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a b s t r a c t

We present a Newton-based extremum seeking algorithm for the multivariable case. The design extends
the recent Newton-based extremum seeking algorithms for the scalar case and introduces a dynamic
estimator of the inverse of the Hessian matrix that removes the difficulty with the possible singularity of
a possible direct estimate of theHessianmatrix. The estimator of the inverse of theHessian has the formof
a differential Riccati equation.Weprove local stability of the newalgorithm for general nonlinear dynamic
systems using averaging and singular perturbations. In comparison with the standard gradient-based
multivariable extremum seeking, the proposed algorithm removes the dependence of the convergence
rate on the unknown Hessian matrix and makes the convergence rate, of both the parameter estimates
and of the estimates of theHessian inverse, user-assignable. In particular, the new algorithm allows all the
parameters to converge with the same speed, yielding straight trajectories to the extremum even with
maps that have highly elongated level sets, in contrast to curved ‘‘steepest descent’’ trajectories of the
gradient algorithm. Simulation results show the advantage of the proposed approach over gradient-based
extremum seeking, by assigning equal, desired convergence rates to all the parameters using Newton’s
approach.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Motivation. Dramatic advances have occurred over the past decade
both in the theory (Ariyur & Krstić, 2002, 2003; Choi, Krstić,
Ariyur, & Lee, 2002; Krstić & Wang, 2000; Rotea, 2000; Stankovic,
Johansson, & Stipanovic, 2010; Stankovic & Stipanovic, 2010; Tan,
Nešić, &Mareels, 2006; Tee1&Popovic, 2001;Wang&Krstić, 2000)
and in applications (Banaszuk, Ariyur, Krstić, & Jacobson, 2004;
Becker, King, Petz, & Nitsche, 2007; Carnevale et al., 2009; Cochran,
Kanso, Kelly, Xiong, & Krstić, 2009; Cochran & Krstić, 2009; Guay,
Perrier, & Dochain, 2005; Killingsworth, Aceves, Flowers, Espinosa-
Loza, & Krstić, M, 2009; Luo & Schuster, 2009; Wang, Yeung, &
Krstić, 2000; Zhang, Arnold, Ghods, Siranosian, & Krstić, 2007) of
extremum seeking control. All these references employ gradient-
based extremum seeking.

A Newton-based extremum seeking algorithm was introduced
in Moase, Manzie, and Brear (2010) where, for the single-input
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case, an estimate of the secondderivative of themapwas employed
in a Newton-like continuous-time algorithm. A generalization,
employing a different approach than in Moase et al. (2010), was
presented in Nešić, Tan, Moase, and Manzie (2010), where a
methodology for generating estimates of higher-order derivatives
of the unknown single-input map was introduced, for emulating
more general continuous-time optimization algorithms, with a
Newton algorithm being a special case.

The key distinction of the Newton algorithm relative to the
gradient algorithm is that, while the convergence of the gradient
algorithm is dictated by the second derivative (Hessian) of the
map, the convergence of the Newton algorithm is independent
of the Hessian and can be arbitrarily assigned. This is particularly
important in non-model based algorithms, like extremum seeking,
where the Hessian is unknown.

The power of the Newton algorithm is particularly evident
in multi-input optimization problems. With the Hessian being a
matrix in this case, and with it being typically very different from
the identity matrix, the gradient algorithm typically results in
different elements of the input vector converging at vastly different
speeds. This problem is inherent to gradient-based schemes. To
rectify it onewould need tomodify the algorithm using the inverse
of the Hessian matrix which is not available as the model of
the system is assumed to be unavailable. On the other hand, the
Newton algorithm, if equipped with a convergent estimator of the
Hessian matrix, achieves convergence of all the elements of the
input vector at the same, or at arbitrarily assignable, rates.
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Results of the paper. In this paper we present a multivariable
Newton-based extremum seeking algorithm, which yields arbi-
trarily assignable convergence rates for each of the elements of the
input vector. We generate the estimate of the Hessian matrix by
generalizing the idea proposed in Nešić et al. (2010) for the scalar
case.

Generating an estimate of the Hessian matrix in non-model
based optimization is not the only challenge. The other challenge is
that the Newton algorithm requires an inverse of the Hessian ma-
trix. The estimate of this matrix, as it evolves in continuous time,
need not necessarily remain invertible. We tackle this challenge
by employing a dynamic system for generating the inverse asymp-
totically. This dynamic system is a filter in the form of a Riccati
differential equation. When fed with a positive/negative-definite
estimate of the Hessian matrix over a longer period of time, this
filter converges to a positive/negative-definite inverse of the Hes-
sian matrix. Hence, after a transient, our non-model based algo-
rithm behaves (on average) as a model-based Newton algorithm.

While the basic idea of our algorithm is developed for static
maps, we provide the analysis of convergence when the algorithm
is applied to general nonlinear systems, as in Krstić and Wang
(2000). We apply classical averaging and singular perturbation
methods, so our stability result is local—the parameter estimates
start not too far from the true parameters and the estimate of the
Hessian matrix starts not too far from the true Hessian matrix. It is
also possible to prove non-local stability of the proposed scheme
in a similar manner as Tan et al. (2006) where a gradient-based
algorithm was investigated.

The continuous-time Newton algorithm that we propose is
novel, to our knowledge, even in the case when the cost function
being optimized is known. The state-of-the-art continuous-time
Newton algorithm in Airapetyan (1999) employs a Lyapunov
differential equation for estimating the inverse of the Hessian
matrix, see (3.2) in Airapetyan (1999). The convergence of this
estimator is actually governed by the Hessian matrix itself. This
means that the algorithm in Airapetyan (1999) removes the
difficulty with inverting the estimate of the Hessian, but does not
achieve independence of the convergence rate from the Hessian.
In contrast, our algorithm’s convergence rate is independent from
the Hessian and is user-assignable.
Organization. We state the problem and review the gradient-
based extremum seeking algorithm for a static map in Section 2.
Section 3 presents our Newton-based scheme for the static map.
In this section we explain how we generate the estimate of the
Hessian matrix and the estimate of its inverse. A generalization
of the Newton-based scheme to dynamic plants is introduced in
Section 4. The main stability result is stated in Section 5. Stability
analysis based on the averaging and singular perturbationmethods
is presented, respectively, in Sections 6 and 7. Section 8 presents
an illustrative example to highlight the difference between the
proposed scheme and the standard gradient-based extremum
seeking. (See Fig. 1.)

2. Review of the gradient algorithm for static map

Consider a convex static map

y = Q (θ), θ = [θ1 θ2 · · · θn]
T , (1)

with a local maximum at θ∗. The cost function is not known in
(1), but we can measure y and we can manipulate θ . The gradient-
based extremum seeking scheme for this multivariable static map
is shown in Fig. 2, where K is a positive diagonal matrix, and the
perturbation signals are defined as

S(t) = [a1 sin(ω1t) · · · an sin(ωnt)]T , (2)

M(t) =


2
a1

sin(ω1t) · · ·
2
an

sin(ωnt)
T

, (3)
Fig. 1. Gradient-based extremum seeking for a static map.

Fig. 2. Newton-based extremum seeking for a static map.

where ωi/ωj are rational and ai are real numbers, with the
frequencies chosen such thatωi ≠ ωj andωi +ωj ≠ ωk for distinct
i, j, and k.

Remark 1. A gradient-based extremum seeking for the static map
(1) is given by ˙̂

θ = KM(t)y, θ = θ̂ + S(t). In the parameter error
variable θ̃ = θ̂−θ∗, the closed-loop system in Fig. 2 is given by ˙̃

θ =

KM(t)Q (θ∗
+ S(t) + θ̃ ). The basic idea of the scheme, as well as of

the choice of the perturbation signals, is understood by noting that,
for the case of a quadratic map, Q (θ) = Q ∗

+
1
2 (θ −θ∗)TH(θ −θ∗),

the averaged system is given by

˙̃
θ = KH θ̃ , (4)

where H is the Hessian of the static map, and it is negative
definite. This observation reveals two things: (i) the gradient-based
extremum seeking algorithm is locally convergent, and (ii) the
convergence rate is governed by the unknown Hessian matrix H .
One of the features of the Newton algorithm presented in the next
section is to eliminate the dependence of the convergence rate on
the unknown H .

3. Newton algorithm for static map

The Newton-based extremum seeking algorithm for a static
map is shown in Fig. 2,whereωr is a positive real number. There are
two vital parts in the Newton-based algorithm: the perturbation
matrix N(t), which generates an estimate of the Hessian, and the
Riccati equation, which generates an estimate of the inverse of the
Hessian matrix, even when the estimate of the Hessian is singular.

The idea for producing the estimate of the Hessian matrix H :=

∂2Q (θ∗)/∂θ2 is borrowed from the scalar design in Nešić et al.
(2010). Referring to the Taylor series expansion of the cost function
around the peak, we have

y = Q (θ∗
+ θ̃ + S(t))

= Q (θ∗) +
1
2
(θ̃ + S(t))T H (θ̃ + S(t)) + R(θ̃ + S(t)), (5)

where ∂Q (θ∗)/∂θ = 0 and R(θ̃ + S(t)) stands for higher order
terms in θ̃ + S(t). The product of N(t) and y needs to generate
an estimate of the Hessian in an average sense. We show that
by an appropriate selection of matrix N(t), the average value of
Ĥ = N(t)y over the period Π , which is related to ωi’s (see (10)), is
an estimate of the Hessian. We start with
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1
Π

 Π

0
N(σ )ydσ

= I + J + H̄ +
1
Π

 Π

0
R(θ̃ + S(σ ))N(σ )dσ , (6)

I :=
1
Π

 Π

0


Q (θ∗) +

1
2
θ̃ TH θ̃


N(σ )dσ , (7)

J :=
1
Π

 Π

0
θ̃ THS(σ )N(σ )dσ , (8)

H̄ :=
1
Π

 Π

0

1
2
S(σ )THS(σ )N(σ )dσ

=
1
Π

 Π

0

1
2

n
i=1

n
j=1

Hi,j sin(ωiσ) sin(ωjσ)N(σ )dσ . (9)

By taking Π as

Π = 2π × LCM


1
ωi


, i ∈ {1, 2, · · · , n}, (10)

where LCM stands for the least common multiple, we have I = 0
if N has zero average over Π . Also, taking N such that

1
Π

 Π

0
sin(ωiσ)Nj,k(σ )dσ = 0, (11)

holds for all i, j, and k ∈ {1, 2, . . . , n}, makes the integral J equal
to zero. Furthermore, H̄ is equal to H if we choose N such that

1
Π

 Π

0
sin2(ωiσ)Ni,i(σ )dσ ≠ 0 (12)

1
Π

 Π

0
sin(ωiσ) sin(ωjσ)Ni,j(σ )dσ ≠ 0 (13)

1
Π

 Π

0
sin2(ωiσ)Ni,j(σ )dσ = 0 (14)

1
Π

 Π

0
sin(ωiσ) sin(ωjσ)Ni,i(σ )dσ = 0, (15)

for all distinct i and j. Noting that Π is the common period of the
probing frequencies we have

1
Π

 Π

0
sin2(ωiσ) cos(2ωiσ)dσ = −

1
4

(16)

1
Π

 Π

0
sin2(ωiσ) sin2(ωjσ)dσ =

1
4

(17)

1
Π

 Π

0
sin3(ωi) sin(ωj)dσ = 0 (18)

1
Π

 Π

0
sin(ωiσ) sin(ωjσ) cos(2ωiσ)dσ = 0, (19)

for all i ≠ j. Hence, one possible choice of elements of the n × n
matrix N(t) that satisfy all of the aforementioned constraints is
given by

Ni,i =
16
a2i


sin2(ωit) −

1
2


(20)

Ni,j =
4

aiaj
sin(ωit) sin(ωjt), i ≠ j, (21)

where NT (t) = N(t). Based on this selection, we have

1
Π

 Π

0
N(σ )ydσ = H +

1
Π

 Π

0
R(θ̃ + S(σ ))N(σ )dσ . (22)
In Section 6 we show that this averaged value converges to the
actual value of the Hessian, under specific conditions on ωi and ai.

Computing the inverse of the Hessian matrix is the next step.
Calculating Γ , the estimate of the inverse of the Hessian, in an
algebraic fashion creates difficulties when the matrix Ĥ is close to
singularity, or it is indefinite. To deal with this problem, a dynamic
estimator is employed to calculate the inverse of Ĥ using a Riccati
equation. Consider the following filter

Ḣ = −ωrH + ωr Ĥ. (23)

Note that the state of this filter converges to Ĥ , an estimate of H .
DenoteΓ = H−1. Since Γ̇ = −Γ ḢΓ , then Eq. (23) is transformed
to the differential Riccati equation

Γ̇ = ωrΓ − ωrΓ ĤΓ . (24)

The equilibria of the Riccati Eq. (24) are Γ ∗
= 0n×n and Γ ∗

= Ĥ−1,
provided Ĥ settles to a constant. Since ωr > 0, the equilibrium
Γ ∗

= 0 is unstable, whereas the linearization of (24) around
Γ ∗

= Ĥ−1 has the Jacobian −ωr I , so the equilibrium at Γ ∗
= Ĥ−1

locally exponentially stable. This shows that, after a transient, the
Riccati equation converges to the actual value of the inverse of the
Hessian matrix if Ĥ is a good estimate of H .

A good estimate of the region of attraction of the exponentially
stable equilibrium Γ ∗

= Ĥ−1 of (24) is difficult to obtain. An easy
but conservative estimate makes the region of attraction inversely
proportional to the largest eigenvalue of Ĥ , which, due to the
convergence of Ĥ to H , which we shall prove to be achieved locally
(in an average sense), means that an estimate of the region of
attraction of Γ ∗

= H−1 is 1/λmax{H}.

Remark 2. To highlight the contrast between the Newton and
gradient algorithms, we refer to Remark 1 where the average
behavior of the gradient algorithm is discussed. For the Newton
algorithm in Fig. 2, the algorithm is given by

˙̂
θ = −KΓ M(t)y (25)

Γ̇ = ωrΓ − ωrΓ N(t)yΓ , (26)

where θ = θ̂ + S(t). In the error variables θ̃ = θ̂ − θ∗, Γ̃ = Γ −

H−1, when themap is quadratic,Q (θ) = Q ∗
+

1
2 (θ−θ∗)TH(θ−θ∗),

the averaged closed-loop system is given by

˙̃
θ = −K θ̃ − K Γ̃ H θ̃ (27)
˙̃
Γ = −ωr Γ̃ − ωr Γ̃ HΓ̃ , (28)

where K Γ̃ H θ̃ is quadratic in (Γ̃ , θ̃ ), andωr Γ̃ HΓ̃ is quadratic in Γ̃ .
The linearization of this system has all of its eigenvalues at−K and
−ωr . Hence, unlike the gradient algorithm, whose convergence is
governed by the unknown Hessian H , the convergence rate of the
Newton algorithm can be arbitrarily assigned by the designer with
an appropriate choice of K and ωr .

4. Newton algorithm for dynamic systems

Consider a general multi-input-single-output (MISO) nonlinear
model
ẋ = f (x, u), (29)
y = h(x), (30)
where x ∈ Rm is the state, u ∈ Rn is the input, y ∈ R is the output,
and f : Rm

× Rn
→ Rm and h : Rm

→ R are smooth. Suppose that
we know a smooth control law u = α(x, θ) parameterized by a
vector parameter θ ∈ Rn. The closed loop system ẋ = f (x, α(x, θ))
then has equilibria parameterized by θ . We make the following
assumptions about the closed-loop system, as in Krstić and Wang
(2000).
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Fig. 3. Gradient-based extremum seeking.

Fig. 4. Newton-based extremum seeking. The initial condition Γ (0) should be
chosen negative definite and symmetric.

Assumption 1. There exists a smooth function l : Rn
→ Rm such

that f (x, α(x, θ)) = 0 if and only if x = l(θ).

Assumption 2. For each θ ∈ Rn, the equilibrium x = l(θ) of the
system ẋ = f (x, α(x, θ)) is locally exponentially stable uniformly
in θ .

Assumption 3. There exists θ∗
∈ Rn such that

∂

∂θ
(h ◦ l)(θ∗) = 0, (31)

∂2

∂θ2
(h ◦ l)(θ∗) = H < 0, H = HT . (32)

Our objective is to develop a feedback mechanism which
maximizes the steady-state value of y but without requiring the
knowledge of either θ∗ or the functions h and l. The gradient-based
extremum seeking design that achieves this objective, suitably
adapted from Krstić and Wang (2000) to the multivariable case,
is shown schematically in Fig. 3. Parallel to this, we present the
generalized scheme for multivariable Newton-based extremum
seeking as shown in Fig. 4.

The perturbation signals are defined by Eqs. (2), (3), (20) and
(21). The probing frequencies ωi’s, the filter coefficients ωh, ωl and
ωr and gain K are selected as

ωi = ωω′

i = O(ω), i ∈ {1, 2, . . . , n} (33)

ωh = ωωH = ωδω′

H = O(ωδ) (34)

ωl = ωωL = ωδω′

L = O(ωδ) (35)

ωr = ωωR = ωδω′

R = O(ωδ) (36)

K = ωK ′
= ωδK ′′

= O(ωδ), (37)

whereω and δ are small positive constants,ω′

i is a rational number,
ω′

H , ω′

L, and ω′

R are O(1) positive constants, K ′′ is a n × n diagonal
matrix with O(1) positive elements, and K ′

= δK ′′.
The analysis of Ariyur and Krstić (2002), Krstić andWang (2000)

and Rotea (2000) shows that, in the gradient-based scheme, for
‘‘sufficiently small’’ ω and |a|, where a = [a1 a2 · · · an]T , and
sufficiently small δ, which imply small filter cut-off frequencies,
the states (x, θ̂ ) of the closed-loop system exponentially converge
to an O(ω + δ + |a|)-neighborhood of (l(θ∗), θ∗), and the output
y converges to an O(ω + δ + |a|)-neighborhood of the optimum
output y∗

= (h ◦ l)(θ∗).
In Section 6 we prove that the average value of Σ(t) over

the period Π is close enough to the actual value of the Hessian,
under specific conditions on ω, δ and a. Since we are integrating
over a finite time period, and we set the phase delays of the
periodic perturbation signals equal to zero, it is possible to exclude
condition ωi ≠ ωj + ωk. The probing frequencies need to satisfy

ω′

i ∉


ω′

j,
1
2
(ω′

j + ω′

k),ω
′

j + 2ω′

k, ω
′

j + ω′

k ± ω′

l


, (38)

for all distinct i, j, k, and l. As we see in Section 6, ignoring the
conditions (38) is shifting the estimate of the parameter away from
its true value, and leading to inaccurate estimates of the gradient
vector and Hessian matrix.

5. Stability of the closed loop system with the Newton-based
extremum seeking algorithm

We summarize the system in Fig. 4 as

d
dt


x
θ̃

Ĝ
Γ̃

H̃
η̃

 =


f (x, α(x, θ∗

+ θ̃ + S(t)))
−K(Γ̃ + H−1)Ĝ

−ωlĜ + ωl(y − h ◦ l(θ∗) − η̃)M(t)
ωr(Γ̃ + H−1)(I − (H̃ + H)(Γ̃ + H−1))

−ωlH̃ − ωlH + ωl(y − h ◦ l(θ∗) − η̃)N(t)
−ωhη̃ + ωh(y − h ◦ l(θ∗))

 . (39)

To conduct a stability analysis we have introduced error variables
θ̃ = θ̂ − θ∗, θ = θ̂ + S(t), η̃ = η − h ◦ l(θ∗), Γ̃ = Γ − H−1, and
H̃ = Ĥ − H , where η is governed by
η̇ = −ωhη + ωhy. (40)
Weperforma slight abuse of notation by stackingmatrix quantities
Γ̃ and H̃ along with vector quantities, as alternative notational
choices would be more cumbersome.

Our main stability result is stated in the following theorem.

Theorem 1. Consider the feedback system (39) under Assump-
tions 1–3. There exists ω̄ > 0 and for any ω ∈ (0, ω̄) there exist
δ̄, ā > 0 such that for the given ω and any |a| ∈ (0, ā) and δ ∈

(0, δ̄) there exists a neighborhood of the point (x, θ̂ , Ĝ, Γ , Ĥ, η) =

(l(θ∗), θ∗, 0,H−1,H, h ◦ l(θ∗)) such that any solution of sys-
tems (39) from the neighborhood exponentially converges to anO(ω+

δ + |a|)-neighborhood of that point. Furthermore, y(t) converges to
an O(ω + δ + |a|)-neighborhood of h ◦ l(θ∗).

To prepare for the proof of Theorem 1, which is given in
Sections 6 and 7, and the Appendix, we summarize the system (39)
in the time scale τ = ωt as

ω
dx
dτ

= f (x, α(x, θ∗
+ θ̃ + S̄(τ ))) (41)

d
dτ


θ̃

Ĝ
Γ̃

H̃
η̃



= δ


−K ′′(Γ̃ + H−1)Ĝ

−ω′

LĜ + ω′

L(y − h ◦ l(θ∗) − η̃)M̄(τ )

ω′

R(Γ̃ + H−1)(I − (H̃ + H)(Γ̃ + H−1))

−ω′

L(H̃ + H) + ω′

L(y − h ◦ l(θ∗) − η̃)N̄(τ )
−ω′

H η̃ + ω′

H(y − h ◦ l(θ∗))

 , (42)

where S̄(τ ) = S(t/ω), M̄(τ ) = M(t/ω) and N̄(τ ) = N(t/ω).
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6. Averaging analysis

The first step in our analysis is to study the system in Fig. 4. We
‘‘freeze’’ x in (41) at its equilibrium value x = l(θ∗

+ θ̃ + S̄(τ )) and
substitute it into (42), getting the reduced system

d
dτ


θ̃r

Ĝr

Γ̃r

H̃r
η̃r



= δ


−K ′′(Γ̃r + H−1)Ĝr

−ω′

LĜr + ω′

L(ν(θ̃r + S̄(τ )) − η̃r)M̄(τ )

ω′

R(Γ̃r + H−1)(I + (H̃r + H)(Γ̃r + H−1))

−ω′

LH̃r − ω′

LH + ω′

L(ν(θ̃r + S̄(τ )) − η̃r)N̄(τ )

−ω′

H η̃r + ω′

Hν(θ̃r + S̄(τ ))

 , (43)

where ν(z) = h ◦ l(θ∗
+ z) − h ◦ l(θ∗). In view of Assumption 3,

ν(0) = 0, ∂ν(0)/∂z = 0, and ∂2ν(0)/∂z2 = H < 0.
To prove the overall stability of (39), first we show that the

reduced system (43) has a unique exponentially stable periodic
solution around its equilibrium.

Theorem 2. Consider system (43) under Assumption 3. There exist
δ̄, ā > 0 such that for all δ ∈ (0, δ̄) and |a| ∈ (0, ā) system (43)
has a unique exponentially stable periodic solution (θ̃Π

r (τ ), ĜΠ
r (τ ),

Γ̃ Π
r (τ ), H̃Π

r (τ ), η̃Π
r (τ )) of period Π and this solution satisfiesθ̃Π

r,i(τ ) −

n
j=1

c ij,ja
2
j

 ≤ O(δ + |a|3) (44)

|ĜΠ
r (τ )| ≤ O(δ) (45)Γ̃ Π
r (τ ) +

n
i=1

n
j=1

H−1W iH−1c ij,ja
2
j

 ≤ O(δ + |a|3) (46)

H̃Π
r (τ ) −

n
i=1

n
j=1

W ic ij,ja
2
j

 ≤ O(δ + |a|3) (47)

η̃Π
r (τ ) −

1
4

n
i=1

Hi,ia2i

 ≤ O(δ + |a|4) (48)

for all τ ≥ 0, where



c1j,j
...

c i−1
j,j

c ij,j
c i+1
j,j

...
cnj,j


= −

1
12

H−1



∂3ν

∂zj∂z21
(0)

...

∂3ν

∂zj∂z2j−1
(0)

3
2

∂3ν

∂z3j
(0)

∂3ν

∂zj∂z2j+1
(0)

...

∂3ν

∂zj∂z2n
(0)



,

∀i, j ∈ {1, 2, . . . , n} (49)

(W i)j,k =
∂3ν(0)

∂zi∂zj∂zk
, ∀i, j, and k ∈ {1, 2, . . . , n}. (50)
The proof is presented in the Appendix.

7. Singular perturbation analysis

Now, we address the full system in Fig. 4 whose state space
model is given by (41) and (42) in the time scale τ = ωt . To make
the notation in our further analysis compact, we write (42) as

dξ
dτ

= δE(τ , x, ξ), (51)

where ξ = (θ̃ , Ĝ, Γ̃ , H̃, η̃). By Theorem 2, there exists an
exponentially stable periodic solution ξΠ

r (τ ) such that

dξΠ
r (τ )

dτ
= δE(τ , L(τ , ξΠ

r (τ )), ξΠ
r (τ )), (52)

where L(τ , ξ) = l(θ∗
+ θ̃ + S̄(τ )). To bring the system (41) and (51)

into the standard singular perturbation form, we shift the state ξ

using the transformation ξ̃ = ξ − ξΠ
r (τ ) and get

dξ̃
dτ

= δẼ(τ , x, ξ̃ ) (53)

ω
dx
dτ

= F̃(τ , x, ξ̃ ) (54)

where

Ẽ(τ , x, ξ̃ ) = E(τ , x, ξ̃ + ξΠ
r (τ )) − E(τ , L(τ , ξΠ

r (τ )), ξΠ
r (τ )) (55)

F̃(τ , x, ξ̃ ) = f

x, α


x, ξ̃1 + θ∗

+ θ̃Π
r (τ ) + S̄(τ )


. (56)

We note that x = L(τ , ξ̃r + ξΠ
r (τ )) is the quasi-steady state, and

that the reduced model

dξ̃r
dτ

= δẼ(τ , L(τ , ξ̃r + ξΠ
r (τ )), ξ̃r + ξΠ

r (τ )) (57)

has an equilibrium at the origin ξ̃r = 0. This equilibrium has been
shown in Section 6 to be exponentially stable for a small |a|.

To complete the singular perturbation analysis, we also study
the boundary layer model (in the time scale t − t0 = τ/ω):

dxb
dt

= F̃(τ , xb + L(τ , ξ̃ + ξΠ
r (τ )), ξ̃ ),

= f (xb + l(θ), α(xb + l(θ), θ)), (58)

where θ = θ∗
+ θ̃ + S̄(τ ) should be viewed as a parameter

independent from the time variable t . Since f (l(θ), α(l(θ), θ)) ≡ 0,
then xb ≡ 0 is an equilibrium of (58). By Assumption 2, this
equilibrium is locally exponentially stable uniformly in θ (and
hence l(θ)).

By combining exponential stability of the reduced model (57)
with the exponential stability of the boundary layer model (58),
using Tikhonov’s theorem on the Infinite Interval (Theorem 9.4
in Khalil (1996)), we conclude the following:
(a) The solution ξ(τ ) of (51) is O(ω)-close to the solution ξr(τ )
of (57), and therefore, it exponentially converges to an O(ω)-
neighborhood of the periodic solution ξΠ

r (τ ), which is O(δ)-close
to the equilibrium ξ a,e

r . This, in turn, implies that the solution θ̃ (τ )
of (42) exponentially converges to an O(ω + δ)-neighborhood of

n
j=1

[c1j,jc
2
j,j · · · c

n
j,j]

Ta2j + [O(|a|3)]n×1. (59)

It follows then that θ(τ ) = θ∗
+ θ̃ (τ ) + S̄(τ ) exponentially

converges to an O(ω + δ + |a|)-neighborhood of θ∗.
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a

b

Fig. 5. The estimate of the maximum versus time.
a

b

c

Fig. 6. Parameter estimates. (a) and (b) Time responses. (c) Phase portrait. The Newton trajectory is straight to the extremum, whereas the gradient trajectory follows the
curved, steepest-descent path.
(b) The solution x(τ ) of (54) satisfies

x(τ ) − l(θ∗
+ θ̃r(τ ) + S̄(τ )) − xb(t) = O(ω), (60)

where θ̃r(τ ) is the solution of the reduced model (43) and xb(t) is
the solution of the boundary layer model (58). From (60) we get

x(τ ) − l(θ∗) = O(ω) + l(θ∗
+ θ̃r(τ ) + S̄(t)) − l(θ∗) + xb(t). (61)

Since θ̃r(τ ) exponentially converges to the periodic solution θ̃Π
r (τ ),

which is O(δ)-close to the average equilibrium (59), and since the
solution xb(t) of (58) is exponentially decaying, then by (61), x(τ )−
l(θ∗) exponentially converges to an O(ω + δ + |a|)-neighborhood
of zero. Consequently, y = h(x) exponentially converges to an
O(ω + δ + |a|)-neighborhood of its maximal equilibrium value
h ◦ l(θ∗).

This completes the proof of Theorem 1.

8. Simulation results

To illustrate the results and highlight the difference between
the gradient-based and Newton-based extremum seeking meth-
ods, the following static quadratic input–outputmap is considered:

y = Q (θ) = Q ∗
+

1
2
(θ − θ∗)TH(θ − θ∗). (62)

To make a fair comparison between the two methods, all parame-
ters are chosen the same except the gain matrix. Before selecting
thematrix K we investigate the performance of the gradient-based
scheme versus the Newton-based scheme.
Recall (27) and (28). The initial convergence rate for the
Newton-based scheme is governed by the time-varying matrix
−KnΓ (t)H . Eq. (4) shows that in the gradient-based scheme the
convergence depends on the eigenvalues of KgH . This means that,
to have a fair comparison between the two methods, we should
select Kg and Kn such that Kg = −KnΓ (0).

We perform our tests with the following parameters, δ = 0.1,
ω = 0.1 rad/s, ω1 = 70ω, ω2 = 50ω, ω′

L = 10, ω′

H = 8, ω′

R = 10,
a = [0.1 0.1]T , K ′′

g = 10−4 diag([−25 − 25]), K ′′
n = diag([1 1]),

Γ −1
0 = 400 diag([11]), θ̂0 = [2.5 5]T , Q ∗

= 100, θ∗
= [2 4]T ,

H11 = 100, H12 = H21 = 30, and H22 = 20.
Fig. 5 illustrates the estimate of the maximum. Evolution of the

parameters is depicted in Fig. 6. Since the initial estimate of the
Hessian is not true, each parameter starts to updatewith a different
rate. As seen in Fig. 7, after 40 s the estimate of the Hessian is close
enough to its actual value. Hence, the convergence rates of both
parameters are the same after 40 s. Furthermore, Fig. 6(c) shows
that, except for a short initial transient that is due to the estimation
of the inverse of the Hessian, the Newton-based extremum seeking
moves the parameters to the peak along a straight trajectory. In
contrast, the trajectory of the gradient-based algorithm is curved
and of greater length. Fig. 6(a) and (c) show that the gradient
algorithm, which follows the steepest-descent path, results in the
parameter θ̂1 undershooting below its true value, which is not the
case with the Newton algorithm whose parameter transients are
monotonic. The Hessian matrix converges to its actual value as
depicted in Fig. 7. Also it isworth noting that theHessian converges
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a

c

b

Fig. 7. Time evolution of the Hessian matrix estimator Γ −1 . The true value of H is reached in 40 s. Note in Fig. 6 that the Newton and gradient trajectories coincide for the
first 40 s, after which Newton takes a straight path.
a

b

Fig. 8. The estimate of the gradient vector versus time.
faster to its actual value than Ĝ and θ̂ . As illustrated in Fig. 8 the
estimate of the gradient vector converges to zero after the Hessian
matrix finds its true value.

9. Conclusions

Using the gradient-based extremum seeking in the multivari-
able case without having good information about the curvature of
the cost function, namely, the Hessian matrix, may result inappro-
priate performance. With a growing number of the parameters, it
is almost impossible to tune the convergence rate of all parame-
ters in a desirable fashion. The Newton-based extremum seeking,
which relies on the estimation of the gradient and Hessian matrix
of the cost function at the same time, removes the trial and er-
ror process to update all parameters uniformly. Furthermore, the
proposed Newton scheme eliminates the concern about the inver-
sion of the Hessian estimate matrix by performing the inversion
dynamically using a Riccati equation filter. The convergence rates
of both the parameter and of the estimator of the Hessian inverse
are independent of the unknown Hessian and can be assigned ar-
bitrary by the user.

Appendix. Proof of Theorem 2

System (43) is in the form to which the averaging method is
applicable. The average model of (43) is
d
dτ

[θ̃ aT
r ĜaT

r Γ̃ aT
r H̃aT

r η̃a
r ]

T

= δ



−K ′′(Γ̃ a
r + H−1)Ĝa

r

−ω′

LĜ
a
r + ω′

L
1
Π

 Π

0
ν(θ̃ a

r + S̄(σ ))M̄(σ )dσ

ω′

R(Γ̃
a
r + H−1)(I − (H̃a

r + H)(Γ̃ a
r + H−1))

−ω′

LH̃
a
r − ω′

LH + ω′

L
1
Π

 Π

0
ν(θ̃ a

r + S̄(σ ))N̄(σ )dσ

−ω′

H η̃a
r + ω′

H
1
Π

 Π

0
ν(θ̃ a

r + S̄(σ ))dσ


. (63)

The average equilibrium (θ̃ a,e
r , Ĝa,e

r , Γ̃ a,e
r , H̃a,e

r , η̃a,e
r ) satisfies

Ĝa,e
r = 0 (64) Π

0
ν(θ̃ a,e

r + S̄(σ ))M̄(σ )dσ = 0 (65)

η̃a,e
r =

1
Π

 Π

0
ν(θ̃ a,e

r + S̄(σ ))dσ (66)

H̃a,e
r + H =

1
Π

 Π

0
ν(θ̃ a,e

r + S̄(σ ))N̄(σ )dσ (67)

(H̃a,e
r + H)(Γ̃ a,e

r + H−1) = I. (68)
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As we shall see, for small |a|, Γ̃ a,e
r + H−1 < 0. By postulating θ̃

a,e
r,i

in the form

θ̃
a,e
r,i =

n
j=1

bijaj +
n

j=1

n
k=1

c ij,kajak + O(|a|3), (69)

where bij and c ij,k are real numbers, substituting (69) in (64)–(68)
and equating the like powers of aj, we get bij = 0, for all i, j ∈

{1, 2, . . . , n}, c ij,k = 0, for all i, j ≠ k ∈ {1, 2, . . . , n}, and (49). The
equilibrium of the average system is:

θ̃
a,e
r,i =

n
j=1

c ij,ja
2
j + O(|a|3)

Ĝa,e
r = 0n×1

Γ̃ a,e
r = −

n
i=1

n
j=1

H−1W iH−1c ij,ja
2
j + [O(|a|3)]n×n

H̃a,e
r =

n
i=1

n
j=1

W ic ij,ja
2
j + [O(|a|3)]n×n

η̃a,e
r =

1
4

n
i=1

Hi,ia2i + O(|a|4), (70)

where W i is a n × n matrix defined by (50). The Jacobian of the
average system at equilibrium is

Ja,er = δ


A2n×2n 02n×(2n+1)
B(2n+1)×2n C(2n+1)×(2n+1)


, (71)

A =

0n×n −K ′′(H−1
+ Γ̃ a,e

r )

ω′

L

Π

 Π

0

∂

∂θ̃
(νM̄)dσ −ω′

LIn×n

 ,

B =


0n×n 0n×n

ω′

L
1
Π

 Π

0

∂

∂θ̃
(νN̄)dσ 0n×n

ω′

H
1
Π

 Π

0

∂

∂θ̃
(ν)dσ 01×n

 ,

C =

−ω′

RIn×n + O1 −ω′

RH
−2

+ O2 0n×1
0n×n −ω′

LIn×n 0n×1
01×n 01×n −ω′

H

 ,

O1 = ω′

R

n
i=1

n
j=1

H−1W ic ij,ja
2
j + [O(|a|3)],

O2 = ω′

R

n
i=1

n
j=1

H−1(W iH−1
− H−1W i)H−1c ij,ja

2
j

+ [O(|a|3)].

Since Ja,er is block-lower-triangular, it is Hurwitz if and only if

A21 :=
ω′

L

Π

 Π

0
M̄(σ )

∂

∂θ̃
ν(θ̃ a,e

r + S̄(σ ))dσ < 0. (72)

With a Taylor expansion we get that A21 = ω′

LH + O(|a|). We then
have

det(λI2n×2n − δA)

= det(λ(λ + ω′

Lδ)In×n + δ2K ′′(H−1
+ Γ̃ a,e

r ) (A21))

= det((λ2
+ ω′

Lδλ)In×n

+ δ2K ′′(H−1
+ [O(|a|2)])(ω′

LH + [O(|a|)]))

= det ((λ2
+ω′

Lδλ)In×n + ω′

Lδ
2K ′′

+ [O(δ2
|a|)]n×n), (73)
which, in view of H < 0, proves that Ja,er is Hurwitz for a that is
sufficiently small in norm. This implies that the equilibrium (70)
of the average system (63) is exponentially stable if all elements
of vector a are sufficiently small. Then, according to the averaging
theorem (Khalil, 1996), the proof is completed.
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