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Abstract—Prior works use numerical simulations to verify
component swapping modularity (CSM) for various systems.
Moreover, current CSM algorithms do not investigate control
parameter allocation for a realistic control configuration when
the control consists of multiple parts. Thus, this work primarily
focuses on presenting and experimentally validating an empirical
methodology to allocate and calibrate various parts of the
controller to improve CSM in a precision multi-axis servo-
system. As a secondary contribution, the concept of a modified
reference contour is introduced to simplify control allocation
and to improve the modularity of the cross-coupling control
(CCC) which is utilized to achieve high-precision contouring.
First, the unified linear CCC algorithm is presented for multi-
axis servo-systems. Initially, the sensitivity of the contouring
algorithm versus the control parameters is studied numerically.
Then, empirical calibration and sensitivity analysis are conducted
to obtain the optimal set of control parameters. Hence, the lowest
feasible contour error is obtained for possible configurations of
the servo-system. It is shown that the results of the empirical
analysis are consistent with those of the numerical analysis.
Despite dramatic differences between the servo-system variants,
experimental results show that full CSM is achieved with the
same controller for the variants of the servo-system.

Index Terms—Component swapping modularity, distributed
control, precision contouring, cross-coupling control.

I. INTRODUCTION

The simplest controller configuration is desirable to satisfy a

given set of design criteria for all variants of a networked sys-

tem composed of swappable components. Component swap-

ping modularity (CSM) is a design measure to evaluate the

flexibility of a modular control system to cope with the

effect of variable system characteristics due to swapping

a component with a comparable counterpart. A distributed

control structure as shown in Fig. 1 has been proposed

to improve CSM. The proposed structure includes a base

and local controller. The base controller is the same for all

variants of the system. The local controller, usually placed in

the swappable component, is calibrated to achieve the best

feasible closed-loop performance. Such component swapping

modularity is achieved when desired performance, sufficiently

close to a centralized controller optimized for each variant,

is realized for the distributed controller structure in Fig. 1.

Component swapping modularity is improved when a desired

closed-loop performance is achieved with a low-order local

controller. Various design algorithms to achieve CSM have

been proposed, including the LMI-based Method [4], Direct

Method [13], and 3-Step Method [1]. Numerical simulations
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Fig. 1: Swappable smart component in a control network.

have proven CSM design to be effective in various applica-

tions, including engine idle speed control [4], [11], variable

camshaft timing engine [2], and battery swapping modularity

in plug-in hybrid electric vehicles [12].

This work primarily focuses on developing an empirical

methodology to allocate and calibrate control parameters in a

realistic setting such that minimal control redesign is ensured

when a component is swapped. Although conventional stability

tools are used during the control design process, it should be

noted that the contribution of this work is focused on exper-

imental verification of CSM design in distributed precision

contouring systems [7], [14]. The experimental setup includes

a two-axis micro-precision servo-system with modular control

boards and axes. The ultimate goal of a precision positioning

application is to keep the actual contour identical to the

reference contour. So, the notion of contour error is introduced

which refers to the shortest distance from the current position

to the reference contour.

The prevailing design trend for such contouring algorithms,

known as variable-gain cross-coupling control (CCC), was

originally introduced by Koren [9], [10] and is shown in

Fig. 2. A basic CCC is comprised of two parts: 1) a contour

error estimate (CEE) algorithm, composed of time-varying

gains C1 and C2, which calculates the shortest distance from

current position to the reference contour, and 2) an error

compensator, Gc(s), which is designed to drive the contour

error to zero. The widely used CCC algorithms effectively

improve contouring precision by compensating for the effect of

uncertainty and by reducing contour error in multi-axis servo-

systems.

The variable-gain CCC is a multi-input-multi-output com-

pensator designed to incorporate coupling between all the axes.

Therefore, due to the centralized nature of the variable-gain

CCC, it is not feasible to fully distribute the parameters of

the variable-gain CCC into local and base controllers [7],

[14]. Thus, it is not possible to achieve full CSM for the

variable-gain CCC. Ghaffari and Ulsoy [6] have introduced
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Fig. 2: Variable-gain CCC for a two-axis servo-system,

originally proposed by Koren and Lo [9].

the modified error feedback concept to eliminate the need for

a separate cross-coupling loop by modifying the error signal

used in each of the position feedback loops. In this work,

it is shown that the modified error feedback concept can be

transformed into a modified reference contour concept such

that the contouring algorithm is further simplified. In either

case, the cross-coupling is achieved without changing the

position control structure. The modified reference is a convex

combination of the leading reference point and an estimate of

the closest point of the reference contour to the current position

which is obtained using the Newton-based CEE algorithm [6].

An optimal modified reference is obtained by properly tuning

the positive gain 0 ≤ λ < 1, where λ remains the same for

all the axes. So, Gc(s), C1, and C2 are no longer needed

which reduces the number of control parameters which in turn

improves CSM.

The proposed contouring algorithm, shown in Fig. 3(b) for

one axis, includes a position control, feedforward compensa-

tion, disturbance compensation, and the Newton-based CEE

algorithm [6]. The modified reference contour reduces the

compensator in the CCC algorithm to a proportional gain, λ,

which further simplifies the tuning process of the control loop.

A servo-system is comprised of a power amplifier, elec-

tric machine, and linear stage. Swapping an axis, partially

or entirely, with a compatible counterpart may change the

system dynamics which may compromise the performance of

the positioning or manufacturing process unless the modified

system controller is re-calibrated. The proposed contouring

algorithm is fully modular and suitable for use in CSM design.

Therefore, it is convenient to conduct a sensitivity analysis

of the control structure of each axis without considering the

coupling effect from the other axis. Moreover, the result of the

sensitivity analysis is used to optimally distribute the control

elements between the local and base controllers such that the

best contouring performance is achieved with the simplest

local controller.

Given the proposed structure of the integrated controller (see

Fig. 3(b)), first, a numerical sensitivity analysis is conducted to

study the effect of each parameter on contouring performance.

Then, an empirical methodology is developed to evaluate the

sensitivity of the closed-loop performance with respect to the

control parameters. It is shown that the empirical results are

aligned with the numerical results. With careful design of the

controller full CSM can be achieved even when all the control

parts are located in the base controller. Thus, when an axis is

swapped the control need not be re-calibrated to ensure the

lowest feasible contour error.

The disturbance compensation dramatically attenuates the

effect of friction and nonlinearity [3], [8]. An initial estimate

of the axis dynamics is required to implement the disturbance

compensation. So, the first step of the control design is to

identify system dynamics of each axis to implement the

disturbance compensation. Then, the compensated loop can be

modeled using a more accurate linear model. Thus, the axis

model after disturbance compensation is obtained to design

the rest of the controller. Bode plots of the closed-loop system

plus extensive experimental simulations show that the closed-

loop system is robust with respect to the parameters of the

disturbance compensation loop. So, a fixed set of reasonably

large gains for the position control loop guarantees high-

precision contouring. Thus, swapping modularity is improved.

The work of Ghaffari and Ulsoy [5] develops the empirical

sensitivity analysis and provides the necessary steps for model

identification and control design. This paper extends the results

of Ghaffari and Ulsoy [5] in two directions: 1) a numerical

sensitivity analysis is provided, and it is shown that the

numerical results are in line with the experimental results. 2)

After designing the CCC for CSM, extensive experiments are

conducted to verify that the obtained controller indeed requires

no tuning when one axis is swapped. Thus, demonstrating

experimentally for the first time that full CSM is achieved.

The rest of the paper is organized as follows: Section II

presents the integrated contouring algorithm using the mod-

ified reference concept. Section III explains the system con-

figuration and the identification process. Section IV presents

the numerical and empirical sensitivity analysis and provides

experimental results and numerical analysis to support the

obtained control parameter set. Section V concludes the paper.

II. MODIFIED REFERENCE AND INTEGRATED

CONTOURING ALGORITHM

The dynamic equations of a single servo-axis can be repre-

sented as:

d

dt
p= v (1)

d

dt
v =−bv + a (u+ d) , (2)

where u is command, d is disturbance including load and

friction, v is velocity, p is position, k = a/b is the DC gain,

and τ = 1/b is the time constant of the axis.

Assume the reference contour map is r(θ), where θ is

a real number and indicates the current position along the

reference path. Position and velocity error vectors of a multi-

axis servo-system are defined as p̃ = r(θ) − p and ṽ =
dr(θ)/dt − v, where boldface letters indicate vectors, e.g.,
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Fig. 3: (a) Modified reference improves contouring precision. (b) Integrated contouring control for one axis. Contour error

estimate is calculated using the Newton method [6]. The reference contour, shown in (a) as r(θ), is a vector and its

projection along one axis is r(θ) as shown in (b).

f = [f1 f2 · · · fn]
T for a n-Axis system. The contour error,

ǫ∗, is the shortest distance from the current position, p, to the

reference contour, r. Let ǫ∗ occur at θ∗, i.e., ǫ∗ = r(θ∗)− p.

Denote the contour error estimate as ǫ = r(θ̂)−p, where θ̂ is

an estimate of θ∗ which is obtained using the Newton-based

CEE algorithm [6].

A. Modified Reference

Ghaffari and Ulsoy [6] have shown that the modified feed-

back concept facilitates CCC design by removing the contour

error compensator from the control loop. Instead, the position

control loop of each axis acts on the modified feedback along

the relevant axis. Contouring precision is improved by properly

tuning the ratio of the contour error and the position error

in the modified error. Intuitively speaking, the modified error

vectors determine in which direction the current point will

progress which spans the area between p̃ and ǫ. Please see

Fig. 3(a). The modified error vectors are introduced as follows:

p̌ = (1− λ) p̃+ λǫ

= r′ − p (3)

v̌ = (1− λ) ṽ + λ
d

dt
ǫ

=
d

dt
r′ − v, (4)

where the modified reference contour is introduced as:

r′ = (1− λ) r(θ) + λr(θ̂), 0 ≤ λ < 1. (5)

Without including the effect of contour error in the control

loop, accurate position tracking is not feasible due to the

wide range of reference contours, uncertainties, and external

disturbances. The modified reference is another interpretation

of the modified feedback concept which shows that one can

directly include the effect of contour error in the modified

reference instead of changing the feedback. As shown in

Fig. 3(a), the modified reference redefines the leading point

of the contour on a straight line between r(θ) and r(θ̂).

Parameter λ is tuned such that desired contouring precision

is achieved for a given set of reference contours. If λ = 0,

there is no cross-coupling. Moreover, λ = 1 is not possible

to achieve because controllability is lost between the current

position and the reference point.

B. Integrated Control Algorithm

The experimental setup consists of linear stages driven by

ball screw mechanisms. The ball screws exhibit considerable

friction with stiction levels up to 10% of the command signal.

So, it is desired to alleviate the effect of friction and external

disturbance using the following disturbance estimator [3], [8]:

d

dt
d̂ = −ωdd̂+ ωdξ, (6)

where

ξ =
ωz (z + v) + b̂v

â
− u, (7)

d

dt
z =−ωzz − ωzv, (8)

where â and b̂ are estimates of a and b, respectively. Also,

ωz and ωd represent filter cut-off frequency for acceleration

and disturbance estimators, respectively. An estimate of ac-

celeration, v̇, is obtained as v + z. Thus, ωz should be large

enough in comparison to b such that an accurate estimate of

acceleration is obtained which is used to calculate ξ, which

is an un-filtered estimate of the disturbance. So, to obtain a

smooth estimate of disturbance, one can filter ξ using a first

order low-pass filter with cut-off frequency ωd. A reasonable

ωd falls between b and ωz , i.e., b ≪ ωd ≪ ωz .

Denote u = uc − d̂. Then one can convert (2) to

dv

dt
= −bv + a

(

uc − d̂+ d
)

. (9)

Then, the transfer function of the compensated velocity loop,

from uc to v in Fig. 3(b), can be calculated using Laplace
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Fig. 4: (a) The servo-system is comprised of three linear axes, denoted Axis-2, Axis-3, and Axis-1, respectively from bottom

to top. (b) Control box, including (1) Ethernet hub, (2 & 3) control boards, (4) interface circuit, and (5 & 6) servo-drives.

(c) Schematic of the experimental setup. Axis-2 is swappable with Axis-1.

transformation of (6)–(9) and basic arithmetic operations

which gives the following

V (s) =
Bu(s)

A(s)
Uc(s) +

Bd(s)

A(s)
D(s), (10)

where

Bu(s)=a (s+ ωz) (s+ ωd) (11)

Bd(s)=as (s+ ωz) (12)

A(s)=s3 + (ωz + b) s2 +
((

ωz + b̂
)

ωd

a

â
+ ωzb

)

s+

+ωdωz b̂
a

â
, (13)

where V (s), Uc(s), and D(s) are Laplace transformations of

v(t), uc(t), and d(t), respectively.

From (10)–(13) one can observe that the steady state gain

from the disturbance to velocity output is zero. Thus, the

stiction level can be dramatically attenuated which enables the

designer to fit a linear model to the compensated loop fairly

precisely. In fact, the experiments show that after disturbance

compensation one can fit a second order model to each axis

with an accuracy above 95%. However, it should be noted

that the DC gain from uc to v equals â/b̂. Also, ωz and ωd

are selected such that b ≪ ωd ≪ ωz . Thus, the location of

the dominant pole is largely determined by b̂. So, considering

the physical limitations of the servo-axis, the designer can

reshape the disturbance compensation loop to meet a desired

transient performance. Moreover, care has to be taken that the

upper level of disturbance attenuation, â/(b̂ωd), stays as low

as possible.

Since b ≪ ωd ≪ ωz , then it is reasonable to simplify

(10) as a first order system free of disturbance. The resulting

reduced model, which will be used to design the position

control algorithm, is given as follows

G′(s) =
P (s)

Uc(s)
=

a′

s (s+ b′)
, (14)

where a′ and b′ can be obtained using system identification.

Using the following control law

uc = KV v̌ +KP p̌+
KPKI

s
p̌+

s2 + b′s

a′
r′ (15)

one can transform the position loop into

P (s)

R′(s)
=

a′KPKI

s3 + (b′ + a′KV ) s2 + a′KP s+ a′KPKI

, (16)

where R′(s) is the Laplace transformation of the modified

reference along one of the axes r′ = (1 − λ)r(θ) + λr(θ̂).
As shown in Fig. 3(a), instead of tracking the lead point

of the reference contour, r(θ), the proposed contouring

control tracks the modified reference, r′, which incorporates

contour error in the tracking process. The shape and feedrate

of the reference contour affect selection of λ. Also, when

λ = 0 there is no cross-coupling between the axes of the

servo-system.

III. SYSTEM CONFIGURATION AND IDENTIFICATION

The experimental setup and its schematic are shown in

Fig. 4. Three linear stages are used to incorporate swapping

modularity in the system. Axis-1 and Axis-2 are structurally

identical with length and mass of 150 mm and 4.46 kg,

respectively. Stage length of Axis-3 is 100 mm and stage

mass is 3.67 kg. The rest of the electrical and mechanical

technical characteristics are the same for the three axes and

are listed in Table I. The CSM experiments are conducted

on a servo-system composed of axes (2,3). Then, Axis-2 is

swapped with Axis-1. Also, to highlight the differences caused

by swapping Axis-2 with Axis-1, the three axes are installed in

the following order, from bottom to top: Axis-2, Axis-3, and

Axis-1. Please see Fig. 4(a). So, Axis-1 works as an external

disturbance for axes (2,3) which causes considerable variation

between dynamics of axes (1,3) and those of axes (2,3). The

objective is to design an optimal contouring algorithm with

the highest level of CSM for the given servo-system.

As explained in Section II, disturbance compensation plays

a major role in improving closed-loop performance. Thus, the
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Parameter Value Unit

Drive Ground ball screw –
Motor Brushless servo 3-phase –
Encoder 0.125 µm rotary –
Encoder output A quad B, index –
Linear accuracy 12 µm
Linear Repeatability 2 µm
Max. linear velocity 150 mm/s
Screw lead 2 mm

TABLE I: System parameters for the linear stages.

steps to design the disturbance compensation are explained

first. The disturbance estimate is given by (6)–(8). So, the

values of â and b̂, which are estimates of a and b, respectively,

are required to implement the disturbance estimator.

Stiction is discontinuous and a major source of disturbance

in ball screw mechanisms, consuming up to 10% of the control

power signal. The stiction information for each axis is obtained

experimentally and shown in Fig. 5(a). On average, the stiction

consumes 5.5%, 8.8%, and 7.7% of the control signal for Axis-

1, Axis-2, and Axis-3, respectively. Also, the friction level is

slightly higher for Axis-2 because Axis-2 is installed under

axes (3,1). Thus, linear models cannot fit the system dynamics

precisely, unless the friction is compensated using a static or

dynamic compensator. The dynamic disturbance compensation

in Fig. 3(b) relies on the estimates of the system parameters

a and b, and dramatically affects contouring performance. So,

â and b̂ are initialized using the result of an open-loop system

identification. The results obtained are â ∈ {1695, 648, 1116}
and b̂ ∈ {10.1, 6.5, 5.8}. As expected, the response time is

55% faster, and the DC gain is 70% larger for Axis-1 in

comparison to those of Axis-2.

After disturbance compensation, one can fit a linear model

to each axis with an accuracy of more than 95% and use

the linear model to design the position control loop. So, a

closed-loop system identification is conducted to obtain the

dynamic model of each axis after disturbance compensation.

A schematic of the closed-loop system identification is shown

in Fig. 5(b). The exact model of the compensated velocity loop

is given by (10). However, it is assumed that b ≪ ωd ≪ ωz.

So, one can accurately replace (10) with a first-order system:

V (s)

Uc(c)
=

a′

s+ b′
. (17)

The equivalent transfer function of Fig. 5(b) is

Gid(s) =
P (s)

R(s)
=

a′KP

s2 + (b′ + a′KV ) s+ a′KP

. (18)

The controller gains are selected as KP = 4 and KV = 0.1.

The identification results obtained are a′ = {873, 754, 801}
and b′ = {19.7, 24.7, 19.9}. The variation in the values of

a′ and b′ is relatively small. As noted previously, except

for mass and length, the three axes have the same physical

characteristics. Thus, it can be concluded that the disturbance

compensation effectively attenuates external disturbances and

axis friction. So, the resulting linear models are relatively

close.
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IV. CONTROL SENSITIVITY ANALYSIS AND

EXPERIMENTAL VERIFICATION OF SWAPPING

MODULARITY

An overview of the control algorithm for one servo-axis is

shown in Fig. 3(b). Tunable control parameters are selected as

Ω =
{

â, b̂, KV ,KP ,KI , a
′, b′

}

. (19)

Assume a part of the multi-axis servo-system is swapped

with a compatible counterpart. The worst case scenario is

to achieve CSM by re-calibrating all the control parameters.

The objective, however, is to reduce the contour error to its

minimum feasible level by tuning the fewest number of control

parameters. Apart from the modified reference loop which

uses the CEE algorithm, each axis consists of four loops:

1) disturbance compensation, 2) velocity, 3) position, and 4)

integral action. Sensitivity analysis is undertaken numerically

and empirically to study the effect of each parameter on

contouring precision. It is shown that the experimental results

are aligned with the numerical results.

The disturbance compensation is initialized as explained in

Section III. Then, the closed-loop identification is conducted

to obtain the compensated model for each axis; the results

of which are used to tune the rest of the control loops. The

outermost loop is tuned based on the following reference

model
P (s)

R′(s)
=

αω2
n

(s2 + 2ζωn + ω2
n) (s+ α)

. (20)

The control gains are calculated as

KI =
αωn

2αζ + ωn

(21)

KP =
2αζωn + ω2

n

a′
(22)

KV =
α+ 2ζωn − b′

a′
(23)
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Fig. 6: Variation of contour error versus (a) disturbance compensation parameters, â and b̂, and (b) feedforward

compensation parameters, a′ and b′. (sb) and (sa) simulations, and (eb) and (ea) experiments.

which show that the integral gain is independent of axis

dynamic model. Table II lists the KV ,KP , and KI values

for the desired ωn = 25 rad/s, ζ = 0.7, and α = 35 rad/s.

After initializing the contouring control, the cross-coupling

is achieved with λ = 0.75. The control parameters

are tuned sequentially, i.e., all parameters are fixed ex-

cept one which is calibrated to achieve the smallest con-

touring error. The parameters are calibrated from inner-

most loop to the outermost loop in the following order:

b̂3, â3, b̂2, â2,KV 3,KP3,KI3,KV 2,KP2,KI2, b
′

3, a
′

3, b
′

2, and

a′2. When Axis-2 is swapped with Axis-1, the control pa-

rameters of Axis-1 are tuned in the following sequence:

b̂1, â1,KV 1,KP1,KI1, b
′

1, and a′1. However, the control pa-

rameters of Axis-3 are not re-calibrated to highlight the level

of CSM achieved only using the control parameters of the

swapped axis. The results of the system identification are used

to initialize the control parameters as listed in Table II.

The results of the numerical simulations and experiments

are shown in Fig. 6(a)–(b) and 7. The numerical simulations

closely follow the experimental results. Minor mismatches are

because of modeling error. Contouring performance shows the

lowest level of sensitivity to variation of control parameters

of Axis-1. Also, except for the disturbance compensation

Axis â b̂ KV KP KI a′ b′

1 1695 10.1 0.057 2.12 11.82 873 19.7
2 648 6.5 0.060 2.45 11.82 754 24.7
3 1116 5.8 0.062 2.31 11.82 801 19.9

TABLE II: Initial values of the control parameters obtained

from model identification.

parameters, the contouring precision shows similar sensitivity

to the rest of the control parameters of Axis-2 and Axis-3.

As Fig. 6 shows, the contouring precision has a local

minimum versus variation in the parameters of the feedforward

and disturbance compensators. Moreover, as Fig. 7 shows, the

position control gains, if chosen large enough, have a negli-

gible effect on contouring performance, the reason for which

lies in the system configuration explained by (16). Assuming

KV = 0.1,KP = 4, and KI = 11.8, and incorporating

25% variation in a′ = 800 and b′ = 20, Fig. 8 shows

that the variation in the closed-loop Bode plot is negligible

which indicates low sensitivity of the closed-loop system with

respect to large KP and KI . The sensitivity analysis of Kp

and KI , shown in Fig. 7, suggests an increase in KP and

KI to make them as large as feasible. However, excessively

large values of KP and KI push the dominant poles towards

the imaginary axis and cause oscillations in contouring and

consequent instability of the closed-loop system.

There are slight differences between sensitivity curves ob-

tained from the simulations and experiments in Fig. 6(a)

because of the effect of unknown nonlinear dynamics in the

disturbance compensation loop. Nevertheless, Fig. 8 shows

that the closed-loop system is relatively robust to the variations

of the linear model of the disturbance compensation loop.

Moreover, the system identification reveals that the disturbance

compensation loop fits a second order linear model with accu-

racy more than 95%. Thus, one can overlook the differences

between the results of the experiments and simulations in

Fig. 6(a). Hence, the disturbance compensation parameters of

Axis-1 and Axis-2 are selected identical.

The feedforward sensitivity analysis is shown in Fig. 6(b).
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Fig. 7: Variation of contour error versus position control

gains. (sv), (sp), and (si) simulations, and (ev), (ep) and (ei)

experiments.

The simulations and experimental sensitivity results are very

close because the disturbance compensation efficiently al-

leviates the effect of uncertainties, friction, and external

disturbances. The contour error shows the same level of

sensitivity with respect to variation in b′ and a′ of Axis-2

and 3. The simulations suggest the same sensitivity curves

for the feedforward parameters of Axis-1. Moreover, since

the experiments show that the contour error only changes

slightly when feedforward parameters of Axis-1 vary, then the

feedforward parameters can be the same for all three axes. The

result of the empirical sensitivity analysis is given in Table III.

Various experiments have been conducted, and it is con-

cluded that swapping Axis-1 with Axis-2, or vice versa, does

not affect the control parameters which indicates that full

CSM is achieved without re-calibrating any of the control

parameters. The experimental verification of CSM is shown

in Fig. 9. The reference contour is a circle with radius 20 mm

and frequency 0.5 Hz implemented as r1 = r2 = 20 cos(πt)
and r3 = 20 sin(πt). Because each axis changes direction two

Axis â b̂ KV KP KI a′ b′

1 600 20 0.1 4 11.8 900 30
2 600 20 0.1 4 11.8 900 30
3 1000 25 0.1 4 11.8 900 25

TABLE III: Control parameters obtained from the empirical

sensitivity analysis.
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Fig. 8: Closed-loop Bode for 25% variation in a′ = 800 and

b′ = 20.
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Fig. 9: Contouring performance when Axis-1 is swapped

with Axis-2. Full CSM is achieved. The integral of contour

error is 18.37 µm and 18.46 µm (i.e., nearly identical) for

A3-A1 and A3-A2 configuration, respectively.

times during a full period, the friction then changes sign at

the beginning of each quadrant which causes error spikes at

times 2, 2.5, 3, and 3.5 s. The integral of contour error is

18.37 µm and 18.46 µm for A3-A1 and A3-A2 configuration,

respectively. Hence, the obtained control parameters from

the empirical analysis result in almost identical contouring

performance with the same control for the axis combinations

A3-A1 and A3-A2, which indicates full swapping modularity.

Further experiments, not shown here, reveal that the obtained

controls are indeed optimal and contouring is achieved with

highest possible precision.

Achieving full CSM reduces time in tuning and calibration

of control in distributed manufacturing systems. The con-

ducted empirical analysis reveals that the linear model of

the disturbance compensation loop provides an accurate basis

for designing the proposed contouring algorithm. In other

words, instead of designing the control loop using the original

dynamics of the servo-system, one can use the results of the

closed-loop system identification to guarantee near optimal

contouring performance and full CSM. To achieve optimal
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contouring, the empirical analysis can be conducted in a ball

around the controller gains initialized using the results of the

closed-loop system identification.

V. CONCLUSIONS

The unified contouring framework presented improves CSM

in networked multi-axis servo-systems. The modified refer-

ence concept eliminates the need for a separate controller to

ensure cross-coupling. Thus, the closed-loop system remains

identical to the position control loop. So, the control can

be designed using conventional methods. Flexible allocation

and the modular structure of the modified reference contour

improves CSM design and reduces tuning and calibration in

distributed manufacturing systems. An empirical sensitivity

analysis was conducted to optimally distribute the control

parameters between the local and base controller. Extensive

experiments were conducted, and the results showed that

despite dramatic changes caused by swapping one of the axes,

the highest level of CSM is achieved. In other words, it is

experimentally shown for the first time that there exists an

identical optimal configuration for the position control loop

such that the lowest contour error is obtained for the available

configurations of the two-axis servo-system. Moreover, the

numerical simulation was proven to be fairly accurate. Thus,

in future designs, one can opt out of the empirical analysis

and conduct numerical sensitivity analysis to tune the control

for CSM.
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