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Abstract— The problem of component swapping modularity
(CSM) refers to distributed control design in networks of
smart components such that specific design constraints are
satisfied. The CSM intends to reduce control design effort and
complexity in platform-based systems. Existing CSM methods
achieve promising results for low order multi-input-multi-
output (MIMO) systems. However, lack of generalization, heavy
computational burden, and, to a lower extent, the level of
designer involvement limit the applications of the existing
CSM methods. Thus, this paper presents a generalized CSM
algorithm using linear matrix inequalities (LMIs) such that
almost full automatic control distribution is achieved for an
arbitrary linear system. The LMI-based CSM is designed to
maintain both disturbance attenuation and quadratic stability.
Also, it is desired to satisfy specific time response criteria.
Thus, the proposed algorithm combines H2 optimization and
robust H∞ optimization to satisfy given design constraints. The
designer involvement is dramatically reduced to iterative tuning
of two scalar parameters in the robust H∞ problem. The pro-
posed algorithm incorporates reference tracking. Also, stability
measures and design criteria are checked numerically at each
step. The LMI-based CSM algorithm has been numerically
verified using an engine idle speed control (ISC) example.

I. INTRODUCTION

Component swapping modularity (CSM) refers to achiev-

ing a desired level of closed-loop performance only by tuning

a minimal part of the controller which may reside in a smart

swappable component [1]–[5]. A swappable smart compo-

nent and its local controller are shown in Fig. 1. Conventional

control design methods demand complete control redesign

when swapping a system’s component with a dynamically

different counterpart. Depending on dynamic complexity of

the swapped module and given performance criteria, one

can use CSM algorithms to achieve desired closed-loop

performance only by tuning the low-order controller of the

swapped component. The major part of the control remains

unchanged for all the variants of the swappable component.

The CSM algorithms dramatically simplify control design

and reduce calibration time and effort, for example, in

applications from the automotive industry [6] and power

networks.

One may spot similarities between the CSM design meth-

ods and plug-and-play control design [7], [8]. However,

two objectives separate CSM design methods from plug-

and-play control: i) the control structure designed by CSM

accommodates a wide variety of swappable modules by

utilizing output feedback and bidirectional communication,
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Fig. 1: Swappable smart component in a control network

and ii) CSM presents quantitative measures to specify the

order of the local and base controllers to achieve the most

feasible distributed control structure. As in plug-and-play

control methods, one can add online tuning features to the

CSM design.

Existing methods to achieve CSM in networks include: i)

the 3-Step Method [1], [2] and ii) the Direct Method [3],

[4] for distributed controller design. In the 3-Step Method,

first, the centralized controller is designed for each system

configuration with a different component variant. Then, the

order and structure of the distributed controller is assumed,

such that only the local controller is tuned when the smart

component is swapped. Then, the CSM metric is maximized

by exact (or approximate) matching of the transfer function

of the distributed controller with that of the centralized

controller. On the other hand, the Direct Method uses a bi-

level optimization problem to calculate the distributed con-

troller gains using a multidisciplinary design optimization.

Moreover, a sensitivity analysis of the control signals with

respect to the component hardware parameters is used for

effective controller distribution.

The 3-Step Method [1], [2] starts with centralized control

design, then the control is distributed using model order

reduction based on pole locus analysis. The 3-Step Method

is proven to be effective for low order multi-input-multi-

output (MIMO) systems. However, it is case-sensitive and

highly reliant on the designer’s knowledge of the system and

control. Thus, the 3-Step Method is not easy to expand to

high order MIMO systems.

The Direct Method [3], [4] has reduced the designer’s

involvement dramatically and improved CSM, considerably.

The Direct Method consists of a bi-level non-convex opti-

mization. The convergence of the algorithm depends on the

initial guess which is generated using the optimal centralized

controller parameters. At both levels the Direct Method uses

a constrained minimization algorithm (e.g., solver fmincon



in MATLAB) which results in lengthy convergence time.

Thus, the practical applications of the Direct Method is also

limited to low order MIMO systems.

This paper focuses on presenting a self-contained CSM

algorithm that covers high-order MIMO systems, improves

the algorithm convergence time dramatically, and minimizes

the designer’s involvement. The backbone of the algorithm

consists of H2 and robust H∞ optimization. Linear matrix

inequalities (LMIs) have been developed to obtain the dis-

tributed controller. As shown in Fig. 1, the controller is

divided into local and base controller to facilitate CSM.

Since the local controller can be tuned for each variant of

the smart module, then an H2 problem is formulated to

obtain the local controller. The base controller is responsible

to maintaining the closed-loop stability of all variants of

the local loop which includes the smart component and

system hardware. The actual local loop dynamics consists of

parametric uncertainty in input, output, and state. The base

controller is designed using the uncertain nominal model of

the local loop. The results of Khargonekar et al. [9], Xie et

al. [10], and Gu [11] are used to convert the uncertain local

loop to a scaled uncertainty-free system and to design the

base controller which also guarantees reference tracking.

The LMIs are developed using the results by Scherer

et al. [12] for continuous time systems. Discrete time LMIs

can be obtained by following de Oliveira et al. [13]. The

proposed CSM algorithm assumes that the combination of

the base and local controller is of the order of the plant. Thus,

the base and local controller are reduced order. The topic of

reduced order control synthesis and design, particularly using

LMIs [14]–[16], is an ongoing effort. However, numerical

complexity, especially for high order systems, and lack of

necessary conditions limit the applications of the existing

reduced order control design methods. Moreover, reduced

order control design is not the focus of this work and, instead,

model order reduction is used such that at each stage the base

and local controller with desired orders are obtained.

This paper takes the initial steps towards control design

using LMIs to achieve CSM. The design and stability proof

of the proposed algorithm is guaranteed using a combination

of analytical and iterative numerical methods. This paper

gathers necessary tools and presents clear guidelines to solve

the CSM problem in smart control networks. The results

are verified numerically on an engine idle speed control

(ISC) example. Although input delay causes the ISC to

become non-minimum phase the proposed LMI-based CSM

successfully achieves the desired performance criteria.

The remainder of the paper is organized as follows:

Section II explains the CSM problem and lays the ground

work to proceed with the local controller design using H2

optimization in Section III and to design the base controller

using robust H∞ optimization in Section IV. Numerical

simulation of the ISC example [4], [5] is given in Section V.

Section VI concludes the paper.
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Fig. 2: Configuration of the distributed controller

II. PROBLEM STATEMENT

Figure 2 shows a block diagram of the distributed control

system of Fig. 1. The controller is distributed into the local

controller, Kl,i, and the base controller, Kb. An integrator

array is added to achieve step reference tracking. The system

dynamics, including the swappable component hardware, is

lumped into Pi which is represented as

Pi :

{

ẋp=Ap,ixp + Bp,iup +Bd,id

yp=Cy,ixp +Dd,id
, (1)

where xp ∈ R
np , up ∈ R

rp , d ∈ R
rd , yp ∈ R

mp , the system

matrices are of appropriate dimensions, and i ∈ sp, where

sp = {1, 2, · · · , n} and n is the number of the swappable

component variants.

It is assumed that the system dynamics of Pi are known.

The base and local controllers are of dynamic output feed-

back type. To start with the CSM design, first the order

of the base controller is selected as nb ∈ sb, where sb =
{0, 1, · · · , np}. The order of the local controller is obtained

such that nb + nl = np. The base and local controller

can change from full order dynamic output feedback to

static output feedback. The local controller offers customized

tuning for each variant of the swappable component. In-

creasing the order of the local controller improves closed-

loop performance. However, tuning a high order controller

limits the practicality of the swappable distributed design.

The CSM algorithm obtains the lowest order of the local

control such the all design constraints are satisfied. The local

controller is designed using H2 optimization such that certain

time response features are achieved.

The base controller, designed once for a given nb, guar-

antees closed-loop stability and disturbance attenuation for

all the local loops, which include the local controller and

the plant. Since the local loop includes both disturbance

and parametric uncertainty one can use the quadratic sta-

bilization theory [9], [17] to design the base controller.

The problem of quadratic stabilization is to find a feedback

controller such that the closed-loop system is stable with

a fixed (uncertainty-independent) Lyapunov function [10].

Khargonekar et al. [9] have shown that a certain type of

quadratic stabilization problem is essentially an H∞ control

problem. Similar results for discrete-time systems can be

found in the paper by Packard and Doyle [17]. The problem

at hand involves both robust stabilization and H∞ control,

so it is referred to as robust H∞ control. Xie et al. [10] have

shown that the problem of robust H∞ control can be cast

into a scaled H∞ control for a system without parameter

uncertainty, thus allowing the designer to solve the robust

H∞ control via existing H∞ control techniques.



An overview of the CSM design procedure is shown

in Algorithm 1. The H2 and H∞ performance indices

are selected, and modified if necessary during the design

procedure, such that closed-loop stability is achieved and

time response criteria are satisfied. The design steps of the

local and base controllers are presented in the next two

succeeding sections.

III. LOCAL CONTROLLER DESIGN

The CSM design starts with local controller design. So

the base controller is neglected and the simplified system is

shown in Fig. 3. The system dynamics are transformed into

the general control configuration

Pi :

{

ẋp=Ap,ixp +Bp,iup + B̂p,iwl

vp=Cp,ixp + D̂p,iwl

, (2)

where vp = el, wl = [yTb dT ]T , B̂p,i = [0np×rp Bd]
T ,

Cp,i = −Cy,i, and D̂p,i = [Imp
−Dp,i]. The local controller

is of the order nl and represented as

Kl,i :







ẋl=Al,ixl +Bl,ivp
up=Cl,ixl +Dl,ivp
yl=Cl,ixl

. (3)

The local controller is designed using H2 optimization with

the following performance index

z2 = C2xp +D2up + D̂2wl. (4)

First, plant Pi is reduced to a model of order nl

P r
i :







ξ̇p=Ap,iξp + Bp,iup + B̂p,iwl

vp=Cp,iξp + D̂p,iwl

z2=C2ξp +D2up + D̂2wl

, (5)

where ξp ∈ R
nl and the input, output, and performance

channel dimensions remain the same as Pi. With reduced

order plant P r
i and local controller Kl,i defined as above,

the reduced order local loop admits the realization

Tpl,i :

{

ξ̇pl=Apl,iξpl + Bpl,iwl

z2=Cpl,iξpl +Dpl,iwl
, (6)

Algorithm 1 CSM design procedure

1: procedure CSM–DESIGN

2: Define H2 and H∞ perfomance indices
3: for each nb ∈ sb do
4: nl = np − nb

5: top:
6: Reduce plant model order to nl

7: for each i ∈ sp do
8: Design Kl,i using H2 optimization
9: end for

10: Calculate the scaled model of the local loop
11: Reduce the scaled model order to nb

12: Design Kb using H∞ optimization
13: if Unstable or performance criteria violated then
14: Modify H2 and H∞ perfomance indices
15: goto top.
16: end if
17: end for
18: end procedure

Pi
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d

z2

up vp

wl

{

Fig. 3: Local loop transformed into general control

configuration

where ξpl = [ξTp xT
l ]

T and

[

A B
C D

]

pl,i

=





Ap + BpDlCp BpCl B̂p + BpDlD̂p

BlCp Al BlD̂p

C2 +D2DlCp D2Cl D̂2 +D2DlD̂p





i

. (7)

Assume that Apl,i is stable and Dpl,i = 0 for a given i.

The H2 norm of Tpl,i is defined by

‖Tpl,i‖
2
2 :=

1

2

∫ +∞

−∞

Tr
(

Tpl,i(jω)
HTpl,i(jω)

)

dω, (8)

where Tr stands for trace of a marix. With an auxiliary

parameter Qi > 0, the following analysis result is obtained:

Apl,i is stable and ‖Tpl,i‖
2
2 < ν iff there exist symmetric Pi

and Qi such that the following LMIs are satisfied.
[

AT
plP + PApl PBpl

BT
plP − I

]

i

<0 (9)

[

P CT
pl

Cpl Q

]

i

>0 (10)

Tr(Qi)<ν, Dpl,i = 0. (11)

One can refer to Scherer et al. [12] to find the appropriate

transformations, (33)–(35) and (39)–(40), and the relevant

LMIs, (41) and inequality set (v), to solve the H2 problem

and calculate Kl,i for each Pi.

IV. BASE CONTROLLER DESIGN AND CLOSED-LOOP

STABILITY

For a given order nb ∈ sb, the base controller will be

designed such that the closed-loop system is stable for all the

variants of the local loop, which includes the local controller

Kl,i and plant Pi, and external disturbance is attenuated to

its minimum feasible level.

The local loop is transformed into general control config-

uration

Tpl,i :

{

ẋpl=Apl,ixpl +Bpl,iyb + B̂pl,iwb

vpl=Cpl,ixpl + D̂pl,iwb

, (12)

where xpl = [xT
p xT

l ]
T , vpl = [eTp yTl ]

T , wb = [rT dT ]T ,

and
[

A B B̂

C D D̂

]

pl,i

=









Ap +BpDlCp BpCl BpDl 0 Bd −BpDlDd

BlCp Al Bl 0 −BlDd

−Cy 0 0 I −Dd

0 Cl 0 0 0









i

. (13)



Tpl,i

Kb

r

d

z∞

1

s

yb

yl

ep eI

wb

{

Ti
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configuration

The general control configuration of the closed-loop sys-

tem is shown in Fig. 4. By augmenting Tpl,i with the

integrator array one obtains

Ti :

{

ẋ=Aix+Biyb + B̂iwb

v=Cix+ D̂iwb

, (14)

where x = [xT
pl eTI ]

T , v = [vTpl eTI ]
T and

[

A B B̂

C D D̂

]

i

=









Apl 0 Bpl B̂pl

[Cp 0] 0 0 D̂p

Cpl 0 0 D̂pl

0 I 0 0









i

. (15)

The base controller is designed using the following per-

formance index

z∞ = αC∞x+ βD∞yb + D̂∞wb, (16)

where α and β are design parameters and are used by the

designer to achieve desired closed-loop performance criteria.

Assuming a fixed order for the base controller, one can

reduce Ti and (16) to

Ti :







ξ̇ =Aiξ + Biyb + B̂iwb

v =Ciξ + D̂iwb

z∞=C∞,iξ +D∞,iyb + D̂∞,iwb

, (17)

where ξ ∈ R
nb and the rest of Ti dimensions are in

agreement with those of Ti and (16). It is assumed that one

can model (17) as a nominal model plus variable perturbation

T :



































ξ̇ =(A+∆A(t)) ξ + (B +∆B(t)) yb+

+
(

B̂ +∆B̂(t)
)

wb

v =(C +∆C(t)) ξ +
(

D̂ +∆D̂(t)
)

wb

z∞=(C∞ +∆C∞(t)) ξ + (D∞ +∆D∞(t)) yb+

+
(

D̂∞ +∆D̂∞(t)
)

wb

(18)

where




∆A ∆B ∆B̂

∆C 0 ∆D̂

∆C∞ ∆D∞ ∆D̂∞



=





Hξ

Hv

Hz



F (t) [Eξ Eyb
Ewb

] ,(19)

where σmax (F (t)) ≤ 1. System T includes both external

disturbances and parametric uncertainties. Thus, the con-

ventional H∞ problem cannot be used to design a robust

controller for T . So, the results presented by Gu [11] are

adopted to design the base controller using robust H∞

control.

Corollary 1: (Gu [11]) The system T where yb is the

control input, wb the exogenous input, v measured output,

and z∞ regulated output with uncertainties (19) can be made

quadratically stable with an H∞-norm bound γ by a strictly

proper linear output feedback control iff there exists a λ > 0
such that the scaled (uncertainty-free) system

Ts :































ξ̇ =Aξ + Byb +
[

B̂ γλHξ

]

[

wb

ŵb

]

v =Cξ +
[

D̂ γλHv

]

[

wb

ŵb

]

[

z∞
ẑ∞

]

=

[

C∞
1

λ
Eξ

]

ξ +

[

D∞

1

λ
Eyb

]

yb +

[

D̂∞ γλHz
1

λ
Ewb

0

][

wb

ŵb

]

(20)

with yb the control input, [wT
b ŵT

b ]
T the exogenous input,

v measured output and [zT
∞

ẑT
∞
]T regulated output, can

be stabilized with its H∞-norm less than γ by an output

feedback control. �

The formulation involves a parameter λ which is used to

tune the scaled system Ts such that the uncertain system T
achieves H∞-norm bound γ using a strictly proper controller

defined as

Kb :

{

ẋb=Abxb +Bbv

yb=Cbxb
. (21)

The combination of Ts and Kb gives

Tcl :

{

ξ̇cl =Aclξpl + Bclw

Z∞=Cclξcl +Dclw
, (22)

where ξcl = [ξT xT
b ]

T , w = [wT
b ŵT

b ]
T , Z∞ = [zT

∞
ẑT
∞
]T

and

[

A B
C D

]

cl

=









A BCb B̂ γλHξ

BbC Ab BbD̂ γλBbHv

C∞ D∞Cb D̂∞ γλHz
1

λ
Eξ

1

λ
Eyb

Cb
1

λ
Ewb

0









. (23)

By virtue of the Bounded Real Lemma [18], Acl is stable

and the H∞-norm of Tcl is smaller than ρ iff there exists a

symmetric P which satisfies the following LMIs:




ATP + PA PB CT

BTP − ρI DT

C D − ρI



 < 0, P > 0. (24)

One can refer to Scherer et al. [12] to find the appropriate

transformations, (33)–(35) and (39)–(40), and the relevant

LMIs, (41) and (42), to solve the H∞ problem and calculate

Kb.

For each nb ∈ sb, the base controller is designed by

iteratively solving the H∞ LMIs by updating the values of

α and β in (16) such that Kb satisfies stability requirements

and performance criteria of all variants of the closed loop

composed of Ti and Kb.
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percentage versus local controller order. The centralized

controller is shown by c.

V. SIMULATIONS: ENGINE IDLE SPEED CONTROL

To verify the LMI-based CSM design method the example

of engine idle speed control (ISC) is selected. The primary

objective of the ISC system is to regulate the engine speed to

a set-point despite torque disturbances due to accessory loads

(e.g., air conditioning, power steering, alternator, etc.) or

due to engagement of the transmission. The throttle actuator

is considered as a swappable smart component to achieve

component swapping modularity. The throttle actuator is

modeled as a first-order linear system with time constant

τ , with nominal value of 0.05 s, and unity dc gain [4].

The model is linearized around an idle speed of

800 rev/min, a nominal throttle position of 3.15◦, and a load

torque of 31.15 Nm. A minimal state space representation

of the ISC module is obtained as (1) with

Ap,i=









− 1

τi
0 0 0

27 + 1

τi
− 27 0 0

0 17.9 0 − 2.2
0 0 1 − 1.5









, Bp,i =









1

τi

− 1

τi

0
0









Bd,i=[0 0 − 1.8 − 1.2]T , Cy,i = [0 0 0 32] , Dd,i = 0,

where the control input is throttle position (◦), the output

is engine speed (rev/min), and disturbance is load torque

(Nm). Since the engine has time delay, represented via a

Pade approximation, the system is non-minimum phase [5].

A step torque disturbance of 10 Nm is applied at time 0,

while the speed deviation is maintained at r(t) = 0 rev/min.

Design criteria are introduced as u(t) ∈ [−3, 13], maximum

engine speed deviation less than 10% of the speed set-point

value, settling time less than 1.5 s. Also five actuators with

different time constants τ ∈ {0.01, 0.06, 0.011, 0.16, 0.21}
are used in the simulations.

As shown in Fig. 2, an integrator is included in the con-

troller to achieve reference tracking. The full order controller

designed for each variant of the throttle actuator is termed the

centralized controller which results in the best closed-loop
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(nb, nl)=(1, 3), and (d) (nb, nl)=(2, 2). Dotted and

dash-dotted lines represent 10% and 2% error bands,

respectively.

performance as evidenced in Fig 5–7. This case involves

full redesign when the throttle actuator is swapped. The

proposed CSM design algorithm is verified for all possible

combinations of the local and base controllers, i.e., (nb, nl) ∈
{(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)}.

(nb, nl)=(0, 4) : In this case the base controller is a

static gain and the local controller is full order. As expected,

one can observe from the conducted simulations that the

distributed controller achieves the same level of performance

as the centralized controller. The settling time has improved

slightly. However, as Fig. 6 shows H2-norm starts to increase

gradually.

(nb, nl)=(1, 3): The best performance has been achieved

with (α, β) = (24, 20). In this case the design performance

criteria are satisfied for all the variants of the throttle actuator.



(nb, nl)=(2, 2): The best performance has been achieved

with (α, β) = (0.4, 1.8). As Fig. 5 and 7 show in this

case the distributed controller fails to satisfy the design

criteria. Nevertheless, if the settling time and maximum

output percentage specifications are slightly relaxed, then the

case of (nb, nl) = (2, 2) also guarantees CSM.

(nb, nl)=(3, 1): The best performance has been achieved

with (α, β) = (0.1, 2.0). Except the bounds on the control

input, other design criteria are not met. Since in this case the

base controller order is higher than the local controller, one

can conclude that the H∞ performance prevails which causes

a dramatic increase in the H2-norm as shown in Fig. 6.

(nb, nl)=(4, 0): The best performance has been achieved

with (α, β) = (0.4, 5.0). This case corresponds in fact to

one H∞ robust controller for all the variants of the throttle

actuator. The possibility of using the local controller to

compensate the effect of variable time constant of the throttle

actuator is very limited which is shown in the simulation

results.

The local controller is designed using an H2 optimization

algorithm such that the disturbance effect in the output is

minimized. So, the H2-norm between the disturbance and

the output error can be used to roughly evaluate CSM. As

shown in Fig. 6 there is a considerable gap between the case

of (nb, nl) = (2, 2) and (nb, nl) = (3, 1) which marks the

boundary for CSM. However, since time response criteria

cannot be directly converted to the H2-norm measure, the

CSM should be evaluated by analyzing the given design

constraints. Moreover, because the control signal always

remains inside the design limits, i.e., u(t) ∈ [−3, 13], the

relevant plot is not shown to save space.

The results of the LMI-based CSM design fall between the

results of the Direct and 3-Step Methods [4], [5]. These re-

sults show that CSM can be achieved with nb ∈ {1, 2, 3, 4},

nb ∈ {3, 4}, and nb = 4 for the Direct, LMI-based, and

3-Step Methods, respectively. The Direct Method treats the

optimization problem as a whole and it does not provide

an organized framework to formulate the performance index

and system constraints into manageable mathematical rela-

tionships. So, the Direct Method demands high processing

power, converges very slowly, and relies on the designer’s

knowledge of the system. On the other hand, the LMI-

based Method proposes a structurally viable formulation

methodology which is numerically efficient and converges

rapidly. Also, the LMI-based Method presents a generalized

and semi-automatic CSM algorithm with applications to a

wide range of arbitrary linear systems.

VI. CONCLUSIONS

The proposed LMI-based CSM algorithm automatically

distributes controllers in control networks which include

smart components. To achieve specified time response cri-

teria H2 optimization is used to design the local controller.

On the other hand, the base controller is designed using a

robust H∞ method such that the closed-loop system remains

stable for all the variants of the swappable component and

also the disturbance is attenuated to its minimum feasible

level. The proposed algorithm used the flexibility of LMIs to

generalize the applications and to reduce the computational

complexity associated with distributed control design. The

simulation results verified the practicality of the proposed

algorithm to achieve CSM for local controller order nl ∈
{2, 3, 4} in engine idle speed control. The throttle actuator

was assumed as a smart component to accommodate the local

controller. Although the proposed LMI-based CSM requires

minimal designer involvement, future research work will

focus on incorporating adaptivity for α and β in the proposed

algorithm to obtain a fully automatic CSM design.
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