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Motivation : Screw Extruder for Polymer 3D Printing
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Model : Thermal phase change (melting/solidification)

Objective : Stabilize ratio of granules/melt polymer

Property : Temperature in both phases are dynamic



Simplified Model : Melting + Heat Loss
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Fig. 1. The moving interface.
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Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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ŝ
(t
)

 

 

s(t), state
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some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
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ŝ
(t
)

 

 

s(t), state
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ŝ
(t
)

 

 

s(t), state
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t) T (x, t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

liquid solid

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.

2

States : Temperature profile T (x, t), Interface position s(t)

Control : Melting heat qc(t) > 0

Disturbance : Freezing heat qf(t) > 0 (magnitude) from solid phase



Problem

Previous work (ACC16) : Designed qc(t) > 0 (feedback w.r.t. T (x, t), s(t)) to
achieve s(t)→ sr under qf(t) ≡ 0.
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Abstract : We consider the tumor growth model described by moving
boundary PDE proposed in [1]. Based on our recent contribution in [2], we
aim to design the backstepping control law for the model.
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ŝ
(t
)

 

 

s(t), state
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.
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ŝ
(t
)

 

 

s(t), state
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ŝ
(t
)

 

 

s(t), state
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.

2

PDE Tt(x, t) = αTxx(x, t), 0 < x < s(t) < L

Tx(0, t) = −qc(t)/k
T (s(t), t) = Tm

ODE ṡ(t) = −βTx(s(t), t)

State-dependent moving boundary→ Nonlinear
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properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.
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has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
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application to the estimation of sea-ice melting or freezing
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exponential stability of sum of the moving interface,
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through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
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with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
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ŝ
(t
)

 

 

s(t), state
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with phase transition which appears in various situations
of nature and engineering, its control or estimation related
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application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
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ŝ
(t
)

 

 

s(t), state
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.

2

PDE Tt(x, t) = αTxx(x, t), 0 < x < s(t) < L

Tx(0, t) = −qc(t)/k
T (s(t), t) = Tm

ODE ṡ(t) = −βTx(s(t), t)

State-dependent moving boundary→ Nonlinear
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x qc(t)

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.

2

PDE Tt(x, t) = αTxx(x, t), 0 < x < s(t) < L

Tx(0, t) = −qc(t)/k
T (s(t), t) = Tm

ODE ṡ(t) = −βTx(s(t), t)− γqf(t)

State-dependent moving boundary→ Nonlinear
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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ŝ(t), estimation
sr = 0.35m

Fig. 1. The moving interface.

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Time (min)

s̃
(t
)2

 

 

ϵ = 0.02
ϵ = 0.04
ϵ = 0.06

Fig. 2. H1 norm of the temperature.

VIII. CONCLUSIONS AND FUTURE WORKS

Along this paper we proposed an observer design and
boundary output feedback controller that achieves the
exponential stability of sum of the moving interface,
H1-norm of the temperature, and estimation error of them
through a measurement of the moving interface. A nonlinear
backstepping transformation for moving boundary problem
is utilized and the controller is proved to keep positive with
some initial conditions, which guarantees some physical
properties required for the validity of model and the proof
of stability. The main contribution of this paper is that,
this is the first result which shows the convergence of
estimation error and output feedback systems of one-phase
Stefan Problem theoretically. Although the Stefan Problem

0 20 40 60 80 100
0.3

0.31

0.32

0.33

0.34

0.35

0.36

Time (min)

s
(t
)

 

 
Critical region

StateFB
OutputFB
sr = 0.35m

Fig. 3. The positiveness verification of the controller.

has been well known model since 200 years ago related
with phase transition which appears in various situations
of nature and engineering, its control or estimation related
problem has not been investigated in detail. Towards an
application to the estimation of sea-ice melting or freezing
in Antarctica, it is more practical to construct an observer
design with a measurement of temperature at one boundary,
and it is investigated as a future work.

0 s(t) L x

REFERENCES

[1] Robert H. Martin and Mark E. Oxley. Moving boundaries in reaction-
diffusion systems with absorption. Nonlinear Analysis, 14(2):167 –
192, 1990.

[2] W. B. Dunbar, N. Petit, P. Rouchon, and Ph. Martin. Motion planning
for a nonlinear stefan problem. ESAIM: Control, Optimisation and
Calculus of Variations, 9:275–296, 2003.

[3] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Enthalpy-based
feedback control algorithms for the stefan problem. In CDC, pages
7037–7042, 2012.

[4] N. Daraoui, P. Dufour, H. Hammouri, and A. Hottot. Model predictive
control during the primary drying stage of lyophilisation. Control
Engineering Practice, 18(5):483–494, 2010.

[5] F. Conrad, D. Hilhorst, and T. I. Seidman. Well-posedness of a moving
boundary problem arising in a dissolution-growth process. Nonlinear
Analysis, 15(5):445 – 465, 1990.

[6] A. Armaou and P.D. Christofides. Robust control of parabolic PDE
systems with time-dependent spatial domains. Automatica, 37(1):61 –
69, 2001.

[7] N. Petit. Control problems for one-dimensional fluids and reactive
fluids with moving interfaces. In Advances in the theory of control,
signals and systems with physical modeling, volume 407 of Lecture
notes in control and information sciences, pages 323–337, Lausanne,
Dec 2010.

[8] Panagiotis D. Christofides. Robust control of parabolic PDE systems.
Chemical Engineering Science, 53(16):2949 – 2965, 1998.

[9] Bryan Petrus, Joseph Bentsman, and Brian G Thomas. Feedback
control of the two-phase stefan problem, with an application to the
continuous casting of steel. In Decision and Control (CDC), 2010
49th IEEE Conference on, pages 1731–1736. IEEE, 2010.

[10] Ahmed Maidi and Jean-Pierre Corriou. Boundary geometric control of
a linear stefan problem. Journal of Process Control, 24(6):939–946,
2014.

[11] C. Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control i. Background, Industrial & Engineering Chemistry Research,
29:2295–2310, 1990.

[12] C Karvaris and J. C. Kantor. Geometric methods for nonlinear process
control ii. Controller synthesis, Industrial & Engineering Chemistry
Research, 29:2310–2323, 1990.

[13] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary
geometric control of a counter-current heat exchanger. Journal of
Process Control, 19(2):297–313, 2009.

[14] Miroslav Krstic and Andrey Smyshlyaev. Boundary control of PDEs:
A course on backstepping designs, volume 16. Siam, 2008.

[15] A. Smyshlyaev and M. Krstic. Closed-form boundary state feedbacks
for a class of 1-d partial integro-differential equations. Automatic
Control, IEEE Transactions on, 49(12):2185–2202, Dec 2004.

[16] Mojtaba Izadi and Stevan Dubljevic. Backstepping output-feedback
control of moving boundary parabolic PDEs. European Journal of
Control, 21(0):27 – 35, 2015.

[17] Shuxia Tang and Chengkang Xie. Stabilization for a coupled PDE-
ODE control system. Journal of the Franklin Institute, 348(8):2142–
2155, 2011.

[18] S. Gupta. The classical Stefan problem. Basic concepts, Modelling
and Analysis. Applied mathematics and Mechanics. North-Holland,
2003.

[19] S. Koga, M. Diagne, S. Tang, and M. Krstic. Backstepping control of
a one-phase stefan problem. In ACC (accepted), 2016.

liquid solid

0 50 100 150
0

0.1

0.2

0.3

0.4

Time (min)

s
(t
),

ŝ
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Figure 1: Schematic of 1D Stefan problem.

with the boundary conditions

�kTx(0, t) = qc(t), (2)

T (s(t), t) = Tm, (3)

and the initial values

T (x, 0) = T0(x), s(0) = s0 (4)

where T (x, t), qc(t), ⇢, Cp, and k are the distributed temperature of
the liquid phase, manipulated heat flux, the liquid density, the liquid
heat capacity, and the liquid heat conductivity respectively.

• The local energy balance at the liquid-solid interface x = s(t) which
yields the following ODE

⇢�H⇤ṡ(t) = �kTx(s(t), t) � qf (t), (5)

where �H⇤ and qf (t) represent the latent heat of fusion and the heat
loss at the interface caused by solid phase.

The steady-state solution (Teq(x), seq) of the system (1)-(5) with zero ma-
nipulating heat flux qc(t) = 0 and zero heat loss at the interface qf (t) = 0
yields a uniform melting temperature Teq(x) = Tm and a constant inter-
face position given by the initial data. In [4], the authors developed the
asymptotical stabilization of the interface position s(t) at a desired refer-
ence setpoint sr with zero heat loss qf (t) = 0 through the design of qc(t). In
this paper, we develop how the norm estimate of the reference error under
the same design of qc(t) is described with the heat loss at the interface.

We have the following conditions for the model validity on liquid tem-
perature.

2

PDE Tt(x, t) = αTxx(x, t), 0 < x < s(t) < L

Tx(0, t) = −qc(t)/k
T (s(t), t) = Tm

ODE ṡ(t) = −βTx(s(t), t)− γqf(t)

State-dependent moving boundary⇒ Nonlinear



Model valid iff

T (x, t) > Tm, for ∀x ∈ (0, s(t)), ∀t > 0

0 < s(t) < L, ∀t > 0

Lemma If qc(t) > 0 ∀t > 0, then T (x, t) > Tm, ∀x ∈ (0, s(t)), ∀t > 0



Model valid iff

T (x, t) > Tm, for ∀x ∈ (0, s(t)), ∀t > 0

0 < s(t) < L, ∀t > 0

Lemma If qc(t) > 0 ∀t > 0, then T (x, t) > Tm, ∀x ∈ (0, s(t)), ∀t > 0

∗ qc(t) > 0 and 0 < s(t) < L are proved after qc(t) is designed



Without heat loss (qf(t) ≡ 0), the following assumption necessary

Assumption : Setpoint sr chosen to satisfy

s0 +
β

α

∫ s0

0
(T0(x)− Tm)dx < sr < L

We impose the same assumption because qf(t) is an unknown disturbance.

Assumption : The heat loss is bounded and its total energy is also bounded, i.e.,
∃q̄f ,M > 0 s.t.

0 ≤ qf(t) ≤ q̄f
,

∫ ∞
0

qf(t)dt ≤M





Previous Result (ACC16) For qf(t) ≡ 0, the control law

qc(t) = −c

k
α

∫ s(t)

0
(T (x, t)− Tm)dx+

k

β
(s(t)− sr)




where c > 0, makes the closed-loop system globally exponentially stable in the
norm Ψ(t) = ||T − Tm||2H1

+ (s− sr)2.
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Theorem (ACC18) For qf(t) ≥ 0, the same control law with gain c satisfy-
ing c > β

ksr
q̄f , makes the closed-loop system ISS w.r.t. qf(t) in the norm

Ψ(t) = ||T − Tm||2L2
+ (s− sr)2.



Previous Result (ACC16) For qf(t) ≡ 0, the control law

qc(t) = −c

k
α

∫ s(t)

0
(T (x, t)− Tm)dx+

k

β
(s(t)− sr)




where c > 0, makes the closed-loop system globally exponentially stable in the
norm Ψ(t) = ||T − Tm||2H1

+ (s− sr)2.
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q̄f , makes the closed-loop system ISS w.r.t. qf(t) in the norm
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Note : Gain should be large to avoid complete frozen



Design Procedure

• Reference errors

u(x, t) := T (x, t)− Tm, X(t) := s(t)− sr

• Backstepping transformation

w(x, t) = u(x, t)− c

α

∫ s(t)

x
(x− y)u(y, t)dy +

c

β
(s(t)− x)X(t)

• Target system

wt(x, t) =αwxx(x, t) +
c

β
ṡ(t)X(t)

w(s(t), t) =0

wx(0, t) =0

Ẋ(t) =−cX(t)− βwx(s(t), t)
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• Backstepping transformation (from (u,X) to (w,X))

w(x, t) =u(x, t)− β

α

∫ s(t)

x
φ(x− y)u(y, t)dy − φ(x− s(t))X(t)

φ(x) =
c

β
x− ε

• Target system (d(t) := γqf(t))

wt(x, t) =αwxx(x, t) + ṡ(t)φ′(x− s(t))X(t) + φ(x− s(t))d(t),

w(s(t), t) =εX(t) wx(0, t) =
β

α
φ(0)u(0)

Ẋ(t) =−cX(t)− βwx(s(t), t)− d(t)

→ Stable if d(t) ≡ 0.
? The controller is derived by transformation & target system
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Analysis

Lemma The closed-loop satisfies qc(t) > 0 and 0 < s(t) < L

Lemma Target (w,X)-system is ISS w.r.t. d(t)

Proof is by ISS Lyapunov function. Define

V =
1

2α
||w||2L2

+
ε

2β
X2

and derive

V (t) ≤M1V0e
−bt +M2

∫ t

0
e−b(t−τ)d(τ)2dτ

⇒ concludes ISS of (T, s) at (Tm, sr) w.r.t qf .



Numerical Simulation

Zinc
Heat loss qf(t) = q̄fe

−Kt with K extremely small (half life 40 [hour])
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⇒ illustrates ISS property with 0 < s(t) < sr.



Numerical Simulation

Zinc
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? heat input maintains positive, ? liquid temperature is above
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa melting temperature



Future Work

• Incorporate screw extruder’s dynamics

Tt = αTxx − bTx − h(T − Tb)

melt 
polymer

polymer 
granules

faucet

heater

screw

• Redesign by two-phase temperature dynamics (CDC 2017)


