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Abstract— High-performance position control algorithms for
multi-axis servo-systems, due to presence of asymmetric dy-
namics and disturbance, do not guarantee high-precision con-
touring. Cross-Coupling Control (CCC) conventionally uses a
static Contour Error Estimate (CEE) to reduce the shortest
distance between the reference map and actual position, known
as contour error. However, reliability of the static CEE de-
teriorates for high-speed reference feeds and also for sharp
corners and deep curves. We propose a dynamic CEE using
a Newton-based update law to obtain a precise CEE for
fast and highly-curved contours. The Newton-based algorithm
uses an estimate of the contour error curvature in order to
eliminate the convergence dependence on the contour shape.
The proposed CCC design includes one PID controller per axis,
and combines the proposed Newton-based CEE with Integral
Sliding Mode Control (ISMC) which is well-known for its
capability in dealing with parameter uncertainty and external
disturbances. The proposed ISMC performance is enhanced
with an adaptive disturbance estimate. The proposed CCC
algorithm reduces the time-averaged contour error (TACE) at
least by an order of magnitude in comparison to conventional
CCC algorithms. Various simulation results are presented to
highlight the significant improvement achieved by the proposed
algorithm.

I. INTRODUCTION

The contour error in multidimensional contouring is de-

fined as the shortest distance between the actual position

and the reference contour. Even high-performance position

control algorithms, without simultaneous treatment of the

contour error, are vulnerable to asymmetric dynamics of the

system and external disturbances [7], [10]. In response to

this contouring problem, Koren [12] proposed the idea of

the Cross-Coupling Control (CCC) for linear contours which

was developed and enhanced by many other researchers [2],

[3], [5], [9], [11], [13], [16], [18], [19], [23], [24].

The CCC algorithm differs from position synchronization

algorithms which are used when a number of separate

servo-systems (or other moving structures) are required to

follow the same tasks simultaneously [1], [4], [21]. Cross-

coupling control algorithms reduce the contour error in

a standalone servo-system, while position synchronization

algorithms maintain the same level of position precision

among a group of servo-systems. A high-precision position

synchronization algorithm may not guarantee high-precision

contouring or vice versa.

A successful CCC algorithm maintains an appropriate

balance between position control and contour error control.

In other words, regardless of the designer’s knowledge about
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system dynamics or the type of implemented position control

algorithms, when a multi-axis system faces disturbances, par-

ticularly various forms of friction, and/or fast contours with

complex curves, one can not guarantee high-performance

contouring without compensating for the effect of contour er-

ror. Even a multivariable control algorithm does not improve

contouring precision when a CCC algorithm is not used.

In high-precision contouring it is essential to maintain the

actual contour as close as possible to the reference contour.

Position control reduces tangential position error and the

CCC algorithm eliminates perpendicular position error with

respect to the reference contour.

Obtaining a close estimate of the contour error is crucial

prior to CCC design. The Contour Error Estimate (CEE) is a

key part of each CCC algorithm [5], [6], [11], [15], [25], [26].

Current CEE algorithms rely on algebraic methods which

use the reference map information and actual position and

velocity in order to calculate the estimate of the contour error

in a single step. However, such static CEE algorithms are not

accurate enough for high feed rate reference signals or for

contour maps with sharp corners and deep curves.

A static CEE uses linear or circular approximation of the

contour at each time step in order to provide an estimation

of the contour error. The static CEE methods are based

upon the Taylor series expansion with different levels of

precision. Thus, when the current position error suddenly

increases or when the reference contour is highly-curved,

then the reliability of the static CEE algorithm deteriorates

dramatically. A dynamic CEE algorithm is presented here to

overcome the limitations imposed by static CEE algorithms.

Assume that the contour map is smooth and the current

position is located close to the reference contour. One can

then approximate the distance between the current position

and the reference contour as a quadratic function with a local

minimum point associated with the contour error and use an

extremum seeking algorithm to find the location and value

of the contour error. Gradient-descent algorithms find the

local extremum point using the actual or estimated value

of the cost function gradient. However, gradient-descent

depends on the cost function shape. The contour error in a

Computer Numerically Controlled (CNC) system generates

a wide range of cost functions with vastly different curvature

which changes from one time step to the next. Newton-based

extremum seeking is more sophisticated and removes the

closed-loop performance dependence on the cost function

shape [8], [17]. In this paper a dynamic CEE using the

Newton-based update law is presented to achieve high-

precision contouring for high-speed operation with highly-



curved contour maps. Since the reference contour is known,

analytically or numerically, one can reconstruct the gradient

and the Hessian of the contour error at each time step.

The proposed CEE algorithm is multivariable by its nature

and can be easily applied to multi-axis contouring structures

without further modification. In order to implement the

Newton-based CEE algorithm one needs to have access to

the first and second order derivatives of the reference vector.

We introduce an estimate of the Hessian of the contour error

using only the first order derivative of the reference vector.

The proposed Hessian estimate reduces the numerical effort

of the CEE algorithm and improves its convergence time.

The sliding mode class of controllers are well-known

for their ability in compensating for the effect of dynamic

uncertainty and external disturbances. In addition to the

proposed CEE and CCC algorithms an Integral Sliding

Mode Control (ISMC) is used for position control of each

axis [14], [20], [22]. A saturation actuator is used instead

of the sign function in order to eliminate the chattering

phenomenon. The saturation actuator degrades the tracking

performance of the sliding mode control. Hence, integral

action is added to the sliding surface in order to achieve

full tracking. Moreover, adaptive disturbance estimation is

included in the integrated design in order to enhance closed-

loop performance.

The remainder of the paper is organized as follows.

Section II presents the proposed CEE and CCC algorithms.

Section III is dedicated to the ISMC design and adaptive dis-

turbance estimation. Section IV provides various numerical

simulations. The last section includes concluding remarks.

II. NEWTON-BASED CONTOUR ERROR ESTIMATE AND

CROSS-COUPLING CONTROL

Dynamic equations of axis i are given as

d

dt
Pi=Vi (1)

d

dt
Vi=−

1

τi
Vi +

ki
τi
Ti +

ki
τi
Di, (2)

where Ti is torque command, Di is disturbance input in-

cluding load, Vi is velocity, Pi is position, ki is DC gain,

and τi is time constant for axis i, where i = 1, 2, · · · , n.

Position vector of the servo-system is defined as P (t) =
[P1(t) P2(t), · · · , Pn(t)]

T
.

Assume the reference contour map is parametrized by θ

R(θ) = [R1(θ) R2(θ) · · · Rn(θ)]
T
, (3)

where θ is a real number and indicates the current reference

position. Current position is P (mTs), where Ts is the sam-

pling period of the CNC and m is the time-step number. The

contour error, E∗, is the shortest distance from the current

position to the reference contour. Let E∗ occur at θ∗, i.e.,

E∗ = R(θ∗) − P (mTs). Denote by θ̂ the estimate of θ∗.

Define a cost function as

J(θ̂) =
1

2
‖ E(θ̂) ‖2, E(θ̂) = R(θ̂)− P (mTs), (4)

P1

P2

R(θ)

P (mTs)

R(θ∗)

E∗

R1(θa) R1(θb)R1(θ
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1

P2 = λP1 + ω

P̃

θ̂

J(θ̂)

θ∗

J∗

θa θb

Fig. 1: (left) Contour error (right) cost function map

where ‖ · ‖ represents the Euclidean norm and E is distance

from current position to the reference contour. The minimum

value of the cost function is associated with the values E∗

and θ∗ that minimize J(θ̂). A schematic of the contour error

for a 2-axis system is illustrated in Fig. 1.

Remark 1: Assume that the current position is close

enough to the reference map and R(θ) has smooth curvature

everywhere. Then, at each time step, one can replace the

contour with its tangent estimate, P2 = λP1 + ω, where λ
and ω are unknown constant parameters varying from one

time step to the next. For the P1 −P2 planar contour shown

in Fig. 1, the quadratic approximate of the cost function is

given as

J ′=J∗ +
1

2
(1 + λ)2 (P1 − P ∗

1
)
2

(5)

with a minimum value of

J∗ =

(

P2(mTs)− λP1(mTs)− ω

λ2 + 1

)2

(6)

at

P ∗

1
=
P1(mTs) + λ (P2(mTs)− ω)

λ2 + 1
. (7)

Since R1(θ
∗) = P ∗

1
, one can find θ∗ from P ∗

1
.

Since the tangent estimate of the contour at each time step

requires prior knowledge of the optimal parameter, θ∗, the

explicit approximation given by (6) and (7) cannot be imple-

mented. Static CEE algorithms use the actual position and

velocity measurements and reference contour information to

approximate the tangent line in order to calculate the contour

error from (6) and (7) [5], [6], [11], [15], [25], [26]. However,

for high speed or highly curved contouring applications static

CEE algorithms do not yield precise contour error estimation.

Here a dynamic CEE is proposed to estimate θ∗ and J∗ in

order to increase both contouring precision and speed. A plot

of the cost function, J(θ̂), for a sufficiently smooth contour

at time step m is shown in Fig. 1. The contour reference

map and position measurements are available from all axes.

Hence, a model-based extremum seeking algorithm, e.g.,

gradient-descent or the Newton-based algorithm, can be used

to find J∗. Moreover, the Newton-based algorithm alleviates

convergence dependence on contour shape and maintains a

uniform transient over a wide range of contour shapes and



speeds. Hence, here the Newton-based extremum seeking

algorithm is used:
d

dt
θ̂ = −k′

g

h
, (8)

where g is the gradient and h is the Hessian of the cost

function with respect to θ̂. The Newton-based CEE at each

time step finds θ∗ and J∗. One can calculate from (4) the

associated contour error using θ̂ = θ∗.

The Newton-based algorithm requires calculation of the

gradient and the Hessian. It is possible to calculate the

gradient of J(θ̂), analytically or numerically

g=
∂

∂θ̂
J(θ̂)

=ET
∂

∂θ̂
R(θ̂). (9)

Also, the second order derivative of J(θ̂) with respect to θ,

the Hessian, is calculated as

h=
∂2

∂θ̂2
J(θ̂)

=ET
∂2

∂θ̂2
R(θ̂)+ ‖

∂

∂θ̂
R(θ̂) ‖2 . (10)

Assume that the contour distance, E, is reasonably small

and the contour map has smooth curves, then one can

approximate (10) as

h ≈‖
∂

∂θ̂
R(θ̂) ‖2 (11)

which is always positive semi-definite and improves the

stability margin of the Newton-based CEE. Moreover, the

computational burden for (11) is less than (10).

A schematic of the proposed Newton-based CEE is shown

in Fig. 2. A linear estimator is introduced to remove unde-

sired high frequency oscillations from the parameter update

law to achieve smooth transients. The estimator bandwidth,

c′, is designed with respect to the CNC sampling time,

Ts, and reference contour speed. Large values of c′ reduce

the stability margin of the Newton-based CEE algorithm.

The adaptation gain, k′, needs to be designed such that the

Newton-based CEE is sufficiently faster than the highest

reference speed.

Remark 2: The estimate of θ∗ is defined as θ̂. Denote

θ̃ = θ̂−θ∗ as the parameter error. Without loss of generality

and for simplicity assume P1 = R1(θ̂), which its linear

approximation can be written as P1 = P ∗

1
+ µθ̃ + O(θ̃2),

where O(·) stands for order of the terms. Replacing P1 in

(5) and truncating the higher order terms gives

J ′′(θ̂) = J∗ +
1

2
µ2(1 + λ2)

(

θ̂ − θ∗
)2

. (12)

From the approximate cost function (12) the gradient equals

g = µ2(1+λ2)θ̃. Also, the second order derivative of J ′′(θ̂)
with respect to θ̂, the Hessian, equals h = µ2(1+λ2). Then

the Newton-based update law (8) gives

d

dt
θ̃ = −k′θ̃ (13)

R(·) +

P (mTs)

×
∂

∂θ̂
(·)

×‖ · ‖2

c′

s+ c′
−k′

1

s

θ̂ E(θ̂) = R(θ̂)− P (mTs)−

g

h ÷

g

h

Fig. 2: Proposed Newton-based CEE

which indicates that the convergence rate and transient per-

formance of the proposed Newton-based CEE is determined

only by the feedback gain, k′.

Expansion of the stability analysis of the Newton-based

CEE algorithm to multi-axis servo-systems becomes more

complex. However, it is possible to investigate the stability

of the algorithm intuitively. Substituting (9) and (11) into the

parameter update law (8) gives

d

dt
θ̂=−k′

ET (θ̂)U(θ̂)

‖ ∂

∂θ̂
R(θ̂) ‖

, U(θ̂) =

(

∂

∂θ̂
R(θ̂)

‖ ∂

∂θ̂
R(θ̂) ‖

)

, (14)

where U(θ̂) is the unit tangent vector of the contour map

at θ = θ̂. Inner product of E and U equals ETU which

indicates the projection of contour distance, E, along the

tangent vector. The Newton-based law (14) updates θ̂ in the

opposite direction of ETU until θ̂ reaches θ∗ where ETU =
0 which proves that the contour distance is aligned with the

contour error, E∗.

Remark 3: The result of the Newton-based CEE is local,

meaning that one cannot guarantee global convergence. In

special cases, where the reference contour has sharp corners

or deep curves, as shown in Fig. 3, if the actual position is

located on the dotted line at the top left-hand side contour

or at the center of the dotted circle on the top right-hand

side contour, the cost function will have multiple extremum

points. Such cases, however, only happen at certain time

steps and due to the effect of the CCC algorithm the next

position will be off the dotted line. The same reasoning

applies to the right-hand side scenario. Moreover, at each step

one can initialize θ̂ using the final estimate of θ∗ from the

last step, θ∗m−1
. Without loss of generality, one can assume

θ is constantly increasing with time, then θ∗m−1
is close to

θa. Hence, the proposed Newton-based CEE converges to a

local minimum closer to θa which gives the actual contour

error. Also, one can easily avoid these extreme scenarios by

specifying appropriate contours.

Unity contour error defines the normalized impact of
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Fig. 3: Cost function with multiple extremum points for

(left) sharp corners and (right) circular deep curves

contour error along each axis

ǫ =
E∗

‖ E∗ ‖
, (15)

where ǫ = [ǫ1 ǫ2 · · · ǫn]
T

. One can drive the contour error

along each axis, ǫi, toward zero using a PID controller along

the same axis. Due to contour error normalization, all the

PIDs may have the same gains.

III. ROBUST POSITION CONTROL AND DISTURBANCE

COMPENSATION

Consider a robust position controller using Integral Sliding

Mode Control (ISMC) to regulate each axis to its desired

position. Define error variables as

P̃i=Ri − Pi (16)

Ṽi=
d

dt
Ri − Vi. (17)

One can obtain actual error dynamics using (1), (2), (16),

and (17)

d

dt
P̃i=Ṽi (18)

d

dt
Ṽi=−

Ṽi
τi

−
ki
τi
Ti +

d2

dt2
Ri +

d

τidt
Ri −

ki
τi
Di. (19)

A basic sliding mode scheme uses a hard switch to overcome

the effect of uncertainty and external disturbance. However,

when the switch equation is very close to zero the conven-

tional sliding mode control (SMC) shows high frequency

oscillations, known as chattering. A common way to alleviate

chattering is to replace the hard switch with a smooth coun-

terpart, e.g., saturation or sigmoid functions. When using

a smooth version of the hard switch one cannot achieve

perfect tracking anymore. A common way to eliminate the

steady state error is by using integral action in the switching

equation. The integral action is defined as

d

dt
qi = −biqi + µisat

(

σi
µi

)

, (20)

where sat(u) = u for |u| ≤ 1 and sat(u) = sign(u) for |u| >
1. Parameters ai, bi, and µi are all positive real numbers and

the switching equation is given as

σi = Ṽi + aiP̃i + biqi. (21)

Here the idea of equivalent control is used to design the

ISMC, the detailed design and stability analysis of which

can be achieved using Lyapunov methods. The main result

is summarized in the following theorem.

Theorem 1: Assume a multi-axis servo-system is given

as (1) and (2), and the external disturbances acting on the

system are upper-bounded as |Di| ≤ Mi, where Mi is a

positive real number. Moreover, the reference inputs, Ri(θ),
and their first time derivatives, dRi(θ)/dt, are smooth and

differentiable. Control signals of the form:

T ′

i=

(

(ai + bi)τi − 1

ki

)

Ṽi +

(

aibiτi
ki

)

P̃i +

+
τi
ki

d2

dt2
Ri +

1

ki

d

dt
Ri + κiµisat

(

σi
µi

)

. (22)

govern the system asymptotically to the desired reference

positions for positive real numbers ai, bi and µi, and switch

parameter satisfying

κi ≥
Mi

µi

+
biτi
ki

. (23)

�

The proposed control design of (22) ensures closed-loop

stability and perfect position tracking for an upper-bounded

disturbance signal with unknown dynamics. The disturbance

dynamics is not considered. Although, one can use the

estimate of the disturbance signal to compensate for the

unknown dynamics of the disturbance.

One can introduce the following estimator to reconstruct

a velocity derivative using velocity measurement:

d

dt
Ωi = −ciΩi − ciVi. (24)

One can then create an initial estimate of the disturbance as

follows

ξi =
τi
ki

(Ωi + Vi) +
Vi
ki

− Ti. (25)

An additional estimation step which helps to remove high

frequency oscillations from ξi is given as

d

dt
∆ = −di∆i + diξi. (26)

Finally, a single-axis view of the proposed integrated CCC

algorithm is shown in Fig. 4. The next section provides

detailed comparisons between the proposed CEE and CCC

algorithms with conventional variable gain CCC shown in

Fig. 5. For a fair comparison identical ISMC and disturbance

compensation is used in both algorithms.
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Fig. 4: A single-axis view of the integrated CCC
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Fig. 5: (left) proposed CCC and Newton-based CEE, and

(right) variable-gain CCC. Coefficients C1 and C2 are

time-varying and depend on the reference contour and

current position.

IV. SIMULATION RESULTS

Two-axis simulation results are presented to verify the

precision of the proposed CEE and CCC algorithm for high

speed reference feeds. The conventional variable gain CCC

shown in Fig. 5, originally proposed by Koren and Lo

[11] and enhanced by other researchers, achieves accurate

tracking for linear and circular contours. However, due to

the static CEE the precision of the conventional cross-

coupling class of algorithms deteriorates significantly for

non-linear and non-circular contours, particularly at high

reference feedrates. Simulations are conducted to highlight

the precision of the proposed CEE and CCC algorithm for

a high speed parabolic map defined as R1 = θ, R2 = hrθ
2,

where θ = 2art/Tr − ar, t ∈ [0, Tr], θ ∈ [−ar, ar], and

hr, ar, and Tr are constant parameters. Parameters of the

Newton-based CEE algorithm are c′ = 500, k′ = 500,

and θ0 = −ar. A PID is used for contour error control

in the variable-gain CCC, Gc(s) = 8 + 80/s + 0.6s. In

the proposed design a PID is used to control contour error

along each axis. Since the unity contour error vector is used

in the proposed design, the PIDs have the same structure,

Gǫ
i
(s) = 1 + 10/s + 0.1s, where i = 1, 2. The rest of the

parameters are k1 = 10.3, k2 = 10, τ1 = 0.040, τ2 = 0.045,

|D1| = |D2| = 0.15, a1 = b1 = 12.5, a2 = b2 = 11.1,

µ1 = µ2 = 1, κ1 = 0.2985, κ2 = 0.3, c1 = d1 = 25, and

c2 = d2 = 22.2. Maximum contour error (MCE) and time-

averaged contour error (TACE) are calculated to compare

the results of the proposed algorithm with the results of the

variable gain CCC algorithm shown in Fig. 5.

A. Comparison of Contour Error Estimation Only

Initially, instead of ISMC it is assumed that PID and

reference feedforward controllers are used for position con-

trol of each axis. No disturbance compensation is in-

cluded. The variable gain CCC achieves MCE=58.7 µm

and TACE=39.5 µm. The proposed CCC algorithm reduces
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Fig. 6: Contour error for slightly-curved maps, hr = 50
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Fig. 7: Contour error for deeply-curved maps, hr = 100

MCE and TACE to 23.2 µm and 7 µm, respectively. In

both structures, the result of the Newton-based CEE and the

conventional static version closely follow the actual contour

error. In this simulation PID1 = 8.08 + 93.2/s + 0.24s,
PID2 = 9.36 + 108/s+ 0.3s, ar = 20 mm, hr = 50, and

Tr = 2 s.

In all the following simulation results, the actual contour

error is shown using a solid line, the Newton-based CEE

using a dashed line, and the static CEE using a dash-dotted

line.

B. Comparison of Proposed Algorithm to Conventional Vari-

able Gain CCC (Fig. 5)

Replacing the position control PID with ISMC and

adding disturbance compensation improves the closed-loop

performance of both designs. The variable gain CCC

achieves MCE=15.3 µm and TACE=1.6 µm. As shown in

Fig. 6, the proposed Newton-based CEE and CCC achieve

MCE=0.55 µm and TACE=0.11 µm. Moreover, Fig. 6 shows

that the static contour error estimate fails to accurately

capture the actual contour error. Due to the use of small

switching gains and careful selection of the ISMC param-

eters, results show that high transient peaks in the control

signals do not occur.

The proposed CCC design also guarantees high precision

contouring for deep curves. The contour curve is increased

from hr = 50 to hr = 100. As shown in Fig. 7 the pro-

posed CCC keeps the contour error below MCE=2 µm with

TACE=0.31 µm, while the conventional design experiences

MCE=23 µm and TACE=4.6 µm. Moreover, as shown in

Fig. 7, while the proposed Newton-based CEE is almost

identical to the actual contour error, the static CEE fails to

capture the actual contour error.
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Fig. 8: Contour error for fast contouring, hr = 50

C. High-Speed Complex Contours

To verify the effectiveness of the proposed algorithm

in face of higher reference feedrates one can reduce the

contouring time by half, i.e., Tr = 1 s. The performance

of the variable-gain CCC deteriorates dramatically and the

contour error experiences MCE=241 µm and TACE=7.6 µm.

Meanwhile, as shown in Fig. 8, the proposed algorithm

successfully keeps the contour error below MCE=1.2 µm

with TACE=0.19 µm. Also, the Newton-based CEE closely

follows the actual error during the contouring process. Again,

the static contour estimate fails to capture the actual contour

error, especially in the close vicinity of the deep curve.

From the conducted simulations, particularly the results

shown in Fig. 6, 7, and 8, one can conclude that the static

CEE is not an appropriate option for high-precision fast

contouring. More importantly, for deep curves, as occurs

when one increases hr, the static CEE departs from the actual

contour error. Relying on an unrealistic contour error esti-

mate, even in presence of high-performance position control

algorithms, will not guarantee reduction in the contour error.

V. CONCLUSIONS

A new dynamic contour error estimate (CEE) using a

Newton-based update to achieve high-precision estimates

of contour error for high reference feedrate contours with

sharp corners and deep curves was presented. The Newton-

based CEE and CCC in combination with Integral Sliding

Mode Control (ISMC) improved contour tracking precision

by at least an order of magnitude in comparison to the

conventional variable gain CCC. Since the Newton-based

algorithm uses an estimate of the contour map curvature

to tune the convergence rate of the CEE, uniform transient

response is achieved for a wide range of contour maps. The

proposed CEE algorithm proved to be effective under highly-

curved and fast reference feeds. The normalized contour

error vector increased uniformity and stability margins of

the proposed CCC. Moreover, the ISMC improved system

robustness with respect to asymmetric dynamics and external

disturbances. The adaptive disturbance estimate also partially

enhanced closed-loop performance of the integrated control.
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