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Abstract 

In this paper, the performance of a free chattering sliding 
mode controller has been modified by neural network in 
order to decrease the consumption of energy.  In other word, 
the final goal is to decrease the switching part of the control 
signal to the lowest level such that under this condition the 
system states converge to the sliding surface.  The designed 
controller is applied to a flexible-link to control the endpoint 
position. The flexible-link has one degree of freedom and 
rotates in horizontal plane. The dynamic model was obtained 
from an experimental setup. Simulation results reveal the 
effectiveness of the proposed approach. 

1 Introduction 

By ever increasing application fields wherein robots are 
being deployed the need for high-speed performance, more 
precision, decreased the energy consumption, the researchers 
and manufacturers were both encouraged to design and 
implement lighter manipulators. Decreasing the weight of the 
manipulators caused flexibility while at the same time 
resulted in vibration problem.  To eliminate the vibration 
problem we must have an accurate model of the flexible-link. 
The flexibility causes the link to be a non-minimum phase 
system. It must be noted that the decrease of momentum 
results into unwanted vibrations in manipulator against large 
displacement or external disturbances. Various methods were 
referred in [7] to control this manipulator. 
In this paper care has been taken to utilize sliding mode 
method in order to induce the necessary robustness such that 
the end of manipulator traverses the required trajectory with 
utmost precision. The greatest disadvantages of these 
controllers are chattering phenomenon and very high energy 
consumption. Lots of works has been done to reduce the 
chattering effect while not much effort is spared to optimize 
these controllers. It must be noted this method was used in 
optimization problems [9]. 

Here, desired goal is to minimize the consumed energy by 
using the advantages of neural network and defining a 
function of cost. The simulations exercised here certify this 
idea. To learn the neural network, error back propagation 
method is employed. The structure of paper is organized as 
follows:  
In section 2 presentation has given of the dynamic equations 
of the flexible-link, while in section 3, the physical 
characteristics of the same has been explained. Section 4 
discusses the design basis of sliding mode controllers 
(S.M.C). In section 5, the neural network is added to the 
controller.  Section 6 presents the simulations for flexible-
link. Finally the conclusions and references are given in 
section 7. 

2 Flexible-links modelling  

Fig. 1 shows the structure of the flexible-link used. Assume 
that the flexible-link is uniformly elastic and is an Euler-
Bernoulli beam with its torsion and strain set being zero. This 
assumption is acceptable provided that the strain and torsion 
are negligible compared with deflection. 
 

  
Fig. 1: Flexible-link’s structure. 



If the flexible-link doesn’t have any deflection, aligns on x1 
axis. Deflection of any point of the link at any time presented 
by w(x,t) and it is derived by solving  Euler-Bernoulli beam 
equation [4]. 
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By separating variables, the solution of the equation is given 
in Equation (2).  To satisfy the boundary condition, the final 
result will be obtained from adding the terms given in 
Equation (2). In other word, the complete solution of Euler-
Bernoulli equation is given in Equation (3). The natural 
frequencies of the vibrations are denoted by ωi and they are 
obtained from Equation (4). The singular vectors },...,{ 1 ∞φφ  
are a set of functions that satisfy in Equation (5). 
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The ci constants normalize these functions such that Equation 
(6) was satisfied. In fact for measuring deflection finite 
number of these terms it is assumed (Assumed modes 
method). This number is dependent on the flexibility of the 
manipulator and its vibration [4]. 
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With respect to the above assumptions and by recursive 
Lagrange approach the dynamic equations are derived in 
Equation (7). θ is the hub angle, δ is an m×1 vector of 
deflection variables which m represents the number of 
assumed modes, n1 and n2 demand the coriolis and centrifuge 
forces and B is a positive definite symmetric matrix which 
was known as inertia matrix [4], [8]. 
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Ks=Diag{ksi,…,ksm} is the stiffness coefficient and it is a 
positive definite diagonal matrix. fv denotes the viscous 
friction in the hub position, the structural damping was 
shown by Fs=Diag{fsi,…,fsm} that is a positive definite 

diagonal matrix which represents the internal viscose friction 
of the flexible structure, fc is the coulomb friction was 
modeled by a sign function but to eliminate discontinuity; the 
coulomb friction was modeled by Equation (8). Equation (9) 
defines the end point position [4]. 
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3 Physical characteristics of flexible-link 

Table 1 shows the parameters of a real link where, L is the 
length of the link, γ is mass per unit of length, I0 denotes the 
joint actuator inertia and J0 is the link inertia relative to the 
joint, v represents the hub damping coefficient, Ccoul is the 
coulomb friction coefficient. E shows the young’s modulus. 
The inertia momentum of the beam equals I and ωi is the i’th 
oscillation frequency. The fsi parameters are the structural 
damping coefficients and ML is the mass of the payload. In 
this case we have a vibration mode (m=1). The link mass 
illustrated by mb and the load inertia is given by JL [4], [8]. 
 

0.59 Nm/rads-1 v 

4.72 Nm for θ& >0 and 4.77 Nm for θ&<0  Ccoul 
2.21 N.m2 EI 
3 rad/s ω1 
1.356 kg mb 

0.38 fs1 
0.05 kg ML 
1.2 m L 
1.13 kg/m γ 
0.651 kgm2  J0 

0.27 kgm2 I0 
0.0116 kgm2 JL 

 
Table 1: Link parameters for the experimental manipulator. 

4 The basis of sliding mode controller design 

Assume system dynamic equations are represented by 
Equation (10). Error defines in Equation (11) and sliding 
surface equation presents in Equation (12). Equation (13) is 
obtained by deriving sliding surface. 
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If 0S =&  the equivalent control signal (ueq) will be derived. In 
this equation κ̂  and ξ̂  are computed values and they include 
some uncertainty. To make the error tendency approach zero 
such that the states converge to defined surface in each time 
the sign of distance from surface and its derivate must be 
different. To meet this goal, a part is added to the equivalent 
control signal [5]. 
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In this case, G shows the value of uncertainty in system 
modeling. With respect to the structure of system κ

κ
ˆ  is 

positive. To converge the states of the system towards 
defined surface, (15) must always be satisfied, in which Gu is 
the highest band of G. If the value of s is negative (15) will 
be satisfied.  By assuming that s is positive and Equation (13) 
holds, the inequality (17) is obtained [5]. 
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By choosing this value for k, the goal is achieved. The 
notable problem in this case is robustness of controller 
against uncertainty.  If disturbances and uncertainties are in 
the range such that the inequality (17) is satisfied, the closed 
loop control process is stable and states of the system 
converge to the desired surface. In spite of these advantages, 
they have great shortcoming which is high frequency 
oscillation which can increase the energy and destroy the 
actuators in a short time. In general, chattering must be 
eliminated for the controller to perform properly. This can be 
achieved by smoothing control discontinuity in a thin 
boundary layer neighboring the switching surface where ψ is 
the boundary layer thickness as illustrated in Fig. 2.  

{ } 0,)t,x(s,x)t(B >ψψ≤=    
All trajectories starting inside B(t=0) remain inside B(t) for 
all 0t ≥ ; and we then interpolate u inside B(t) and if they 

start position were outside B(t=0), the states of the system 
converge inside B(t) in finite time. The tracking will be done 
with finite precision [5].  
 

 
 

Fig. 2: Saturation function. 
 

By using an adaptive saturation unit, chattering phenomenon 
will be considerably reduced. (See Fig. 4) In such a manner 
that the corresponding parameters of the unit may get their 
desired values adaptively. The required adaptation task is 
done by a neural network whose outputs are the adjusted 
parameters of the said unit. The desired nonlinear mapping of 
the unit may be shown as follows: 
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Since for the purpose of differentiation, we need continuity 
property for the unit, we may get the same features by using 
the continuous version of the saturation block, i.e., a sigmoid 
function whose main parameters (k, α) are adjusted by a 
neural network (See Fig. 3). 
Finally as an important issue, it must be noted that in non-
minimum phase systems, the chosen surface takes different 
dynamics with respect to the input signal and the system may 
become unstable in response to some particular inputs [6]. 

 

 
 

Fig. 3: Smooth switch used in this paper. 

5 Controller modification by neural network 

By using sigmoid function with constant slew rate of 
kα=α′ and constant amplitude of k, the chattering was 

eliminated. By changing these two parameters the suitable 
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control signal will be accessible. To overcome different 
uncertainties and external disturbances these parameters 
should changed manually. Analytically design to find these 
values will be a difficult procedure and take much more time. 
Also, unsuitable values will increase consumption energy or 
make the system unstable. Because of these problems in this 
section, by applying neural network and defining a cost 
function like that of (19) and neural network training, the two 
parameters α and k will be obtained automatically such that 
the suitable performance of controller will be obtained.  Fig. 
4 shows the neural network added to control process.  
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For parameter generating a 3-layer neural network is 
assumed.  Also, hidden layer neurons are unipolar and the 
output layer of network is linear. Error back propagation 
method was used to train the network only the weights are 
trained. The training process is online. 
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The reason of using us in equation (19) is that, the greatest 
part of oscillation in control signal obtained from this part. 
The variables which could adjust this part of control signal 
are k and α. Then the sigmoid slew rate (αk) and maximum 
amplitude (k) must be adaptively adjusted such that this goal 
is achieved. 
It is so important that if neural network entering in control 
process the stability of the structure is unproved. To initial 
weighting the Nguyen-Widrow algorithm is used. Also it is 
possible to employ some other learning methods. But, 
because the stability of neural network is not proved as such, 
this method can be employed to control modification process. 
With respect to the S.M.C. advantages and by reviewing 
Inequality (17) it was obtained clearly if neural network 
outputs were diverged such that (17) was satisfied and α was 
a positive value the system wasn't be unstable.   
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Fig. 4: Applying neural network to control process. 

6 Simulations 

The simulation cases were illustrated in Table 2. 
Case no. Uncertainty Adaptation box 

first × × 
second √ × 
third × √ 
fourth √ √ 

Table 2: simulation cases. 
By applying discontinuous switch function in S.M.C. the 
results are verified without uncertainty presence, the 
chattering problem was clearly observed. But in the first case 
where sigmoid function with k=2 and α=1 was used the 
chattering phenomenon was eliminated and less energy was 
consumed (See Fig. 5). To modify the performance of 
controller, the neural network is added to the controller 
structure.  In the third case, the rise time increases but the 
settling time reduces. Fig. 6(a) and Fig. 6(b) show the results 
of simulations for first case and third case. Fig. 6(c) shows 
the convergence of α and k. Energy consumption is 
implemented by Fig. 6(d) for these two cases. 
By adding 50% uncertainty in coulomb friction modeling, the 
rise time and the settling time were increased. To improve the 
controller performance and reduce the rise time value k must 
be increased. But in this case, the energy consumption also 
increases. The value of α and k were chosen approximately in 
the second case (k=4, α=2), and, therefore, the best 
performance could not be expected.  
In the second case and fourth case, the observed changes 
were similar to the previous case. Only in the fourth case will 
the parameters converge to higher values from third case. 
The results are shown in Fig. 7.  
Large absolute value of error causes the parameters increase 
with a high rate at the beginning of simulations (See figures 
6(c) and 7(c)). But when the error came down to zero their 
values decreased with a high slope. The adaptive 
performance of the neural network completely is observable 
here. The difference between consumed energy in the third 
and fourth cases is shown in figures 6(d) and 7(d). It can be 
seen in the mentioned figures the consumed energy in the 
presence of neural network considerably lowers than that of 
the other case. 
Again the reason for this phenomenon is the flexibility for 
adjustment of the parameters k and α. As before noted the 
parameters converge to higher values in the fourth case. In 
fact adaptive characteristic of the neural network make the 
controller performance better. 
As last point it must be noted that selecting η and λ is very 
important. Some values of them cause instability in controller 
or unacceptable transient performance. In terms of 
asymptotic stability region of the closed loop system one may 
consider that parameters converge to larger value when there 
is no neural network. 

7 Conclusions 

The sliding mode controllers show up enough robustness 
against uncertainty and disturbances.  However their 
important disadvantage is chattering phenomenon and that 



smoothing switch function can eliminate it. One of the 
problems that are to be studied is how to choose a smooth 
function instead of a switch function. In this approach use of 
a sigmoid function is usual. Nevertheless, selection of the 
amplitude and slope of the sigmoid function had been done in 
different ways. In this paper, a neural network is used to 
adjust the parameters. So, the controller employs the 
advantages of neural network (robustness and adaptation).  
The equivalent control signal depends on system structure 
and hence, does not vary. It should be noted that the 
switching part of control signal can be selected such that the 
best performance is achieved. To achieve better performance 
while improving the stability, the dynamic switches are 
recommended.  
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Fig. 5: Comparison of the simulation results of the end point control between discontinuous and continuous switches.  

(a)- End point position, discontinuous switch (…), smooth switch (___); (b) - Control signal, discontinuous switch (…) 
(c)- Control signal, smooth switch (___); (d) - Energy Consumption, discontinuous switch (…), smooth switch (___). 
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Fig. 6: Comparison of the simulation results of the end point control between first case and third case. 

(a)- End point position; (b) - Control signal, first case (…..) and third case (____); 
(c)- Convergence of k (___) and α (…..); (d) - Energy Consumption, first case (…..) and (__) third case. 
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Fig. 7: Comparison of the simulation results of the end point control between second case and fourth case.  

(a)- End point position; (b) - Control signal, second case (…..) and fourth case (____); 
(c)- Convergence of k (___) and α (…..); (d) - Energy Consumption, second case (…...) and fourth case (__). 
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