (a) shows MPP
area for full exposure to the sun and region (b) shows the MPP area when PV,
is partially shaded.

to step down in power generation, which is not true for the
gradient-based and distributed MPPT schemes. Not
surprisingly, the experimental results are in keeping with the
analytical results. Lastly, the Newton-based design moves the
system in almost a straight line between extrema, in contrast to
curved steepest descent trajectories of the gradient algorithm.
This observation is demonstrated clearly in Fig. 22.

V. CONCLUDING REMARKS

Since environmental parameters like solar irradiance and
wind speed affect the power map and maximum power point
of photovoltaic (PV) and wind energy conversion systems
(WECS), we propose extremum-seeking (ES), which is a
model-free real-time optimization algorithm, for maximum
energy harvest or maximum-power-point-tracking (MPPT) in
such systems.

Extremum seeking is effective at guiding the WECS to its
MPP in the sub-rated power region. However, the open-loop
dynamics of the WECS have slow left half-plane poles that
make the response time of the ES even slower. In order to
achieve fast closed-loop response and extra features like
constant voltage-to-frequency or vector control in the system,
we design an inner-loop control based on the field-oriented
control (FOC) concept. The combination of the inner-loop



controller and the ES algorithm improves the performance of
the WECS, as shown by the simulations.

For PVs, we consider the micro-converter architecture,
where each module is connected to its own DC-DC converter.
Conventional designs are scalar, they: 1) ignore the interaction
between modules, and ii) require two (sensor) measurements
per module. We propose a multivariable design that improves
on each of these aspects. We consider first a multivariable
gradient-based ES algorithm, where the Hessian of the power
map has a dominant role in the closed-loop performance. Next,
we employ a Newton-based ES algorithm, which removes the
performance dependence of the gradient-based design on the
Hessian. The Newton-based design has two key/distinguishing
components: i) a perturbation matrix that generates the
estimate of the Hessian, and (ii) a dynamic filter to estimate
the inverse of the Hessian. Experimental results verify the
effectiveness of the Newton-based MPPT versus its (scalar
and multivariable) gradient-based counterparts.
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